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Abstract
Artificial intelligence (AI) is an umbrella term used to describe a cluster of 
interrelated fields. Machine learning (ML) refers to a model that learns from past 
data to predict future data. Medicine and particularly gastroenterology and 
hepatology, are data-rich fields with extensive data repositories, and therefore 
fruitful ground for AI/ML-based software applications. In this study, we compre-
hensively review the current applications of AI/ML-based models in these fields 
and the opportunities that arise from their application. Specifically, we refer to the 
applications of AI/ML-based models in prevention, diagnosis, management, and 
prognosis of gastrointestinal bleeding, inflammatory bowel diseases, gastroin-
testinal premalignant and malignant lesions, other nonmalignant gastrointestinal 
lesions and diseases, hepatitis B and C infection, chronic liver diseases, hepato-
cellular carcinoma, cholangiocarcinoma, and primary sclerosing cholangitis. At 
the same time, we identify the major challenges that restrain the widespread use 
of these models in healthcare in an effort to explore ways to overcome them. 
Notably, we elaborate on the concerns regarding intrinsic biases, data protection, 
cybersecurity, intellectual property, liability, ethical challenges, and transparency. 
Even at a slower pace than anticipated, AI is infiltrating the healthcare industry. 
AI in healthcare will become a reality, and every physician will have to engage 
with it by necessity.

Key Words: Artificial intelligence; Machine learning; Gastroenterology; Hepatology; 
Artificial neural networks; Support vector machine
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Core Tip: The opportunities that arise from the application of artificial intel-
ligence/machine learning-based models in gastroenterology and hepatology include the 
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establishment of targeted screening programs through the identification of patients 
prone to develop cancer, the development of non-invasive diagnostic tools, the 
improvement of the diagnostic accuracy, the development of treatment allocation 
frameworks based on predictions of outcomes for different treatment modalities, the 
development of models to ensure cost-effective use of resources, the development of 
triage tools for higher levels of care and decision-making tools for further treatment, 
based on individualized patient outcome predictions, and finally the development of 
predictive models of prognosis for patient and family counseling.
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INTRODUCTION
Artificial intelligence (AI) is an umbrella term to describe any application where 
computer systems are used to perform tasks normally associated with human 
intelligence[1,2]. AI is a cluster of interrelated fields, including machine learning (ML) 
and probabilistic reasoning, planning and decision making, fuzzy systems, computer 
vision, natural language processing, knowledge representation, and neural networks 
(NN)[1]. Despite their differences, these fields are all driven by advancements in 
computing power and Big Data.

ML could be described as a model that learns from past data in order to predict 
future data[3]. The application of ML in healthcare was catalyzed by several healthcare 
trends, such as electronic healthcare records and patient summaries, genomic analyses 
and biomedical research, routine imaging, and telemedicine, that have transformed the 
healthcare industry into a data-rich science with data as an omnipresent concept[4-6]. 
Specifically, while in 2013, the healthcare industry produced 153 exabytes (1018 
gigabytes) of data, it has been projected to reach 2314 exabytes in 2020[7]. Therefore, 
the healthcare industry generates an enormous amount of data that conform with the 
features that define Big Data: Volume, high-velocity, high-variety, and veracity, which 
cannot be analyzed or managed by traditional software[5,8,9]. AI promises to process 
and analyze these extensive repositories of data and turn them into meaningful 
insights.

Several studies have described AI as the potential solution to long-standing 
healthcare challenges such as increasing diagnostic accuracy, enhancing telemedicine, 
providing substantial cost reduction, promoting evidence-based medicine, facilitating 
targeted literature search, and delivering individualized care[10-14]. More impor-
tantly, AI could substantially alleviate the burden of diseases by reducing the 
associated mortality and morbidity through optimizing patient outcomes[15,16].

In gastroenterology and hepatology, physicians handle large amounts of clinical 
data and an extensive repository of imaging data generated from endoscopy, 
ultrasound, and computed tomography (CT). Therefore gastroenterology and 
hepatology are data-rich fields, and thus fruitful ground for AI applications with 
extensive research conducted in these fields, particularly regarding the prevention, 
diagnosis, management, and prognosis of diseases[17,18]. We aim to comprehensively 
review the applications of AI in gastroenterology and hepatology and identify the 
current challenges of utilizing AI in healthcare in an effort to explore ways to 
overcome them.

SEARCH STRATEGY
We conducted a comprehensive literature review of the Medline, Cochrane, and 
Scopus databases using the following algorithm: [(artificial intelligence OR machine 
learning OR deep learning OR neural networks OR support vector machine OR 
computer-assisted OR computer-aided) AND (gastroenterology OR hepatology OR 
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esophageal OR small bowel OR large bowel OR gastric cancer OR capsule endoscopy 
OR polyps OR colonoscopy OR colorectal cancer OR gastrointestinal bleeding OR 
inflammatory bowel disease OR Crohn's disease OR celiac disease OR ulcers OR 
hepatocellular carcinoma OR cholangiocarcinoma OR liver fibrosis OR fatty liver OR 
chronic liver disease OR cirrhosis)]. Articles were reviewed for eligibility by the two 
authors independently (CC, GT), and disagreements were solved by a discussion 
between the two authors. Finally, the reference lists of eligible articles were reviewed 
to identify further related literature, including articles, books, and other forms of 
publication. We excluded studies written in a language other than English and public-
ations of abstracts. The review of the literature was completed on January 27, 2021.

AI CLASSIFIERS
Before discussing AI's current applications and challenges in gastroenterology and 
hepatology, we briefly describe the AI classifiers in ML models that we identified as 
the most commonly used among the eligible articles. Specifically, we describe the basic 
features of the support vector machine (SVM), the artificial NN (ANN), and the 
convolutional NN (CNN). ML is divided into supervised and unsupervised based on 
whether the training data is labeled or not[19]. In other words, through supervised 
ML, a new data set is classified for an outcome based on previous data sets that trained 
the ML model, while in unsupervised ML, there is no outcome but rather an attempt to 
detect unknown patterns and correlations within the data[20].

SVMs are supervised learning models with associated learning algorithms trained 
to assign classes to new cases. SVMs require a training set of data where each case is 
pre-labeled regarding the outcome classification. The data points of the features of 
each case are treated as points in a high-dimensional space[21]. Based on these 
mapped points, separating hyperplanes are drawn, aiming to distinguish these points 
upon their labeled class[22]. The hyperplane with the maximum distance from the 
mapped data points, known as the maximum functional margin, is selected since it 
provides the SMV's full potential to classify new examples correctly[21,22]. SVMs 
typically perform linear classification analysis. For non-linear analysis, kernel function 
could introduce additional dimensions to the raw data; and thus turning a non-linear 
problem into a linear problem in a higher-dimensional space[23].

An ANN is an ML model inspired by the human brain's neuronal connections that 
consist of an input layer, an output layer, and a hidden layer between them[18]. ANNs 
are applied both in supervised and unsupervised ML[24]. When multiple hidden 
layers are inserted between the input and output layers, and the network's architecture 
becomes more complex with multiple interconnections, the concept of deep NN 
(DNN) emerges[24,25]. During DNN training, the model adjusts the weighted correl-
ations between the nodes of the input layer and the nodes of the multiple hidden 
layers[18,20]. Within DNN, CNNs are biologically variants inspired by multi-layer 
perceptrons[26]. CNNs have been extensively applied for medical image analysis[17,
18]. During the CNN model development, the images are preprocessed using multiple 
filters, and multiple feature maps are created in a process called convolution[26].

APPLICATIONS OF AI IN GASTROENTEROLOGY
AI/ML-based models have been extensively applied in the prevention, diagnostics, 
management, and prognosis of gastrointestinal (GI) diseases, including GI bleeding 
(GIB), inflammatory bowel diseases (IBDs), malignant and premalignant lesions, and 
other nonmalignant lesions/diseases such as gastroesophageal reflux, Helicobacter 
pylori (H. pylori) infection, ulcers, celiac disease, and intestinal hookworms.

Prevention
Table 1 summarizes the findings of the identified studies applying AI/ML models in 
the prevention of gastroenterological diseases. AI/ML-based software could be used 
in screening programs to identify high-risk patients not currently identified by 
standard screening guidelines. In a recent study, researchers developed seven different 
AI/ML models to identify patients at high risk of developing gastric cancer following 
the eradication of H. pylori infection[27]. The extreme gradient boosting (GB) model 
demonstrated the highest performance[27]. A CNN was developed in a different study 
to classify patients at low, moderate, and high risk of developing gastric cancer using 
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Table 1 Artificial intelligence applications in gastroenterology: Prevention

Ref. Parameters employed AI 
classifier

Sizes of the 
training/validation sets Outcomes Performance          

Leung et al
[27]

Laboratory results, 
clinicopathological parameters

Several 64238/25330 patients Risk of gastric cancer 
development following 
H.pylori eradication

0.53-0.972,6, 59.3-98.13,6, 51.5-
93.64,6

Nakahira et 
al[28]

Laboratory results, 
clinicopathological parameters, 
endoscopic images

CNN 7826/454 patients Stratify risk of gastric cancer 
development

---

Taninaga et 
al[29]

Laboratory results, 
clinicopathological parameters, 
endoscopic images

CART 1144/287 Prediction of future gastric 
cancer

63.4-94.81,6, 0.736-0.8742,6

Goshen et 
al[31]

Laboratory results, 
clinicopathological parameters

DT, RF, GB 688 flagged patients High risk of CRC 
development

----

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. CART: Classification and regression tree; CNN: Convolutional neural network; CRC: Colorectal cancer; DT: Decision tree; GB: 
Gradient boosting; RF: Random forest.

endoscopic images[28]. A similar study used multiple classification and regression 
trees (CART) to develop a model that predicts future gastric cancer development[29]. 
Another notable example is the ColonFlag test, an ML algorithm that uses age, sex, 
and complete blood count data to identify patients at high risk of developing 
colorectal cancer[30,31]. In a recent study, among 254 individuals who underwent 
colonoscopy, 19 cancers (7.5%) and 22 (8.7%) advanced adenomas were identified in a 
population of patients who would otherwise have avoided screening[31]. These 
studies demonstrate how AI/ML-based models could be used in a real clinical setting 
to establish targeted screening programs.

Diagnostics
Table 2 summarizes the findings of the identified studies applying AI/ML models to 
diagnose gastroenterological diseases. AI/ML-based software is applied in Computed 
Aided Detection or Diagnosis (CAD) systems used in radiology to augment medical 
images' interpretation accuracy. A CAD typically includes the stages of preprocessing, 
extraction of features, and feature selection and classification[32]. CAD systems could 
also aid endoscopists in navigating through the different anatomical locations of the GI 
tract. Specifically, a model based on a CNN employed esophagogastroduodenoscopy 
images to recognize the anatomical locations with outstanding performance[33].

Regarding the diagnosis of gastroesophageal reflux, an ANN model was developed 
as a non-invasive diagnostic tool by employing only clinical data[34]. For patients with 
Barrett’s esophagus, a deep learning-based (DL) CAD system was developed to differ-
entiate patients with malignant from patients with nondysplastic Barret’s esophagus
[35]. The CAD system also identified the optimal site to perform a biopsy with an 
accuracy between 92% and 97%[35]. An SVM model was developed in another study 
employing white-light endoscopic imaging to identify early neoplastic lesions[36]. In a 
recent study, images from volumetric laser endomicroscopy were used to develop a 
CAD system to detect neoplastic lesions for patients with Barret’s esophagus[37]. A 
similar study using volumetric laser endomicroscopy developed an ML model for 
detecting neoplastic lesions[38]. Notably, the model outperformed the experts in 
volumetric laser endomicroscopy[38]. Finally, to diagnose esophageal squamous cell 
carcinoma, a CNN model was developed by employing endocytoscopic images as an 
alternative to biopsy[39].

For diagnosing patients with H. pylori infection, a CNN was developed in a study 
employing gastroscopic images[40]. A different CNN for H. pylori diagnosis was 
developed in a prospective pilot study analyzing images taken from the stomach's 
lesser curvature using either white light imaging, blue light imaging, or linked color 
imaging[41]. Notably, employing blue light and linked color imaging yielded 
significantly higher performance than white light imaging[41]. In a similar study, a 
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Table 2 Artificial intelligence applications in gastroenterology: Diagnosis

Ref. Diagnostic Modality AI 
classifier

Sizes of the 
training/validation sets Outcomes Performance        

Takiyama et al
[33]

Esophago-gastro-
duodenoscopy imaging

CNN 1750/4357 Anatomical classification 
among larynx, esophagus, 
stomach, and duodenum

0.99-1.002,7

Pace et al[34] Laboratory results, 
clinicopathological 
parameters

ANN 159 patients Diagnosis of 
gastroesophageal reflux 
disease

67.86-1001,6

de Groof et al
[35]

Esophageal endoscopic 
images

DNN 1247/2976/807/807 patients Classification of malignant 
from nondysplastic 
Barret’s esophagus

88.21,6, 87.5-88.81,7, 87.63,6, 90.0-
92.53,7, 88.64,6, 82.5-87.54,7

van der Sommen 
et al[36]

White-light endoscopic 
imaging

SVM 44 patients with Barret’s 
esophagus

Diagnosis of early 
neoplastic lesions

Per image: 62-903,6, 65-904,6, 
Per patient: 52-1003,6, 74-964,6

Struyvenberg et 
al[37]

Volumetric laser 
endomicroscopy imaging

Several 29 patients with Barret’s 
esophagus

Diagnosis of neoplastic 
lesions

0.83-0.942,6

Swager et al[38] Volumetric laser 
endomicroscopy imaging

Several 60 images Diagnosis of neoplastic 
lesions

0.89-0.952,6

Kumagai et al
[39]

Endocytoscopic imaging CNN 4715/15207 Diagnosis of esophageal 
squamous cell carcinoma

90.91,7, 0.72-0.902,7, 39.4-46.43,7, 
98.2-98.44,7

Zheng et al[40] Endoscopic images CNN 1507/452 patients Diagnosis of H.pylori 
infection

84.5-93.81,6, 0.93-0.972,6, 81.4-
91.63,6, 90.1-98.64,6

Nakashima et al
[41]

Endoscopic images CNN 162/60 patients Diagnosis of H.pylori 
infection

0.66-0.962,6

Itoh et al[42] Endoscopic images CNN 149/30 images Diagnosis of H.pylori 
infection

0.9562,6, 86.73,6, 86.74,6

Shichijo et al[43] Endoscopic images CNN 32308/114817 Diagnosis of H.pylori 
infection

83.1-87.71,7, 81.9-88.93,7, 83.4-
87.44,7

Kanesaka et al
[45]

NBI SVM 126/81 NBI images Diagnosis of gastric cancer 96.31,6, 96.73,6, 95.04,6

Hirasawa et al
[46]

Endoscopic images CNN 13584/22967 Diagnosis of gastric cancer 92.23,7

Zhu et al[47] Laboratory results, 
clinicopathological 
parameters, cancer 
biomarkers

GB/DT 496/213 patients Diagnosis of gastric cancer 85.91,5, 831,6, 0.912,6, 883,5, 873,6, 
83.44,5, 84.14,6

Tenório et al[48] Laboratory results, 
clinicopathological 
parameters

Several 178/38 Diagnosis of celiac disease 71.5-801,6, 0.71-0.842,6, 69-823,6, 
67-804,6

Caetano Dos 
Santos et al[49]

Endomysial autoantibody 
test for IgA-class 
antibodies images

SVM 2597 images 
(training:validation = 7:3)

Diagnosis of celiac disease 96.8-98.851,6, 82.84-98.913,6, 
98.81-99.404,6

Hujoel et al[50] Laboratory results, 
clinicopathological 
parameters

Several 408 undiagnosed patients Diagnosis of celiac disease 0.49-0.532,6

Manandhar et al
[51]

Gut microbiome data RF 1429 fecal 16S metagenomic 
data subjects

Diagnosis of IBD 0.80-0.822,6

Wei et al[52] Single nucleotide 
polymorphisms data

Several 60828 samples Classifification of CD and 
UC

0.782-0.8662,6

Mossotto et al
[53]

Capsule endoscopy, 
histologic imaging

SVM 239/487 pediatric patients Classifification of CD, UC, 
and unclassified IBD

71-82.71,5, 0.78-0.872,5, 83.31,7, 
83-853,7

Xia et al[58] Capsule endoscopy 
imaging

CNN 697/1007 patients, 
822590/2013657, images 

Classification among 
different types of gastric 
lesions

77.1-861,7, 0.80-0.902,7,  
96.2-1003,7, 56.5-76.24,7

Seguí et al[59] Capsule endoscopy 
imaging

CNN 50 videos Classification of small 
bowel mobility events

961,6

Park et al[60] Capsule endoscopy 
imaging

CNN 139 videos, 200000 images 
(training:validation:test = 
6:2:2)

Small bowel lesion 
identification

80.29-98.341,6, 0.9992,5, 0.9982,6,7
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Hwang et al[61] Capsule endoscopy 
imaging

CNN 7556/57607 images Classification of 
hemorrhagic and 
ulcerative lesions

96.62-96.831,7, 95.07-97.613,7, 
96.04-98.184,7

Otani et al[62] Capsule endoscopy 
imaging

DNN 167/407 patients Classification among 
different types of small 
bowel lesions

0.950-0.9962,6, 0.884-0.9282,7

Yuan et al[63] Capsule endoscopy 
imaging

SVM 20 patients, 340 images 
(training:validation = 8:2)

Diagnosis of peptic ulcers 92.651,6, 94.123,6, 91.184,6

Karargyris et al
[64]

Capsule endoscopy 
imaging

SVM 80 frames Diagnosis of peptic ulcers 753,6, 73.34,6

He et al[65] Capsule endoscopy 
imaging

CNN 11 patients, 440000 images Diagnosis of intestinal 
hookworms

88.51,6, 0.8952,6, 84.63,6, 88.64,6

Leenhardt et al
[66]

Capsule endoscopy 
imaging

CNN 600/600 images Diagnosis of 
gastrointestinal 
angiectasia

1003,6, 964,6

Zhou et al[67] Capsule endoscopy 
imaging

CNN 21 videos Diagnosis of celiac disease 1003,6, 1004,6

Yamada et al[68] Colon capsule endoscopy 
imaging

CNN 15933/47847 Diagnosis of colorectal 
neoplasias

83.97, 0.9022,7, 793,7, 874,7

Wang et al[69] Colonoscopy imaging CNN 5545 images/271137 
images/6127 images/1387 

videos/547 videos

Identification of colorectal 
polyps

0.9842,7, 88.24-1003,7, 95.40-
95.922,7

Misawa et al[70] Colonoscopy imaging CNN 411/35 short videos Identification of colorectal 
polyps

76.51,6, 0.872,6, 903,6, 63.34,6

Urban G et al[71] Colonoscopy imaging CNN 8641 images/207 videos Identification of colorectal 
polyps

96.41,7, 0.9912,7

Ozawa et al[72] Colonoscopy imaging CNN 20431/70777 images Identification of colorectal 
polyps, Classification of 
colorectal polyps

90-973,7, 47-981,7

Mori et al[73] NBI and methylene blue 
staining images

SVM 466 diminutive polyps Classification of 
diminutive rectosigmoid 
adenomas

NPV(%): 93.7-96.5

Tischendorf et al
[74]

NBI SVM 209 colorectal polyps Classification of colorectal 
polyps

903,6, 70.24,6

Gross et al[75] NBI SVM 434 colorectal polyps Classification of small 
colorectal polyps

93.11,6, 95.03,6, 90.34,6

Kominami et al
[76]

NBI SVM 118 colorectal polyps Classification of colorectal 
polyps

93.21,6, 93.03,6, 93.34,6

Misawa et al[77] NBI endocytoscopy SVM 979/100 endocytoscopy, 
images

Classification of colorectal 
polyps

901,6, 84.53,6, 97.64,6

Takeda et al[78] NBI endocytoscopy SVM 5543/200 endocytoscopy, 
images

Diagnosis of invasive CRC 94.11,6, 89.43,6, 98.94,6

Chen et al[79] NBI CNN 2157/2847 Classification neoplastic 
from hyperplastic polyps

96.33,7, 78.14,7, NPV(%): 91.57

Komeda et al[80] NBI CNN 1200/600 images Classification of 
adenomatous from non-
adenomatous polyps

75.11,6

Byrne et al[81] NBI CNN 223/407 videos Classification of adenomas 
from hyperplastic polyps

941,7, 0.952,7, 983,7, 834,7, 
NPV(%): 977

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. ANN: Artificial neural network; CD: Chron’s disease; CNN: Convolutional neural network; CRC: Colorectal cancer; DNN: 
Deep neural network; DT: Decision tree; GB: Gradient boosting; IBD: Inflammatory bowel disease; NBI: Narrow-band imaging; NPV: Negative predictive 
value; RF: Random forest; SVM: Support vector machine; UC: Ulcerative colitis.

CNN model employed images from upper GI endoscopy to detect H. pylori infection
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[42]. Finally, Shichijo et al[43] developed two different CNN models to diagnose H. 
pylori infection. The first, a 22-layered deep CNN, performed comparably with 
endoscopists, while the second, which classified images based on their location in the 
stomach, performed comparably with endoscopists in terms of sensitivity and 
specificity but demonstrated a significantly higher accuracy[43]. The time needed to 
analyze all the images was 3 min and 18 s and 3 min and 14 s for the two CNNs, while 
for endoscopists, the average time needed was 230.1 min[43]. A recent meta-analysis 
evaluating the performance of CNNs to diagnose infection with H. pylori concluded 
that it is currently equivalent to physicians[44].

Regarding the diagnosis of gastric cancer, an SVM-based CAD model was 
developed to identify early gastric cancer features in narrow-band imaging (NBI) 
gastroscopy[45]. In a different retrospective study, a CNN was developed to detect 
gastric cancer from endoscopic images. Even though the model managed to correctly 
classify 71 of the 77 gastric cancer lesions (92.2% sensitivity), it also falsely identified 
161 non-cancerous lesions as gastric cancer, yielding a low positive predictive value of 
30.6%[46]. Approximately half of these lesions were gastritis with an irregular mucosal 
surface or changes in color tone[46]. Finally, in a recent study, a non-invasive GB/ 
decision tree (DT) model employing only nonendoscopic parameters was developed to 
diagnose gastric cancer[47].

Regarding the diagnosis of celiac disease, five different AI/ML-based models were 
developed in a study using clinical data as a base for non-invasively diagnosing celiac 
disease[48]. Interestingly, the models were tested using 13 different algorithms and 
different input variables variations, resulting in 270 different tested models[48]. 
Among them, a model based on the Bayesian classifier demonstrated the highest 
performance[48]. A different study developed an SVM that employed images from the 
endomysial autoantibody test for IgA-class antibodies to classify patients with celiac 
disease[49]. Finally, in a different study, the authors aimed to develop several AI/ML-
based models, which employ clinical data, to predict celiac disease in a group of 
patients who remained undiagnosed[50]. The models were unsuccessful, with only 
two models slightly outperforming random chance in predicting celiac disease[50].

In the diagnosis of IBDs, a recent study developed five different AI/ML-based 
models using data from the gut microbiome to classify patients with IBD[51]. The 
Random Forest (RF) model demonstrated the highest performance with AUROCs of 
0.80 when bacterial taxa were used and 0.82 when operational taxonomic features 
were used[51]. Finally, the models were tested in distinguishing between Chron’s 
disease (CD) and ulcerative colitis (UC), with the RF model demonstrating an AUROC 
> 0.9[51]. A multicentered, genome-wide association study used data from single-
nucleotide polymorphisms to develop several AI/ML-based models to classify 
patients with CD and UC[52]. For pediatric IBDs, an SVM-based model employed data 
from histologic and endoscopic images to classify pediatric patients with CD, UC, or 
unclassified IBD[53]. Other studies have employed images from wireless capsule 
endoscopy to build SVM models that identify patients with CD with reported 
accuracies between 80.2% and 100%[54-57].

Focusing on capsule endoscopy, in a recent study, magnetically controlled capsule 
endoscopy imaging was employed to develop a CNN that provides an automatic 
detection and classification system for gastric lesions[58]. These lesions included 
erosions, polyps, ulcers, submucosal tumors, normal mucosa, and xanthomas[58]. A 
different study used images generated by a wireless capsule to develop a CNN able to 
classify the small bowel motility among six distinct intestinal motility events[59]. In a 
recent study, an AI-assisted capsule endoscopy reading model was developed to assist 
lesion identification[60]. Notably, the model significantly shortened the reading time 
of images by trainees[60].

To distinguish between hemorrhagic and ulcerative lesions, a CNN was developed 
using images from small bowel capsule endoscopy[61]. In a similar, recent study, a 
DNN model used capsule endoscopy images to classify different small bowel lesions 
(erosions, ulcers, tumors, and vascular lesions)[62]. SVM-based models were 
developed in two other studies employing images from capsule endoscopy to identify 
peptic ulcers[63,64]. In three different studies, CNNs have been developed, employing 
images from capsule endoscopy to diagnose intestinal hookworms, GI angiectasia, and 
celiac disease[65-67]. Finally, a CNN was developed in a recent study to detect 
colorectal neoplasias in images from colon capsule endoscopy[68].

Regarding the identification of colorectal polyps in coloscopy, a CNN model was 
designed to analyze colonoscopy images and videos and identify colorectal polyps
[69]. Interestingly, the model's sensitivity to identify flat isochromatic, less than 0.5 cm 
polyps, which are typically associated with a higher missing rate, was estimated at 
91.65% per image[69]. A different study, employing short videos from colonoscopies, 
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developed a CNN model that identifies colorectal polyps[70]. In another study, a CNN 
was developed employing videos and images from coloscopy to detect colorectal 
polyps in real-time[71]. Interestingly, when experts reviewed the colonoscopy videos, 
they managed to identify additional non-removed polyps with the assistance of the 
CNN model[71]. In a recent study, an automated polyp detection model based on 
CNN was developed to identify and then classify colorectal polyps into adenomas, 
hyperplastic, sessile serrated adenomas, and cancer[72]. The model managed to 
process the images at a speed of 20 m per frame[72].

Specifically for colorectal polyps classification, in a prospective study, an SVM-
based model was developed using NBI and methylene blue staining images to classify 
diminutive rectosigmoid adenomas in real-time[73]. A prospective pilot study 
developed an SVM model that employed NBI images to detect and classify colorectal 
polyps based on vascularization features as neoplastic and non-neoplastic[74]. In a 
comparative study, an SVM model demonstrated comparable performance at 
classifying the neoplastic nature of diminutive polyps (< 10 mm) to that of experts in 
NBI colonoscopy but surpassed the performance of non-experts[75]. Two other studies 
developed SVM models that employed NBI images to classify colorectal lesions 
(neoplastic or non-neoplastic)[76,77]. Finally, an SVM model was developed in a 
retrospective study to diagnose invasive colorectal cancer based on NBI endocyt-
oscopy images[78].

Except for SVMs, several studies employed CNNs for colorectal polyps classi-
fication. One comparative study developed a CNN employing NBI colonoscopy 
images to classify neoplastic polyps[79]. Notably, the model's performance was found 
comparable to that of experts but superior to the performance of non-experts[79]. In 
another study focusing on NBI colonoscopy, a CNN model was developed to classify 
adenomatous from non-adenomatous polyps[80]. A different study developed a CNN 
model to classify adenomas from hyperplastic polyps during NBI colonoscopy[81].

The performances reported by the majority of the AI/ML-based models surpass 
both the NPV threshold recommended by the American Society of Gastrointestinal 
Endoscopy (90%) for adenoma detection and the estimated pooled NPV reported in a 
meta-analysis conducted by the society (91%)[82,83]. Finally, we should mention that 
currently, the majority of the CAD systems that we reported have the shortcoming of 
manual segmentations of lesions. The endoscopists should identify the areas of interest 
before the model could analyze and attempt to classify. This weakness has been 
acknowledged by the European Society of Gastrointestinal Endoscopy[84]. Other 
obstacles to developing CAD systems constitute the lack of large datasets and the lack 
of variability in images. A recent study aimed to resolve this by developing a CNN 
that “adds” polyps to the images to increase the repository of images for training and 
advance the development of automated polyp detection models[85].

Management
Table 3 summarizes the findings of the identified studies applying AI/ML models for 
the management of gastroenterological diseases. In a recent study, data from baseline 
impedance, nocturnal baseline impedance, and acid exposure time were used as a base 
for a DT model to predict the treatment response with proton pump inhibitors for 
patients with gastroesophageal reflux disease[86]. The aim was to establish a decision-
making framework for treatment allocation[86].

AI/ML-based models have been used in the management of malignant GI lesions. 
Regarding gastric cancer, a CNN has been developed to predict whether the early 
gastric cancer has invaded the mucosa and submucosa layers of the stomach and act as 
a decision tool for endoscopic resection[87]. Interestingly, the CNN model outper-
formed endoscopists[87]. In the same concept, a DNN was developed to classify 
gastric cancer based on invasion depth as a basis for treatment allocation[88]. 
Specifically, the model demonstrated accuracy for predicting T1, T1a, T1b T2, T3, T4, 
and an overall accuracy of 77.2%, 68.9%, 63.6%, 49.1%, 51.0%, 55.3%, and 64.7%, 
respectively[88]. In colorectal cancer, the identification of microsatellite instability 
significantly impacts the treatment allocation process. A DL model was developed to 
identify microsatellite instability directly from hematoxylin and eosin-stained whole 
slide image[89]. Notably, the model outperformed a group of pathologists[89]. Finally, 
an SVM model that predicted the lymph node metastasis status of patients with 
colorectal cancer was designed as a tool to identify patients who would benefit from 
additional treatment following the endoscopic resection of T1 tumors[90]. Notably, the 
model outperformed the staging systems endorsed by current guidelines[90].

Regarding the management of GIB, in a recent study, an ML model was developed 
using data from patients admitted to the intensive care unit (ICU) following a GIB to 
predict the need for transfusion[91]. The authors suggested that it could potentially be 
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Table 3 Artificial intelligence applications in gastroenterology: Treatment

Ref. Parameters employed AI 
classifier

Sizes of the 
training/validation 
sets

Outcomes Performance          

Rogers et al
[86]

Data from baseline 
impedance, nocturnal baseline 
impedance, and acid exposure 
time

DT 335 patients Prediction of treatment response 
with proton pump inhibitors for 
patients with gastroesophageal 
reflux disease

0.31-0.9382,6

Zhu et al
[87]

Endoscopic images CNN 790/2037 images Invasion of gastric cancer at the 
mucosa and submucosa layers of 
the stomach

89.161,7, 0.942,7, 76.473,7, 95.564,7

Kubota et al
[88]

Endoscopic images DNN 800/90 images Invasion depth of gastric cancer 64.71,6

Yamashita 
et al[89]

Hematoxylin and eosin-
stained WSI 

DNN 100/156/4847 Identificication of CRC 
microsatellite instability

0.9312,6, 0.7792,7, 763,7, 66.64,7

Ichimasa et 
al[90]

Laboratory results, 
clinicopathological parameters

SVM 590/1007 Prediction of lymph node 
metastasis status

691,7, 0.8212,7, 1003,7, 664,7

Levi et al
[91]

Laboratory results, 
clinicopathological parameters

RFE 14620 patients Prediction of the need for 
transfusion following GIB

50.21-74.881,6, 0.7858-0.81412,6, 
69.17-92.773,6, 35.02-79.824,6

Prediction of the source of GIB 69.7-94.31,6, 0.658-0.9992,6, 90.1-
98.03,6, 89-1004,6

Prediction of the need for blood 
resuscitatio

64.7-94.11,6, 0.381-0.9932,6, 90.3-
93.93,6, 18.4-95.54,6

Prediction of the need for 
emergent endoscopy

62.7-83.31,6, 0.404-0.9132,6, 80.1-
89.13,6, 13.8-85.74,6

Chu et al
[92]

Laboratory results, 
clinicopathological parameters

Several 122/67 patients

Prediction of disposition 58.4-89.71,6, 0.324-0.9722,6, 81.9-
92.93,6, 18.4-90.94,6

Prediction of major stigmata of 
recent hemorrhage

891,3,4,6, 771,7, 963,7, 634,7Das et al[93] Laboratory results, 
clinicopathological parameters

ANN 194/1936/2007 patients

Prediction of the need for 
emergent endoscopy

811,3,6, 611,7, 943,6, 824,6, 484,7

Augustin et 
al[94]

Laboratory results, 
clinicopathological parameters

CART 164/1037 patients Stratification of risk of rebleeding 
and mortality following acute 
variceal hemorrhage

0.81-0.832,7

Prediction of severe lower GIB 0.9792Loftus et al
[95]

Laboratory results, 
clinicopathological parameters

ANN 103/44 patients

Prediction of the need for surgical 
intervention

0.9542,6

Prediction of severe lower GIB 781,6, 831,7

Prediction of recurrent bleeding 881,6, 881,7

Ayaru et al
[96]

Laboratory results, 
clinicopathological parameters

GB 170/1307

Prediction of the need for 
intervention

881,6, 911,7

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. ANN: Artificial neural network; CART: Classification and regression tree; CNN: Convolutional neural network; CRC: 
Colorectal cancer; DT: Decision tree; DNN: Deep neural network; GB: Gradient boosting; GIB: Gastrointestinal bleeding; RFE: Recursive feature 
elimination; WSI: Whole-slide image.

used as a decision-making tool to triage patients to the ICU or the ward[91]. A 
different study developed several AI/ML models for patients with acute GIB to 
predict four different outputs: The source of bleeding, the need for urgent blood 
transfusion, the need for urgent endoscopy, and the disposition[92]. The study aimed 
to establish a decision-making framework for the efficient management of GIB. The RF 
model outperformed all seven other models for all four outputs[92].
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Focusing on the upper GIB, an ANN model was developed as a non-invasive triage 
tool for patients with upper GIB[93]. In the external cohort, the ANN performed 
similarly to the complete Rockall Score (includes endoscopic variables) in predicting 
stigmata of recent hemorrhage[93]. A different study developed a CART model 
regarding acute variceal hemorrhage to predict rebleeding and mortality and achieved 
the discrimination of three distinct prognostic groups of low, intermediate, and high 
risk[94]. Its performance was significantly superior to Child-Pugh and Model for End-
Stage Disease (MELD) but comparable to a conventional logistic regression (LR) model
[94].

Focusing on the lower GIB, two different ANN models were developed in a study 
aiming to predict severe acute lower GIB and the need for surgical intervention[95]. 
The first ANN significantly outperformed the Strate prediction rule for predicting 
severe bleeding (AUROCs: 0.98 vs 0.66)[95]. A different study employed nonendo-
scopic variables to develop a model based on a GB classifier to predict severe lower 
GIB, recurrent bleeding, and the need for clinical intervention[96]. On external 
validation, the model was found equally accurate to a conventional LR model for 
recurrent bleeding and the need for clinical intervention but superior in predicting 
severe lower GIB[96].

Prognosis
Table 4 summarizes the findings of the identified studies applying AI/ML models 
regarding the prognosis of gastroenterological diseases. Several SVM-based 
nomograms were developed in a study to predict distant metastasis for operated 
patients with oesophageal squamous cell carcinoma[97]. A different study employed 
clinicopathological data to develop an ANN model to predict the survival of patients 
with esophageal cancer operated with curative intends[98]. The model surpassed the 
Tumor–Node–Metastasis (TNM) model[98]. Regarding gastric cancer, a recent study 
developed five different AI/ML-based models to predict recurrence in operated 
patients[99]. Among the models, the RF demonstrated the best performance[99].

An ANN model was developed for patients with IBD, which used meteorological 
data to predict seasonal variations of onset and relapse in patients with CD and UC
[100]. In the validation cohort, the model predicted the onset frequency and the 
frequency of relapse of the IBD with a mean absolute percentage error of 37.58% and 
17.1%, respectively[100]. A study focusing on CD developed an ANN model to predict 
mucosal remission for patients treated with azathioprine 16 wk following treatment
[101]. In a study focusing on UC, an ANN was developed employing clinical data to 
predict the patients with UC treated with cytoapheresis, who will eventually require 
operation[102].

Regarding the prognosis of GIB, a CART model was developed to predict in-
hospital mortality of cirrhotic patients presenting with upper GIB[103]. In a multi-
centered study, an ANN model was developed employing pre-endoscopic variables to 
predict 30-d mortality in patients with non-variceal upper GIB[104]. Similarly, a 
prospective, multicentered study employed pre-endoscopic variables to develop an 
ANN model that predicts 30-d mortality in patients with non-variceal upper GIB[105]. 
The ANN significantly outperformed the Rockall scoring system (AUROCs: 0.95 vs 
0.67)[105].

Regarding colorectal cancer, a recent study developed several ML models to predict 
the RAS and BRAF mutation status for patients with advanced colorectal cancer[106]. 
Notably, the ANN demonstrated the best performance[106]. In a different study 
employing clinicopathologic variables and data generated from immunochemistry, a 
least absolute shrinkage and selection operator regression model was developed to 
predict the lymph node metastasis status in a cohort of operated patients for T1 
colorectal cancer[107].

Opportunities of AI application in gastroenterology
Therefore, the opportunities that arise from applying AI/ML-based software in 
gastroenterology include:

AI/ML models could be developed and integrated into the clinical setting to 
employ routinely collected data directly from the patient’s electronic health records 
and flag patients at high risk of developing certain GI diseases in real-time. Current 
efforts include the prevention of gastric[27-29] and colorectal cancer[30,31]. Such ML 
models could become the basis for tailoring targeted screening programs.

Endoscopy is the gold standard for the diagnosis of a plethora of GI diseases. 
AI/ML models employing non-invasive parameters that provide reliably accurate 
diagnosis could substitute endoscopy or significantly minimize its use, thus 
ameliorating the impact of endoscopy-related complications, significantly decreasing 
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Table 4 Artificial intelligence applications in gastroenterology: Prognosis

Ref. Parameters employed AI 
classifier

Sizes of the 
training/validation sets Outcomes Performance        

Yang et al[97] Laboratory results, 
immunomarkers, 
clinicopathological parameters

SVM 319/164 patients Distant metastasis of 
oesophageal squamous 
cell carcinoma following 
surgery

69.5-80.11,6, 44.7-67.23,6, 81.6-
97.74,6

Sato et al[98] Laboratory results, 
clinicopathological parameters, 
tumor characteristics

ANN 395 patients 
(training:validation:test = 
53:27:20)

1-year and 5-year survival 
of patients with 
esophageal cancer 
following surgery

0.883-0.8842,7, 78.1-80.73,7, 
84.7-86.54,7

Zhou et al[99] Laboratory results, 
clinicopathological parameters, 
tumor characteristics

Several 2012 patients 
(training:validation = 8:2)

Recurrence of gastric 
cancer following surgery

0.790-0.9622,5, 0.771-0.7952,6

Peng et al[100] Meteorological data ANN 901 patients Variations of onset and 
relapse of IBDs

----

Hardalaç et al
[101]

Clinicopathological parameters, 
treatment data

ANN 129 patients 
(training:validation:test = 
80:10:10)

Prediction of mucosal 
remission for CD patients 
treated with azathioprine

58.1-79.11,6, 0.527-0.8832,6

Takayama et 
al[102]

Clinicopathological parameters, 
treatment data

ANN 54/36 patients Prediction of the need for 
operation for UC patients 
treated with cytoapheresis

963,6, 974,6 

Lyles et al
[103]

Laboratory results, 
clinicopathological parameters

CART 884 patients Prediction of in-hospital 
mortality of upper GIB in 
cirrhotic patients

----

Grossi et al
[104]

Laboratory results, 
clinicopathological parameters

ANN 807 patients 30-d mortality of patients 
with non-variceal upper 
GIB

81.2-89.01,6, 0.872,6,  
81.5-93.33,6, 80.9-84.74,6

Rotondano et 
al[105]

Laboratory results, 
clinicopathological parameters

ANN 2380 patients 30-d mortality of patients 
with non-variceal upper 
GIB

96.81,6, 0.952,6, 83.83,6, 97.54,6

Shi et al[106] CT radiomics Several 124/35 patients Prediction of the presence 
of RAS and BRAF 
mutations in CRC

ANN: 871,5, 711,6, 0.90-0.952,5, 
0.792,6

Kang et al
[107]

Laboratory results, 
immunomarkers, 
clinicopathological parameters, 
tumor characteristics

LASSO 221/95 patients Prediction of lymph node 
metastasis status in 
operated patients for T1 
CRC 

0.7952,5, 0.7652,6

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. ANN: Artificial neural network; CART: Classification and regression tree; CD: Chron’s disease; CRC: Colorectal cancer; CT: 
Computed tomography; GIB: Gastrointestinal bleeding; IBD: Inflammatory bowel disease; LASSO: Least absolute shrinkage and selection operator; SVM: 
Support vector machine; UC: Ulcerative colitis.

the cost for diagnosis, and providing an alternative to an unpleasant intervention for 
the patient. Current efforts include the diagnosis of gastroesophageal reflux disease
[34], gastric cancer[47], celiac disease[48,50], and IBDs[51].

Expect from replacing endoscopy; AI/ML models could also improve its efficacy. 
CAD systems could facilitate navigating the GI tract and serve as the second 
“observer” for the endoscopist, an “observer” non-susceptible to distraction, which 
identifies lesions missed by the endoscopist. Particularly for capsule endoscopy, a 
CAD system that automatically detects and classifies lesions could significantly 
decrease the time required to evaluate the images by endoscopists while increasing 
diagnostic accuracy. Current efforts include the diagnosis of IBDs[53-57], gastric 
lesions[58], small bowel mobility disorders[59], small bowel lesions such as hemo-
rrhagic and ulcerative lesions[60-64], intestinal hookworms[65], GI angiectasia[66], 
celiac disease[67], and colorectal cancer[68].
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Physicians could use CADs to augment the accuracy of classifying polyps based on 
their neoplastic nature. As a result, the morbidity and mortality associated with failing 
to remove a neoplastic polyp could be lessened. At the same time, the complications 
related to removing a non-neoplastic polyp could be avoided. Therefore, CADs could 
significantly increase the cost-effectiveness of polyp management. Current efforts 
include the development of SVMs[73-76] and CNNs[79-81] for the classification of the 
neoplastic nature of colorectal polyps during NBI colonoscopy.

AI/ML models that accurately predict the response to different treatments could be 
used as a basis for individualized treatment allocation. Current efforts include the 
response of treatment with proton pump inhibitors for patients with gastroesophageal 
reflux disease[86], the mucosal remission for CD patients treated with azathioprine
[101], and the need for operation for UC patients treated with cytoapheresis[102].

Particularly for GIB management, AI/ML models could be used to identify the 
source of bleeding[92] and as frameworks for decision-making, including the need to 
transfuse patients[92], perform emergent endoscopy[92,93] or emergent surgery[95,
96], and finally, triage patients with severe GIB to the ICU[95,96].

Finally, AI/ML models could be used as predictive tools that stratify the risk of 
complications and predict overall survival and recurrence following treatment. Such 
models could be used to tailor individualized follow-up schedules and for patient and 
family counseling. Current efforts include the prediction of overall survival for 
patients with esophageal cancer[98], the risk of recurrence of operated patients with 
gastric cancer[99], and 30-d mortality of patients with non-variceal GIB[104,105].

APPLICATIONS OF AI IN HEPATOLOGY
Prevention
Table 5 summarizes the findings of the identified studies applying AI/ML models for 
the prevention of disease in the field of hepatology. In a recent study, a prospective 
cohort of apparently healthy volunteers was enrolled in a study, which developed a 
DT-based model to classify patients based on their risk of developing non-alcoholic 
fatty liver disease (NAFLD) and liver fibrosis[108]. A similar study used routinely 
collected laboratory and clinical parameters to develop several AI/ML-based models 
to identify patients with NAFLD in the general population[109]. In a different study, 
several AI/ML models were developed as potential tools for targeted screening for 
NAFLD[110]. The Bayesian network model demonstrated the highest accuracy, 
followed by an SVM model[110]. Notably, an LR model outperformed all the models. 
These studies are examples of how AI/ML-based models could be used in primary 
care as tools for detecting chronic liver diseases. In a different study, multiple AI/ML 
models were developed as a basis for a non-invasive tool for assessing the level of 
fibrosis progression in NAFLD patients[111]. Notably, the RF model demonstrated the 
highest performance[111]. A different study managed to develop an ML model for 
patients at high risk of developing NAFLD to classify patients with non-alcoholic fatty 
liver (NAFL) and non-alcoholic steatohepatitis (NASH)[112]. Several AI/ML models 
were developed in a different study to classify healthy individuals from patients with 
NAFL and NASH[113]. Among them, a GB tree model demonstrated the highest 
performance, followed by an RF model[113]. In another study, four different AI/ML-
based models were developed utilizing data from biochemical and enzyme-linked 
immunosorbent assays to classify patients with NAFLD and alcoholic liver disease 
with or without cirrhosis[114].

AI/ML models that utilize data directly from the electronic health records from 
patients infected with hepatitis B (HBV) and hepatitis C (HCV) could be used as the 
basis for targeted screening tools for liver carcinomas. A GB model was developed in a 
study using only serum markers aiming to predict fibrosis and classify the stage of 
fibrosis in two cohorts of patients with HBV and HCV[115]. An ANN model was 
developed in another study that employed only routine clinical data to predict 
significant fibrosis for patients with HBV[116]. In a similar study, an ANN model was 
developed by employing only routine laboratory data from HBV patients to identify 
patients with cirrhotic liver[117]. A different study developed an ANN model 
employing only non-invasive data to predict advanced liver fibrosis in HCV patients
[118]. A similar study developed several AI/ML-based models to develop a non-
invasive tool for identifying HCV patients with advanced fibrosis[119]. Among the 
developed models, a model based on alternating DTs demonstrated the highest 
performance[119]. These studies demonstrate how AI/ML models using routine 
clinical data could be used to identify patients who will benefit from a sustained 
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Table 5 Artificial intelligence applications in hepatology: Prevention

Ref. Parameters employed AI 
classifier

Sizes of the 
training/validation sets Outcomes Performance      

Goldman et 
al[108]

National database of routine 
annual health check-ups

DT-based 12019 patients Risk of NAFLD and 
cirrhosis

84.50-85.731,6, 0.7740-0.84862,6

Yip et al[109] Laboratory results, 
clinicopathological 
parameters

Several 500/422 Identify patients with 
NAFLD

0.87-0.902,5, 0.78-0.882,6, 55.48-
94.523,5, 51.69-92.373,6, 58.47-91.534,

5, 50.99-90.464,6

Ma et al[110] Laboratory results, 
clinicopathological 
parameters

Several 10508 patients 
(training:validation = 9:1)

Identify patients with 
NAFLD

49.47-82.921,6, 20.2-68.03,6, 54.4-
94.64,6

Sowa et al
[111]

Laboratory results, 
clinicopathological 
parameters

Several 126 morbidly obese patients 
(training:validation = 9:1)

Fibrosis in NAFLD 
patients

791,6, 30.8-60.03,6, 77.0-92.24,6

Canbay et al
[112]

Laboratory results, 
clinicopathological 
parameters

EFS 164/122 obese patients Classification of 
NAFLD and NASH

0.73392,5, 0.70282,6

Fialoke et al
[113]

National database of routine 
annual health check-ups

Several 108139 patients 
(training:validation = 4:1)

Classification among 
healthy, NAFLD, and 
NASH

77.2-79.71,6, 0.842-0.8762,6, 74.5-
77.43,6

Sowa et al
[114]

Data from biochemical and 
enzyme-linked 
immunosorbent assays

Several 133 patients 
(training:validation = 9:1)

Classification of 
NAFLD and ALD

DT: 89.02-95.11,6, 74.19-94.123,6, 
96.08-98.044,6, RF: 0.8932-0.98462,6, 
SVM: 0.9058-0.91182,6

Classification of 
fibrosis/cirrhosis in 
HBV patients

0.904-0.9742,5, 0.871-0.9182,6, 79-883,

5, 78-843,6, 86-924,5, 854,6
Wei et al
[115]

Laboratory results, 
clinicopathological 
parameters

GB 576 HBV patients, 
(training:validation = 7:3), 
3687 HCV patients

Classification of 
fibrosis/cirrhosis in 
HCV patients

0.797-0.8492,7

Wang et al
[116]

Laboratory results, 
clinicopathological 
parameters

ANN 226/1136/1167 HBV patients Classification of 
significant fibrosis

0.8832,5, 0.8842,6, 0.9202,7

Raoufy et al
[117]

Laboratory results, 
clinicopathological 
parameters

ANN 86/58 HBV patients Classification of liver 
cirrhosis

91.381,6, 0.8982,6, 87.53,6, 924,6

Piscaglia et 
al[118]

Laboratory results, 
clinicopathological 
parameters

ANN 414/96 HCV patients Classification of 
significant fibrosis

45.8-86.51,6, 0.872,5, 0.932,6, 30.4-
1003,6, 30.1-98.64,6

Hashem et al
[119]

Laboratory results, 
clinicopathological 
parameters

Several 22690/16877 HCV patients Classification of 
significant fibrosis

66.3-84.41,6, 0.73-0.762,6

Ioannou et al
[120]

Clinical/laboratory data 
extracted directly from 
electronic health records

DNN 48151 patients with HCV-
related cirrhosis 
(training:validation = 9:1)

HCC development in 
HCV cirrhosis

0.759-0.8062,6

Emu et al
[121]

Laboratory results, 
clinicopathological 
parameters

Several 1385 patients HCV 
(training:validation = 4:1)

Stage of liver cirrhosis 97.228-97.8311,6

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. ALD: Alcoholic liver disease; ANN: Artificial neural network; DNN: Deep neural network; DT: Decision tree; EFS: Ensemble 
feature selection; GB: Gradient boosting; HBV: Hepatitis B; HCC: Hepatocellular carcinoma; HCV: Hepatitis C; NAFLD: Non-alcoholic fatty liver disease; 
NASH: Non-alcoholic steatohepatitis RF: Random forest; SVM: Support vector machine.

virological response (SVR) to delay chronic liver disease progression.
Regarding the development of HCC, a recent study investigated if a DNN could 

outperform conventional LR models in predicting HCC development in patients with 
HCV[120]. A different study using variables including demographic, laboratory 
results, and clinical findings, developed RF, DNN, and LR models to reliably predict 
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the stage of liver cirrhosis in patients infected with HCV[121]. Accurately predicting 
patients with HCV prone to develop HCC could help identify patients who would be 
benefited from a targeted screening and are in a greater need of antiviral treatment to 
achieve an SVR.

Diagnostics
Table 6 summarizes the findings of the identified studies applying AI/ML models for 
diagnosis in the field of hepatology. Regarding chronic liver disease, a study used CT 
imaging data of patients with a confirmed liver fibrosis diagnosis to develop a CNN 
model for the staging of liver fibrosis[122]. Notably, the model outperformed the 
radiologists’ interpretation[122]. A different study employed ultrasound imaging of 
patients with fatty liver disease to develop an SVM model and an extreme learning 
machine model (a type of ANN) for diagnosis and risk stratification[123]. A different 
study that employed ultrasound shear wave elastography features developed an SVM 
model to identify patients with chronic liver disease[124]. Another study used images 
from real-time tissue elastography to develop four different AI/ML-based models to 
classify liver fibrosis[125]. Notably, the RF model outperformed the rest, followed by 
the KNN and the SVM models[125].

In a study, CT imaging was employed to develop an ANN model that differentiates 
between HCC, intrahepatic peripheral cholangiocarcinoma (CCA), hemangioma, and 
metastasis[126]. Interestingly, when radiologists evaluated the images, their 
performance significantly increased when they considered the ANN’s output, from an 
AUROC of 0.888 to one of 0.934[126]. Focusing on HCC diagnosis, a recent retro-
spective study developed a CNN that employed MRI images of patients with HCC. 
The model was trained with a combination of images that met the Liver Imaging 
Reporting and Data System (typical) and with images that did not (atypical)[127]. In a 
multicenter, retrospective study, a CNN was developed that employed MRI scans to 
identify HCC lesions[128]. Notably, the model surpassed the performance of less 
experienced radiologists in the diagnosis of small HCC lesions[128]. The model was 
able to analyze 100 images in just 3.4 s[128]. Finally, a different study aimed to develop 
a non-invasive ANN model that predicts the presence of microscopic vascular 
invasion and the tumor grade of HCC[129].

Regarding diagnosis of CCA and pancreatic adenocarcinoma, a study developed an 
ANN model using data generated by metabolomic and proteomic analyses of bile 
from patients undergoing endoscopic retrograde cholangiopancreatography aiming to 
classify patients with and without cancer[130]. A different study used data from the 
plasma levels of bile acids to develop six different AI/ML-based models to classify 
patients as having CCA or a benign biliary disease[131]. Among the six developed 
models, a model based on the Naive Bayes classifier demonstrated the highest 
performance[131]. Finally, in another study, an ANN model was designed to analyze 
images from magnetic resonance cholangiopancreatography to diagnose CCA with a 
reported accuracy of 92.8%[132].

Management
Table 7 summarizes the findings of the identified studies applying AI/ML models to 
manage hepatic diseases. With the guidance of AI/ML-based software trained by data 
generated from gene mutation biomarkers, serum markers, imaging, and the clinical 
setting, high-quality, evidence-based, and individualized treatments could be 
employed regarding chemotherapy, radiotherapy, and immunotherapy. In HBV 
management, a recent study developed several AI/ML-based models that use soluble 
immune markers to predict early virological relapse after discontinuation of 
nucleoside analogs treatment[133]. The model could be used to exclude patients at 
high risk of virological relapse from treatment cessation. In HCV management, a study 
utilized data from full-length HCV genome sequencing of variants of HCV to develop 
multiple AI/ML-based models that classify HCV anti-viral resistance variants[134]. 
Notably, the SVM model demonstrated the highest performance[134].

In HCC management, a recent study used data from DNA methylation profiling to 
develop an RF-based model that predicts 6-mo progression-free survival. Such models 
could be used to personalize patient surveillance[135]. In an international, multi-
institutional study, a CART model was developed that aimed to create a framework 
beyond the Barcelona-Clinic-Liver-Cancer (BCLC) staging system, which is currently 
endorsed by guidelines for treatment allocation[136,137]. The model defined six 
distinct prognostic groups of patients based on predictive factors of overall survival 
that could be used as a framework for treatment allocation[137]. Notably, the 
radiologic tumor burden score, which is not integrated into the BCLC staging system, 
was found as the best predictor of long-term outcome for BCLC stage B patients[137]. 
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Table 6 Artificial intelligence applications in hepatology: Diagnosis

Ref. Diagnostic Modality AI 
classifier

Sizes of the 
training/validation 
sets

Outcomes Performance  

Liver fibrosis staging (F0-
F4)

83.11,5, 80.81,6, 74.4-80.21,7Choi et al[122] CT imaging CNN 7461/4216/2987/1727 
patients

Classification among 
significant fibrosis, 
advanced fibrosis, and 
cirrhosis

92.1-95.01,6,7, 0.95-0.972,6,7, 84.6-
95.53,6,7, 89.9-96.64,6,7

Kuppili et al
[123]

US imaging ELM, SVM 63 patients Diagnosis of FLD ELM: 81.7-92.41,6, 0.81-0.922,6, 
85.10-91.303,6, 78.52-92.104,6, 
SVM: 76.14-86.421,6, 0.74-0.862,6, 
76.80-88.203,6, 74.52-86.304,6

Gatos et al[124] US shear wave elastography 
imaging

SVM 126 patients Classification of chronic 
liver disease from healthy 
patients

87.31,6, 0.872,6, 93.53,6, 81.24,6

Chen et al[125] Real-time tissue elastography 
imaging, age, sex

Several 513 patient 
(training:validation = 
3:1)

Classification of liver 
fibrosis

80.44-82.871,6, 79.67-92.973,6, 
46.25-82.504,6

Matake et al
[126]

Clinicopathological 
parameters, CT imaging

ANN 120 patients Classification among four 
types of focal liver lesions

0.9612,6

94.11,5, 87.31,6, 0.9122,6

For HCC: 92.73,6, 82.04,6

Oestmann et al
[127]

Multiphasic MRI scans CNN 150/10 patients Classification of HCC and 
non-HCC lesions

For non-HCC: 82.03,6, 92.74,6

Kim et al[128] MRI scans CNN 4555,6/547 patients HCC detection 0.972,6, 943,6, 994,6, 0.902,7, 873,7, 
934,7

MVI 0.922,5, 91.01,6Cucchetti et al
[129]

Laboratory results, 
clinicopathological 
parameters, radiological data, 
histological data

ANN 175/75 patients

Histopathological Grade 0.942,5, 93.31,6

Urman et al
[130]

Metabolomic and proteomic 
analyses of bile

Several 139 patients Classification of CCA and 
pancreatic adenocarcinoma 

0.98-1.002,6, 88-94.13,6, 92.3-1004,6

Negrini et al
[131]

Plasma bile acids profiles Several 112 patients 
(training:validation = 
4:1)

Classification of CCA and 
benign biliary disease

68.2-86.41,6, 0.77-0.952,6, 64-793,6, 
63-1004,6

Logeswaran
[132]

MRCP MLP 55/5937 images CCA diagnosis 92.8-96.31,6, 83.64-90.141,7

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. ANN: Artificial neural network; CCA: Cholangiocarcinoma; CNN: Convolutional neural network; CT: Computed 
tomography; ELM: Extreme learning machine; FLD: Fatty liver disease; HCC: Hepatocellular carcinoma; MLP: Multi-layer perceptron; MRCP: Magnetic 
resonance cholangiopancreatography MRI: Magnetic resonance imaging; MVI: Microvascular invasion; SVM: Support vector machine; US: Ultrasound.

These findings could help us reevaluate HCC management into a multidisciplinary, 
individualized approach that goes beyond the BCLC criteria[138].

In the management of patients with CCA, in an international study, a CART model 
was developed with solely preoperative variables to identify patients who would be 
more likely to benefit from surgery[139]. The model managed to isolate four distinct 
prognostic groups of patients with similar patient outcomes[139]. The authors 
concluded that this model could be used to inform presurgical decisions-for example, 
the use of neoadjuvant therapy for patients with poor prognoses[139]. In a different 
study, the researchers developed a DNN model to establish an AI framework through 
which specific prognostic groups could be used to identify which patients were more 
likely to benefit from different treatment modalities such as neoadjuvant chemo-
therapy or transarterial chemoembolization[140]. The framework was found to be 
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Table 7 Artificial intelligence applications in hepatology: Treatment

Ref. Parameters employed AI 
classifier

Sizes of the 
training/validation sets Outcomes Performance

Wübbolding et 
al[133]

Analyze soluble immune markers Several 28/497 HBV patients Prediction of early virological 
relapse

0.73-0.892,6, 0.59-
0.672,7

Haga et al[134] WGS of HCV Several 86/87 HCV patients Classification of HCV variants 
resistant to antiviral drugs

0.5-0.9372,5, 0.597-
0.9542,6

Bedon et al[135] DNA methylation profiling RF-based 300/74 HCC specimens 6-mo progression-free survival 67.1-80.61,5, 64.8-
80.21,7

Tsilimigras et al
[137]

Laboratory results, 
clinicopathological parameters, 
tumor characteristics

CART 976 HCC patients Determining factors of prognostic 
weigh preoperatively within the 
BCLC staging system

---

Tsilimigras et al
[139]

Laboratory results, 
clinicopathological parameters, 
tumor characteristics

CART 1146 CCA patients Determining factors of prognostic 
weigh preoperatively

---

Jeong et al[140] Laboratory results, 
clinicopathological parameters

DNN 1421/2347 Intrahepatic CCA susceptible to 
adjuvant therapy following 
resection

0.842,5, 0.782,7

Shao et al[141] Clinicopathological parameters ANN 288 CCA patients 
(training:validation = 8:2)

Predict early occlusion following 
bilateral plastic stent placement

0.96482,5, 0.95442,6

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. ANN: Artificial neural network; BCLC: Barcelona clinic liver cancer; CART: Classification and regression tree; CCA: 
Cholangiocarcinoma; DNN: Deep neural network; HCC: Hepatocellular carcinoma; HCV: Hepatitis C; RF: Random forest; WGS: Whole-genome 
sequencing.

significantly more accurate than the current guidelines of the American Joint 
Committee of Cancer[140]. Finally, a study developed an ANN to predict which 
patients with inoperable hilar CCA will develop early occlusion following a bilateral 
plastic stent placement[141].

Prognosis
Table 8 summarizes the findings of the identified studies applying AI/ML models 
regarding prognosis in the field of hepatology. An ANN model was developed in a 
study to identify patients with HBV cirrhosis at a high risk of developing esophageal 
varices[142]. In a different study, two different RF models were created using clinical 
data, the first to identify esophageal varices and the second to classify patients with 
esophageal varices that require treatment[143].

Regarding HCC, several studies have focused on developing AI/ML-based models 
that would reliably predict patient outcomes (survival and recurrence). A retrospective 
study compared the performance among an ANN, an LR model, and a DT to predict 
the 1-, 3-, and 5-year disease-free survival in patients with HCC following resection
[144]. A similar study used a nationwide database to compare an ANN and an LR 
model in predicting the 5-year survival of patients with HCC following hepatic 
resection and concluded that the ANN model surpassed the performance of the LR 
model[145]. In a different study by the same department, an ANN model and an LR 
model were compared, but instead, the outcome was in-hospital mortality, and the 
ANN was found superior to the LR model[146]. Interestingly, the study reported that 
the surgeon volume was the best single predictor of in-hospital mortality[146]. 
Regarding predictors, a different study comparing ANN and LR models reported that 
the ANN model identified a greater number of significant predictors than the LR 
model, except for outperforming it in survival predictions[147]. In a prospective study 
that aimed to compare an ANN model's performance to the performance of traditional 
staging systems in predicting survival for patients with early HCC, the ANN model 
outperformed the Hepato-Pancreato-Biliary Association’s, the TNM 6th, and the BCLC 
staging systems with higher reported AUROCs in all training, internal validation, and 
external validation cohorts[148]. In a recent study, a GB survival classifier-based 
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Table 8 Artificial intelligence applications in hepatology: Prognosis

Ref. Parameters employed AI 
classifier

Sizes of the 
training/validation sets Outcomes Performance   

Hong et al
[142]

Laboratory results, 
clinicopathological parameters

ANN 197 HBV patients 
(training:validation = 4:1)

Development of 
esophageal varices in HBV 
cirrhosis

87.821,6, 93.753,6, 71.704,6

Identification of 
esophageal varices 

0.842,5, 0.822,7Dong et al
[143]

Laboratory results, 
clinicopathological parameters

RF 238/1097

Classification of 
esophageal varices 
requiring treatment

0.742,5, 0.752,7

1-, 3-, and 5-year disease-
free survival

ANN: 0.963-0.9892,5, 93.5-
96.33,5, 91.6-97.94,5, 0.774-
0.8642,6, 70.0-78.73,6,  
54.2-92.74,6

Ho et al[144] Laboratory results, 
clinicopathological parameters, 
surgery parameters

ANN, DT 427, 354, and 297 patients for 
1-, 3-, and 5-year survival 
(training:validation = 8:2)

Following surgical 
resection

DT: 0.675-0.8252,5, 19.6-94.83,5, 
45.8-97.94,5, 0.561-0.7182,6, 0-
88.53,6, 37.5-96.44,6

Shi et al[145] Laboratory results, 
clinicopathological parameters, 
tumor characteristics

ANN 22926 patients 5-year survival following 
surgical resection

96.571,6, 0.8852,6, 97.431,7, 
0.8712,7, 74.233,7, 

Shi et al[146] Laboratory results, 
clinicopathological parameters, 
surgery parameters

ANN 22926 hepatectomies In-hospital mortality 
following surgical 
resection

97.281,6, 0.842,6, 95.931,7,  
0.822,7, 78.403,7, 94.574,7

Chiu et al
[147]

Laboratory results, 
clinicopathological parameters, 
tumor characteristics

ANN 434, 341, and 264 patients for 
1-, 3-, and 5-year survival, 
(training:validation = 8:2)

1-, 3-, and 5-year overall 
survival, following 
surgical resection

98.5-99.51,5, 0.980-0.9932,5, 
99.7-1003,5, 96.2-99.24,5, 72.1-
85.11,6, 0.798-0.8752,6, 71.4-
88.63,6, 50.0-82.14,6

Qiao et al
[148]

Laboratory results, 
clinicopathological parameters, 
tumor characteristics

ANN 362/1816/1047 patients Survival following 
surgical resection

0.8552,5, 80.003,5, 73.404,5, 
0.8322,6, 78.673,6, 75.704,6, 
0.8292,7, 77.423,7, 78.084,7

Liu et al[149] Laboratory results, data from 
immunochemistry of peripheral 
blood mononuclear cells, tumor 
characteristics

GB survival 
classifier

136/566/1057 Risk of HCC-related death 0.8442,5, 0.8272,6, 0.8062,7

ALBI-based: 0.7162,7, 0.8232,7Zhong et al
[150]

ALBI/CTP stage ANN 319 / 617 / 1247 Survival of patients 
treated with 
chemoembolization and 
sorafenib

CTP-based: 0.7792,7, 0.6932,7

Divya and 
Radha[152]

Laboratory results, 
clinicopathological parameters, 
tumor characteristics

APO, SVM, 
RF

152 patients Recurrence following RFA 95.51,6, 95.13,6, 95.84,6

Yamashita et 
al[153]

Hematoxylin and eosin-stained 
WSI

CNN 299 / 536/1987 WSIs Recurrence following 
Surgical Resection

0.7242,6, 0.6832,7

Liang et al
[154]

Laboratory results, 
clinicopathological parameters

SVM 83 patients Recurrence following RFA 73-821,6, 0.60-0.692,6, 77-863,6, 
73-824,6

Eaton et al
[155]

Laboratory results, 
clinicopathological parameters

GB-based 509/278 patients with 
primary sclerosing 
cholangitis

Classify risk of primary 
sclerosing cholangitis-
related complications

0.962,6, 0.902,7

Andres et al
[156]

Laboratory results, 
clinicopathological parameters, 
donor characteristics

PSSP 
system

2769 patients Survival following 
transplantation for 
primary sclerosing 
cholangitis

----

Rodriguez-
Luna et al
[157]

Genotyping data from 
microsatellite 
mutations/deletions

ANN 19 transplated patients Post-transplant HCC 
recurrence

89.51,6

ANN: 0.734-0.8352,6Graft failure/primary 
nonfunction

RF: 0.787-0.8182,6

Lau et al[158] Laboratory results, 
clinicopathological parameters, 
donor characteristics

ANN, RF 90/90 transplants

3-mo graft failure ANN: 0.5592,6, R6: 0.7152,6

Laboratory results, 
clinicopathological parameters, 

Briceño et al
[160]

ANN 1003 liver transplants 3-mo graft failure 0.806-0.8212,6
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surgical parameters, donor 
characteristics

1Accuracy (%).
2Area under the receiver operating curve or c-index.
3Sensitivity (%).
4Specificity (%).
5Training.
6Internal validation.
7External validation/testing. ALBI: Albumin-bilirubin; ANN: Artificial neural network; APO: Artificial plant optimization; CNN: Convolutional neural 
network; CTP: Child–Turcotte–Pugh; DT: Decision tree; GB: Gradient boosting; HBV: Hepatitis B; HCC: Hepatocellular carcinoma; PSSP: Patient-specific 
survival prediction; RF: Random forest; RFA: Radiofrequency ablation; SVM: Support vector machine; WSI: Whole-slide image.

model was developed to stratify the risk of an HCC-related death into three distinct 
categories[149]. Finally, in another recent study, an ANN identified albumin-bilirubin 
grade as the most important prognostic factor for the survival of patients with HCC 
treated with the combination of transarterial chemoembolization and sorafenib as 
initial treatment[150]. A systematic review aimed to compare the performance of 
AI/ML-based software and that of traditional linear prediction models in predicting 
survival for patients with HCC concluded that AI/ML models provided enhanced 
accuracy[151].

Except for survival, other studies have developed AI/ML models to predict the 
recurrence of HCC following therapeutical treatment. An interesting study employed 
several AI/ML methods, including Artificial Plant Optimization, SVM, and RF to 
predict HCC recurrence following radiofrequency ablation[152]. A recent study 
developed a CNN employing histopathologic images to predict recurrence in operated 
HCC patients[153]. A different study developed an SVM model to predict the 
recurrence in a group of patients who underwent radiofrequency ablation[154].

Regarding primary sclerosing cholangitis, a team of researchers derived and 
validated a risk estimate tool based on GB algorithms to predict the outcomes of the 
disease[155]. In a different study, an ML model was developed to predict survival 
curves for patients with primary sclerosing cholangitis following liver transplantation
[156]. The P value of the χ2 test of the distributional calibration was 1, indicating 
excellent calibration of the model[156].

Focusing on liver transplantation, a team developed an ANN model combined with 
genotyping for microsatellite mutations/deletion to predict HCC recurrence in a 
cohort of patients receiving a liver transplant[157]. Several other studies have focused 
on the survival of individual liver grafts following transplantation[158-160]. In a multi-
centered study, the authors developed an ANN model to predict the 3-mo graft 
survival and loss[160]. Interestingly, their model outperformed all extensively 
validated scores, including the MELD, the donor risk index (DRI), the survival 
outcome following liver transplantation, and the balance of risk, with their per-
formance significantly lower (AUROCs range: 0.42-0.67)[160]. In a different study, an 
RF model was developed to predict the 30-d failure graft. Notably, this model too 
outperformed MELD and DRI[158]. These findings could help reevaluate our thinking 
regarding the current models of recipient-donor matching.

Opportunities of AI application in hepatology 
Therefore, the opportunities that arise from applying AI/ML-based software in 
hepatology include:

Regarding primary care, ML models could be integrated into the clinical setting and 
flag individuals in the general population at high risk of developing chronic liver 
disease in real-time by employing routinely collected data from the electronic health 
records. Current efforts include models that identify patients at high risk to develop 
NAFLD, NASH, fibrosis, and cirrhosis[108-114]. These models could be used to design 
targeted screening programs.

Particularly for patients with chronic HBV and HCV infection, AI/ML models could 
be used to stratify each individual's risk to progress through the several stages of 
cirrhosis and develop HCC. Multiple studies have been conducted in this regard for 
both HBV-related[115-117] and HCV-related[115,118-121] cirrhosis. Such models could 
be used to identify patients in greater need of SVR and tailor individualized follow-up 
schedules.

In diagnosis, AI/ML models provide the opportunity for increased diagnostic 
accuracy of various hepatic diseases and in multiple diagnostic modalities (such as 
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US/CT/MRI imaging and histologic images). Current efforts include CAD models for 
the diagnosis of chronic liver disease, HCC[127-129], and CCA[130-132].

AI/ML models that accurately and reliably predict the response to specific 
treatments could be used to tailor evidence-based frameworks for individualized 
treatment allocation. Current efforts include the development of frameworks for the 
management of HCC[136,137] and CCA[139,140].

Regarding prognosis, AI/ML models could be used to reliably predict complic-
ations, in-hospital mortality, overall survival, and recurrence following treatment. 
Current efforts include the prediction of in-hospital and HCC-related death[146,149], 
of overall survival of HCC patients following surgery[144,145,147,148], and HCC 
recurrence following surgery or RFA[152-154]. Such models could be used to tailor 
individualized follow-up schedules and for patient and family counseling.

Particularly for liver transplantation, AI/ML models could be used to predict graft 
failure or cancer recurrence for patients transplanted for cancer. Such models could be 
used to reevaluate and optimize our current practices regarding recipient-donor 
matching for graft allocation[157-160].

CURRENT CHALLENGES OF AI APPLICATIONS
Intrinsic bias and accuracy
The level of accuracy of AI systems is mostly dependent on the quality of the training 
dataset. Existing biases and prejudices in the training data set will inadvertently be 
built into the algorithms limiting the AI/ML-based software's accuracy[161]. Discrep-
ancies in the data collection process, imperfections of standardization, and incorrectly 
labeled cases become part of the algorithms' training and are thus integrated into the 
end product. Two of the most common biases found in these models are: (1) Spectrum 
bias; and (2) Overfitting. Spectrum bias occurs when the patients (whose generated 
data were used during the training and internal validation of these models) do not 
constitute a representative sample of the target population[162]. On the other hand, 
overfitting refers to the tendency of models to be customized for the training data
[162]. The performance of the model is thus exaggerated for the training dataset but is 
significantly inferior in new datasets[162]. CNNs, which are extensively used in 
gastroenterology and hepatology, are particularly vulnerable to overfitting[26]. 
Another substantial bias source is that physicians often misrecord data in the 
electronic health records, sometimes even the chief complaint[163]. These biases 
significantly impact the performance of AI/ML-based models and undermine their 
applications. A measure to alleviate the impact of biases is the standardization of data 
collection methods while establishing evaluation systems that scrutinize underlying 
biases and check data accuracy[15,164]. Another crucial step to tackle these biases is 
the external validation of models, in a clinical setting, from data generated from 
patients prospectively enrolled in the study[165]. Initial implementation of AI/ML-
based models in the clinical setting should occur on a small scale, similar to phase I 
and phase II of the clinical trials[166]. Existing tools, such as the PROBAST tool, could 
be used during the development of AI/ML-based models to comprehensively assess 
the risk of bias[164,167]. The American Medical Association has recently acknow-
ledged the need to identify and address bias in data when testing or deploying 
AI/ML-based software to avoid introducing or exacerbating health care disparities
[168]. Therefore, the real challenge is to develop an AI/ML-based software that taps 
into the true potential hidden by the data without picking up the biases.

Several other limitations affect the performance of these models. An example is the 
limited resolution of capsule endoscopy images compared to other types of endoscopy
[18]. A different limitation is the in silico nature of most of the currently developed 
models, which significantly impacts the expectations of similar performances in a real 
clinical setting. Another limitation of these algorithms is that they utilize a series of 
variables that in the real clinical setting are derived in a series of careful decisions 
made by physicians and are not readily available as a complete set of data. Therefore, 
these variables' presence or absence could become a significant shortcoming of these 
models in a real clinical setting, making them impractical to use. Finally, there is a lack 
of consistency in the metrics used to assess performance (sensitivity, specificity, 
AUROC, accuracy, etc.), limiting the ability to draw meaningful comparisons between 
the models[17].

Data protection and cybersecurity
Similarly, with all patient data, those utilized in AI/ML-based software should 
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conform with the seven principles described in Article 5 of the General Data Protection 
Regulation. Specifically, the personal data are required to: (1) Be processed fairly, 
lawfully, and transparently; (2) Be relevant, adequate, and limited to the intended 
purpose; (3) Be collected for explicit, specific, and lawful purposes; (4) Be accurate and 
up to date; (5) Permit identification for only as long as necessary; (6) Ensure 
appropriate security; and (7) Demonstrate compliance and accountability[169]. A 
particular challenge for AI is the resistance to the concept of utterly electronic tracking 
of healthcare records due to the belief that it exposes the vast amount of stored 
sensitive health record data to massive disclosures[170]. These concerns are not 
entirely unjustifiable if one considers examples such as the transfer of data from 1.6 
million patient records from the Royal Free Nathional Health Service Foundation 
Trust to Google DeepMind, which was later ruled illegal[171]. Nevertheless, any effort 
or policy towards paper-based data due to data protection concerns could substan-
tially undermine the application of AI modes in healthcare.

The healthcare industry is a particularly attractive target for cyberattacks as it 
contains sensitive personal data and financial information. Several physical and 
technical safeguards have been implemented under the Health Insurance Portability 
and Accountability Act to protect against the breach of sensitive patient data[172]. 
However, from the application of AI technology in the healthcare industry, new 
vulnerabilities and dangers emerge except traditional cybersecurity concerns. If ML 
models can learn from data, they could also be fooled by data. Data could be 
introduced malevolently in the algorithms to manipulate the developed AI/ML 
models into making wrong decisions with currently unknown ramifications to patient 
outcomes[173]. In a recent study, the authors demonstrated how attackers could use 
DL to add or remove lung cancer tumors in CT scans[174]. This study demonstrated 
how both a group of radiologists and a state-of-the-art deep AI model were partic-
ularly susceptible to the attack[174]. How could we, therefore, be confident that the 
AI/ML model has not been compromised? Evidently, healthcare facilities will have to 
develop additional information technology infrastructure to shield the healthcare 
system from these new threats.

Intellectual property 
The Food and Drug Administration (FDA) recently acknowledged that it receives a 
high volume of submissions regarding AI/ML-based software marketing, with the list 
of already approved algorithms increasing rapidly[175,176]. A challenging point will 
be determining the law framework and regulatory standards that AI/ML-based 
software should follow. The key is classifying AI/ML software as "medical device", 
"service", or as "product", and achieving this requires a careful evaluation of the 
intentive use of AI/ML-based software. AI/ML-based software that aims to assist 
physicians in diagnosing, interpreting, and treatment decisions could be classified as 
medical devices and fall under the respective regulations[12]. In 2019, the FDA 
announced its aim to review AI/ML-based software regulation and has recently 
published the AI/ML– Based Software as a Medical Device Action Plan[175,177]. The 
action plan published by the FDA focuses on five pillars aimed to facilitate innovation 
and advance AI/ML-based software that are classified as medical devices. These 
include: (1) A tailored regulatory framework; (2) Good ML practice that could be 
achieved by consensus standards efforts; (3) A patient-centered approach incor-
porating transparency to users that takes into account usability, trust, equity, and 
accountability; (4) Regulatory science methods related to algorithm bias and 
robustness, and finally; and (5) Real-world performance[175]. When it comes to law 
and regulation, the real challenge is finding the golden snitch between too much 
regulation that strangles innovation and creation and too little regulation, which could 
have unexpected and devastating consequences for healthcare, and by extension, the 
well-being of patients.

Another interesting point regarding intellectual property and safety is the 
substantial divergence of the AI/ML-based software from the original product years 
after its approval and distribution[178]. What are the rights of developers on the 
product following its purchase? Since the original product constantly changes by 
learning from the clinical setting's data, the deviated model years after the purchase 
and the original software could be seen as two entirely different products. The first is 
protected under copyright law. However, the latter has now produced intellectual 
property on its own since it encompasses data generated by the healthcare facility
[173]. Who could therefore claim legal rights over the final product? Also, who ensures 
the credibility and safety of the model as it deviates from the original product? Clearly, 
there is a need for lifecycle regulation of AI/ML-based software that ensures postap-
proval guardrails such as built-in audits[165]. Alternatively, time-limited authoriz-
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ations could be employed to allow the FDA to perform periodic audits to review the 
accumulated modifications to the initial product[165].

Liability
Except for intellectual property, another legal challenge that arises from applying 
AI/ML-based software in the clinical setting is liability. A quite intriguing concept is 
that AI's findings and decisions could become legally binding in the future. As 
AI/ML-based models evolve and become more sophisticated, it is fair to assume that 
they will eventually surpass physicians, at least in specific tasks. How could then, the 
physicians justify ignoring the decision presented by AI? Especially when their 
decisions are made solemnly based on data and lack any sense of subjectivity. And 
who is liable when the followed decision made by the model causes injury? Currently, 
there is no legal precedent that assigns liability in a case where the injury was inflicted 
on a patient due to an erroneous output generated by AI/ML-based software[179].

To avoid malpractice liability, a physician is required to provide medical care at the 
same level as a competent physician of the same specialty while considering the 
available resources[180]. However, when an AI/ML-based software recommendation 
is involved, the concept of liability becomes more complicated. In an insightful recent 
legal analysis, the authors provide eight scenarios based on the combinations of 
whether the AI recommendation follows standard care and/or is accurate, the 
physician follows or rejects that recommendation, and whether a medical injury occurs
[179]. The authors conclude that since current law shields physicians from liability 
when the standard care is followed, it also incentivizes physicians to minimize AI's 
actual usefulness, transforming AI into a confirmatory tool rather than a tool to 
augment the level of care[179]. Until a comprehensive legal framework regarding 
liability is developed, healthcare facilities would justifiably hesitate to adopt AI 
technologies due to the fear and unawareness of how they will expose the facility and 
its staff to liability[181].

Ethical challenges and transparency
AI could become the third participant in the physician-patient relationship and 
potentially undermine the trust between them. First, the idea that data are shared with 
third parties for AI model development could lead patients to withhold information 
from physicians and become less transparent[182]. Second, AI/ML-based models 
cannot act like compassionate human beings, which is an integral part of a physician's 
clinical life. Therefore, AI-driven decision-making neither encompasses an understan-
ding of the patient’s needs nor respects the patient’s wishes nor demonstrates 
empathy, nor realizes when a patient feels discomfort or requires some rest or a hand 
to hold on to. Therefore, retaining the trust in the physician-patient relationship could 
be proven challenging in the AI era.

Another challenge is patient consent in AI applications. Clearly, it is practically 
impossible to acquire informed consent from each and every patient whose data are 
used during the development and validation of AI/ML-based software. In any case, 
we cannot predict how the algorithms would use specific data points during the 
training of the model and whether data of a specific patient have any significant 
impact on the model as a whole[183]. However, when AI/ML-based models are used 
in the clinical setting, especially for patient recording (in computer vision), patients 
should be adequately informed, and explicit consent should be acquired[184].

Achieving equilibrium between ensuring a high level of care and avoiding privacy 
encroachment could be challenging. For example, with computer vision advancement, 
monitoring could be used to detect any deviations from the optimal bedside practices 
such as patient mobilization and hand hygiene practices, which leaves patients 
vulnerable to identification[185,186]. Practices such as data minimization (collecting 
the least data needed) could address these challenges[185].

Changing the physicians' and patients’ stance towards AI technologies could be 
proven a herculean task. Currently, around 2/3 of the population feels uncomfortable 
using their data to improve care quality and are unfavorable to AI/ML-based software 
performing tasks typically performed by physicians[183]. There are justifiable 
concerns that certain biases included in the training data due to racism, sexism, and 
socioeconomic inequality would be integrated into the AI/ML-based software. A 
notorious example is the COMPAS algorithm, which was found to falsely flag black 
people as likely to re-offend[187]. This was aggravated when developers made the 
argument that the algorithm was protected under intellectual property law and thus is 
not open to scrutiny[187]. These examples could erroneously undermine the trust 
towards AI altogether. A trustworthy AI/ML-based software should be built around 
the principles of transparency, credibility, auditability, reliability, and recoverability
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[188].
The last but not least challenge in applying AI/ML-based software in healthcare is 

the lack of transparency, which is currently a major concern. The lack of transparency 
is demonstrated by the non-interpretability associated with these algorithms, 
described as a “black-box”, where the inner logic is hidden[18]. This violates a 
fundamental tenet of medical ethics that physicians should comprehend at least the 
basic features of the devices they use and could undermine the trustworthiness of 
these technologies[189]. Thus, those who develop AI/ML-based models and phy-
sicians should collaborate to reach at least a degree of explainability on how AI/ML-
based algorithms reach decisions. Attention maps and saliency region are examples of 
methods that could lessen the lack of interpretability of these models[190]. A slightly 
different and intriguing point of view is that withholding the widespread application 
of AI/ML-based software, due to their opacity, when their application could 
significantly benefit patients is, in fact, unethical[183]. With most of the population 
being prejudiced against AI, developing trust for these technologies would require 
several steps, including addressing bias, increasing transparency, communicating with 
the patients their role in provided care, protecting data privacy, and developing a 
robust regulatory framework.

CONCLUSION
Even though multiple efforts for AI's integration into healthcare have been made, they 
all originate from high-income countries[191]. Understandably, since all AI/ML-based 
software is data-driven, the opportunities to participate in the AI ecosystem for low- 
and middle-income countries, where the healthcare system does not generate 
extensive electronic, standardized data, are significantly limited. Not being included in 
the development of these models would introduce a significant spectrum bias, which 
could undermine these models' application in low- and middle-income countries. 
Thus, despite being described as the key to healthcare equity, AI could become 
another brick in the wall of inequality. A challenge for the future would be to include 
low- and middle-income countries in AI model development initiatives.

Even though these AI/ML-based software's central idea is that they could surpass 
physicians in performing certain tasks, the existing literature comparing AI/ML-based 
models and physicians' performance is limited[192]. A recent meta-analysis, which 
included multidisciplinary comparative studies, identified only 25 studies meeting 
their inclusion criteria from all medical specialties[193]. The authors concluded that 
currently, DL models' diagnostic performance in detecting diseases from medical 
imaging is equivalent to that of healthcare professionals[193]. Clearly, there is a 
contrast between the abundance of studies developing and validating ML algorithms 
and the lack of studies comparing these models' performance to physicians' 
performance at the investigated task. Thus, there is a crystalline need for further 
comparative studies in the clinical setting.

Another challenge for the future would be to combine AI with other emerging 
fields, such as 3D printing and bioprinting, augmented reality, novel biomarkers such 
as microRNAs, and robotics[194-198]. Envision a world where all these technologies 
and their applications are unified and integrated into everyday clinical practice. AI 
could be the means through which this new sophisticated, complex clinical setting is 
handled. The future AI clinician rejects oversimplifying an inherently complex field 
but instead embraces the complexity.

AI can outperform physicians in the ability to precisely quantify correlations even in 
domains where physicians possess in-depth knowledge[173]. However, AI models are 
simply tools like any other and should be treated as such. Tools with their accuracy, 
sensitivity, and specificity in performing certain tasks, tools that carry biases, and 
whose findings should be evaluated in conjunction with other clinical and paraclinical 
findings. Reliance on AI should not exclude non-quantifiable information from 
decision-making[183]. Clinical reasoning and critical thinking should not be subsumed 
by AI at the altar of technological advancement. AI's integration into healthcare should 
not replace the physicians' intelligence but rather augment it. Thus, we should aim for 
AI-assisted and not AI-driven clinical practice[14]. Finally, AI systems should be 
applied in healthcare along with equally advanced evaluation systems, which properly 
assess their ramifications within the clinical practice environment, investigate their 
unintended consequences, and, most notably, evaluate their impact on patient 
outcomes[163]. An example of an evaluative initiative is the Digital Health Innovation 
Action Plan launched by the FDA that aims to assess medical software under 
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development based on five excellence criteria: product quality, patient safety, clinical 
responsibility, cybersecurity responsibility, and proactive culture[199].

Despite being on the front line for several decades, AI still comes short of delivering 
the presumable solutions to long-standing healthcare problems. AI winters, where AI 
funding is significantly reduced, demonstrate the frustration that AI is not evolving at 
a pace investors would feel comfortable sustaining the funding[1]. AI may seem like a 
field that constantly overpromises but usually underdelivers, given its current impact 
on healthcare. In this review, we have highlighted the current challenges that we 
believe restrain the extensive application of AI in healthcare in an attempt to explore 
ways to overcome them.

Nevertheless, even at a slower pace, AI will eventually "infiltrate" not only the 
hospital setting but rather the healthcare industry as a whole, from central healthcare 
facilities to private practice and telemedicine, from medical schools and teaching 
hospitals to pharmaceutical companies, and even healthcare policy-makers in 
government. AI will become a reality; everyone will have to conform with, to avoid 
becoming obsolete. Therefore, sooner or later, physicians will have to engage with the 
field of AI by necessity. The role of physicians in this upcoming "revolution", however, 
remains to be seen. Will we be shaping this "revolution", or will we be mere observers?

Limitations
Finally, our review has few limitations. First, our study is a narrative review, and 
despite our best effort to follow a carefully designed search strategy to provide a 
comprehensive review of the current literature, our study is prone to selection bias due 
to its nature. Second, each study described in our study carries its own risk of bias and 
faces several limitations described in each study. We did not use any bias risk 
assessment tool to systematically evaluate if a study was worth inclusion rather than 
the followed search strategy and our judgment. Again this makes our review prone to 
selection bias. In addition, the majority of our included studies were performed in 
silico, and the performances reported could deviate substantially when the models are 
applied in a real clinical setting. Finally, with few exceptions, the majority of results 
report a superior or at least equivalent performance of AI/ML-based algorithms 
compared to the performance of conventional statistic models, widely used staging 
systems, extensively investigated and validated scores, and physician knowledge and 
reasoning, which have dominated decision-making in healthcare for decades. Thus, at 
least in the concept of publication bias, our findings should be interpreted with 
caution.
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