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Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and
the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells
to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes
in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along
pseudotime. We identify hundreds of genes with cell-type–specific expression, with pseudotime analysis of several cell
lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription
factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that
likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental
trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole
seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic
stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant
differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell
transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.

INTRODUCTION

Manyfeaturesofplantorganssuchasrootsaretraceabletospecialized
cell lineagesand theirprogenitors (Irish,1991;Petrickaetal., 2012).The
developmental trajectories of these lineages have been based on
tissue-specific and cell-type–specific expression data derived from
tissue dissection and reporter gene-enabled cell sorting (Birnbaum
etal.,2003;Bradyetal.,2007;Lietal.,2016).However,tissuedissection
is labor-intensive and imprecise, and cell sorting requires prior
knowledgeofcell-type–specificpromotersandgeneticmanipulationto
generatereporter lines.Fewsuchlinesareavailableforplantsotherthan
the reference plant Arabidopsis (Arabidopsis thaliana; Rogers and
Benfey, 2015). Advances in single cell transcriptomics can replace
these labor-intensive approaches. Single cell RNA sequencing (RNA-
Seq)hasbeenappliedtoheterogeneoussamplesofhuman,worm,and
virus origin, among others, yielding an unprecedented depth of cell-
type–specific information (Trapnell et al., 2014; Trapnell, 2015; Cao
et al., 2017; Packer and Trapnell, 2018; Russell et al., 2018).

Although several examples of single cell RNA-Seq have been
performed in Arabidopsis (Brennecke et al., 2013; Efroni et al., 2015,
2016), they were restricted to only a few cells or cell types. Fewwhole
organ, single cell RNA-Seq has been attempted in any plant species

(Denyer et al., 2019; Ryu et al., 2019). The Arabidopsis examples fo-
cused on root tips, finely dissecting the dynamics of regeneration or
assaying technical noise across single cells in a single cell type. Thus,
a need exists for larger-scale technology that allows amore complete
characterization of the dynamics of development across many cell
types in an unbiasedway. Such technology would increase our ability
to assay cell typeswithout reporter-gene–enabled cell sorting, identify
developmental trajectories, andprovide a comparisonof howdifferent
cell types respond to stresses or drugs. Several high-throughput
methods have been described for sequencing of RNA at a high
throughputofsinglecells.Mostof these, includingmostdroplet-based
methods, relyonthe39endcaptureofRNAs.However,unlikewithbulk
RNA-Seq, the data from single cell methods can be sparse, such that
geneswith lowexpressioncanbemoredifficult tostudy.Here,we take
advantage of expression data from root-specific reporter lines in
Arabidopsis (Birnbaumet al., 2003;Bradyet al., 2007;Cartwright et al.,
2009; Li et al., 2016) to explore the potential of single cell RNA-Seq to
capture the expression of known cell-type–specific genes and to
identifynewones.Wefocusonrootsofmatureseedlingsandprobethe
developmental trajectories of several cell lineages.

RESULTS

Single-Cell RNA-Seq of Whole A. thaliana Roots Reveals
Distinct Populations of Cortex, Endodermis, Hair, Nonhair,
and Stele Cells

We used whole Arabidopsis roots from 7d–old seedlings to
generate protoplasts for transcriptome analysis using the 103
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Genomics platform (Supplemental Figure 1A). We captured 3,121
root cells to obtain a median of 6,152 unique molecular identifiers
(UMIs) per cell. UMIs here are 10 base random tags added to the
cDNA molecules that allow us to differentiate unique cDNAs from
PCR duplicates. These UMIs corresponded to the expression of
amedianof2,445genespercellandatotalof22,419genes,closeto
the gene content of A. thaliana. Quality measures for sequencing
and read mapping were high. Of the ;79,483,000 reads, 73.5%
mapped to The Arabidopsis Information Resource (TAIR10) Ara-
bidopsis genome assembly, with 67% of these annotated tran-
scripts. These values are well within the range reported for droplet-
based single cell RNA-Seq in animals and humans.

For data analysis, we applied Monocle 3, which orders tran-
scriptome profiles of single cells in an unsupervised manner
without a priori knowledge of marker genes (Trapnell et al., 2014;
Qiu et al., 2017a, 2017b). We used the 1,500 genes in the data set
(Supplemental Data Set 1) that showed the highest variation in
expression (Supplemental Figure 1B). For unsupervised cluster-
ing, we used 25 principal components (PCs). These 25 PCs ac-
counted for 72.5% of the variance explained by the first 100 PCs,
with the first PC explaining 11% and the 25th PC explaining 0.9%
(Supplemental Figure 1C). Cells were projected onto two di-
mensions using the Uniform Manifold Approximation and Pro-
jection (UMAP) method (McInnes et al., 2018) and clustered,
resulting in 11 clusters (Figure 1A; Blondel et al., 2008). Most
clusters showed similar levels of total nuclear mRNA, al-
though clusters 9 and 11 were exceptions with higher levels
(Supplemental Figure 1D). Because some of the UMAP clusters,
specifically clusters 9 and 11, consisted of cells that had higher
than average amounts of nuclear mRNA, we were concerned that
theseclustersconsistedmerelyofcells thatweredoublets, i.e. two
(ormore) cells that received the same barcode and that resulted in
a hybrid transcriptome. As cells were physically separated by
digestion, it was possible that two cells remained partially at-
tached. To identify potential doublets in our data, we performed
adoublet analysis usingScrublet (Wolock et al., 2018),which uses

barcodeandUMI information tocalculate theprobability that a cell
is a doublet. This analysis identified only six cells, of 3,021 cells
analyzed, as doublets, spread acrossmultiple UMAPclusters and
multiple cell types (Supplemental Figure1E).Overall, given the low
number of doublets, we did not attempt to remove these cells.
To assign these clusters to cell types, we performed three

complementary analyses relyingon twoexpressiondatasets from
tissue-specific and cell-type–specific reporter lines: an earlier one
generated with microarrays (Brady et al., 2007; Cartwright et al.,
2009) and a more recent one generated with RNA-Seq and
a greater number of lines (Li et al., 2016). First, we compared the
microarray expression data for each reporter line to the gene
expression values in each single cell, using Spearman’s rank
correlations to assign each cell a cell-type identity based on
highest correlation of gene expression (Figure 1B; Supplemental
Data Set 2; Brady et al., 2007; Cartwright et al., 2009). Second, we
compared the RNA-Seq expression data to the gene expression
values in each single cell by Pearson’s correlation (Li et al., 2016;
Supplemental Figure 2A). Third, we examined the expression of
530 cell-type–specific marker genes (Brady et al., 2007) by de-
fining seven marker gene clusters with k-means clustering and
calculating their average expression for each cell. We then
compared each cell’s UMAP Louvain component cluster as-
signment (Figure 1A) with its marker-gene–based assignment.
Louvain components were derived using the Louvain method for
community detection (Blondel et al., 2008), which is implemented
in Monocle 3. Unlike k-means clustering for which the user pro-
vides the desired number of clusters to partition a data set,
Louvain clustering optimizes modularity (i.e. the separation of
clusters based on similarity within a cluster and among clusters),
aiming for high density of cells within a cluster compared with
sparse density for cells belonging to different clusters. The 11
clusters presented in Figure 1A optimized the modularity of the
generated expression data and were not defined by us.
In general, theUMAPclusters showedhigh and cluster-specific

expression of marker genes. For example, cells in cluster 10
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Figure 1. Annotation of Cell and Tissue Types for Single Cell RNA-Seq of Whole Arabidopsis Roots.

(A) Root cells were clustered and projected onto two-dimensional space with UMAP (McInnes and Healy, 2018). Solid circles represent individual cells;
colors represent their respective Louvain component. Monocle 3 trajectories (black lines) are shown for clusters in which a trajectory could be identified.
(B)Solid circles represent individual cells; colors indicate cell and tissue type basedon highest Spearman’s rank correlationwith sorted tissue-specificbulk
expression data (Brady et al., 2007; Cartwright et al., 2009).
(C) Known marker genes (Brady et al., 2007; Cartwright et al., 2009) were used to cluster single cell gene expression profiles based on similarity. The
expressionof 530 knownmarker geneswasgrouped into sevenclusters, using k-meansclustering.Meanexpression for eachcluster (rows) is presented for
each cell (columns). Cellswere ordered by their respective Louvain component indicated aboveby color (see (A), starting at component 1 at left). Number of
genes in each cluster is denoted at right.
(D) Single cell RNA-Seq pseudo-bulked expression data are compared with bulk expression data of whole roots (Li et al., 2016).
(E) Single cell pseudo-bulk expression data are compared with bulk-expression data of the three developmental regions of the Arabidopsis root (Li et al.,
2016).
(F)Proportions of cells as annotated by either UMAP (A), Spearman’s rank correlation (B), or Pearson’s rank (in Supplemental Figure 2), are comparedwith
proportions determined by microscopy (Brady et al., 2007; Cartwright et al., 2009).
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showed high and specific mean expression of cortex marker
genes (Figure 1C; Supplemental Figure 3; Supplemental Data Set
3). Both expression correlations and marker gene expression
allowed us to assign the Louvain components to five major
groups: root hair cells, nonhair cells (containing both an early and
late cluster), cortex cells, endodermis cells, and stele cells (con-
taining both xylem and phloem cells; Figure 1A). Although some
cells were most highly correlated in expression with the cell-type
columella in Spearman’s rank tests and RNA-Seq Pearson’s
correlation, these cells coclustered with nonhair cells (Figure 1B;
Supplemental Figure 2). This finding is consistent with bulk RNA-
Seq data of sorted cells (Li et al., 2016). Specifically, the PET111
(columella)-sorted bulk RNA-Seq data are most similar to bulk
RNA-Seqdata sorted forGLABRA2 (GL2) andWEREWOLF (WER;
Li et al., 2016) , both of which mark nonhair cells (Petricka et al.,
2012). Therefore, these cells were grouped as early nonhair cells
with other nonhair cells in Louvain component 8. As their ex-
pression values were best correlated with RNA-Seq data for
WER-sorted cells, they likely represent a mix of early nonhair and
lateral root cap cells, which have very similar expression profiles
(Supplemental Figure 2).

We assessed the extent to which combined single cell root
expression data resembled bulk whole-root expression data
(Figures 1D and 1E; Li et al., 2016). We observed strong corre-
lations between these two data sets (Pearson’s correlation co-
efficient R2 = 0.52, Spearman’s r = 0.71). We also compared the
combined single cell expression data to three bulk expression
data sets representing the major developmental zones in the
Arabidopsis root: themeristematic zone, the elongation zone, and
the maturation zone (Figure 1E). We observed the highest cor-
relation of single cell and bulk expression in the elongation zone
(R2 = 0.70, r = 0.83) and a lower correlation in thematuration zone
(R2 = 0.58, r = 0.70). This observation is surprising given the more
maturedevelopmental stageof theharvested roots (Supplemental
Figure 1A), and likely reflects that younger cells are more easily
digested during protoplasting and contribute in greater numbers
to the gene expression data. As expected, single cell and bulk
expression were poorly correlated in the meristematic zone
(R2 = 0.11, r = 0.43), as meristematic tissue accounts for only
a small proportion of mature roots. Furthermore, we compared
tissue-specificexpression (Li et al., 2016) to expressionboth in the
annotated cell clusters and in cells expressing appropriatemarker
genes. In general, we found strong correlations among these data
sets, suggesting that the clusters are annotated correctly
(Supplemental Table 1).

We also compared the relative representation of root cell types
between our data set and estimates basedonmicroscopy studies
(Figure 1F;Brady et al., 2007;Cartwright et al., 2009). Independent
of annotation method, we observed the expected numbers
of cortex (222 Spearman’s/233 UMAP), endodermis (306/304),
nonhair cells (1,201/1,061), and columella cells (111/no UMAP
cluster). Hair cells (565/898) were overrepresented whereas stele
cells (508/490) were underrepresented, possibly reflecting a bias
in the protoplast preparation of whole root tissue.

Protoplasting, the removal of the plant cell wall, alters the ex-
pression of 346 genes (Birnbaum et al., 2003); 76 of these genes
were included in the 1,500 genes with the highest variation in
expression (Supplemental Data Set 1; Supplemental Figure 1B)

that we used for clustering. Some of the 76 genes showed cell-
type–specific expression. To exclude the possibility that the ex-
pression pattern of these genes produced artifactual clusters and
cell-type annotations, we removed them from the analysis and
reclustered, which resulted in a similar UMAP visualization, with
similar numbers of Louvain components and cell types.

Single Cell RNA-Seq Identifies Novel Genes with
Cell-Type– and Tissue-Type–Specific Expression

Some marker genes are not expressed exclusively in a single cell
type, making it desirable to identify additional genes with cell-
type–specificexpression.First,weconfirmedthehighandcluster-
specific expression of well-known marker genes (Figure 2A;
Supplemental Figure 4; Li et al., 2016) such as the root-
hair–specific COBRA-LIKE 9 (COBL9), the endodermis-specific
SCARECROW (SCR) and the three stele-specific genes MYB46
(xylem-specific), ALTERED PHLOEM DEVELOPMNENT (APL;
phloem-specific), and SUCROSE-PROTON SYMPORTER 2
(SUC2; phloem-specific). The nonspecific expression of the
quiescent center cell marker genes WUSCHEL RELATED
HOMEOBOX 5 (WOX5) and AGAMOUS-LIKE 42 (AGL42) is likely
due to the failure to capture sufficient numbers of these rare cells.
ThenonspecificexpressionofWOODENLEG (WOL) and themore
heterogeneous pattern of both WER and GL2 expression have
been previously observed (Brady et al., 2007; Winter et al., 2007).
Second, to find novel marker genes, we identified genes with

significantly different expression within and among Louvain
component clusters byapplying theMoran’s I test implemented in
Monocle 3. We found 317 genes with cluster-specific expression,
164 of which were novel, including at least one in each cluster
(Figure 2A; Supplemental Data Set 4). Using cell-type annotations
rather than Louvain clusters, we identified 510 genes with cell-
type–specific expression, of which 317 overlapped with the
Louvain component cluster-specific expression genes, as well as
an additional 125 novel genes, some of which have been impli-
cated in the development of a cell lineage in targeted molecular
genetics studies.
For example, the stele-specific gene AT1G68810 (ABNORMAL

SHOOT 5 ; stele; Figure 2A) encodes a basic helix-loop-helix
(bHLH) protein that promotes vascular cell division and differ-
entiation as part of a heterodimer with a second bHLHprotein,
LONESOME HIGHWAY (Ohashi-Ito et al., 2014; Katayama et al.,
2015). Another stele-specific gene, AT4G36160 (VASCULAR-
RELATEDNAC-DOMAIN 2; cluster 7; Figure 2A), encodes aClass
IIB Nascent polypeptide-Associated Complex (NAC)-domain
transcription factor that contributes to xylem vessel element
differentiation by promoting secondary cell wall formation and
programmed cell death (Tan et al., 2018). In tissue-specific bulk
data (Brady et al., 2007; Winter et al., 2007), both genes show
xylem-specific expression consistent with their biological func-
tions; ABNORMAL SHOOT 5 expression is high only in the
meristematic and elongation zones, whereas VASCULAR-
RELATED NAC-DOMAIN 2 expression starts in the elongation
zoneandpersists throughout thematurationzone.Othergenes,not
previously implicated in root development, show tissue-specific
bulk expression patterns consistent with the single cell data. For
example, AT1G54940 (GLUCURONIC ACID SUBSTITUTION OF
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XYLAN4), which encodes a xylan glucuronosyltransferase
(Mortimeretal., 2010;Leeetal.,2012),wasspecificallyexpressed in
hair cells (cluster 9/hair; Figure 2A) and is most highly expressed in
cells destined to become hair cells in the elongation zone and in
differentiated hair cells in the maturation zone (Brady et al., 2007;
Cartwright et al., 2009).

Expression of Some Factor Genes Shows High Correlation
with Specific Cell Types

Weaskedwhetherwe could identify transcription factors thatmay
contribute to the cluster-specific expression patterns. To do so,
we tested for transcription factormotif enrichments in theproximal

regulatory regions of genes with cluster-specific expression,
examining 500 bp upstream of the transcription start site (Sullivan
etal., 2014;Alexandreetal., 2018) andacomprehensivecollection
of Arabidopsis transcription factor motifs (O’Malley et al., 2016).
This analysis revealed significant transcription factor motif en-
richments among clusters and annotated major tissues and cell
types (Figure 2B).
As transcription factors inArabidopsis often belong to large gene

families without factor-specificmotif information (Riechmann et al.,
2000), it is challenging to deduce the identity of the specific tran-
scription factor thatdrivescluster-specific transcription factormotif
enrichment and expression. As an approximation, we examined
transcription factor genes that were expressed in the cluster or

Figure 2. Novel Cluster-Specific and Tissue-Specific Genes and Enriched Transcription Factor Motifs.

(A) The proportion of cells (circle size) and the mean expression (circle color) of genes with cluster-specific and tissue-specific expression are shown,
beginning with known marker genes labeled with their common name (right) and their systematic name (left). For novel genes, the top significant cluster-
specific genes are shown, followed by the top significant tissue-specific genes; both were identified by principal graph tests (Moran’s I) as implemented in
Monocle 3. Note the correspondence between Louvain components and cell and tissue types. For all novel cluster-specific and tissue-specific genes, see
Supplemental Table 3.
(B) Enrichments of known transcription factor motifs (O’Malley et al., 2016) 500 bp upstream of genes with cluster-specific expression compared with
genome background. Motifs are specific to transcription factor gene families rather than individual genes. The plot is clustered based on similarity in
enrichments with Louvain components and the cell and tissue types (solid circles) indicated.
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tissue inwhichasignificantenrichmentof theirmotifwasfound,or in
neighboring cell layers (some factors move between cells; Petricka
et al., 2012; Supplemental Data Set 4). We focused first on the small
BRI1-EMS Suppressor (BES)/Brassinazole-Resistant (BZR) Homolog
(BEH) gene familywhosemotifwasspecifically enriched in cortexcells
(cluster 10). Of the six genes (BEH1/AT3G50750, BEH2/AT4G36780,
BEH3/AT4G18890, BEH4/AT1G78700, BES1/AT1G19350, and
BZR1/AT1G75080), thesingle recessivebeh4,bes1, andbzr1mutants
exhibitalteredhypocotyl length(Lachowiecetal.,2018).Doublemutant
analysissuggestspartial functional redundancy,whichagreeswithour
observationofoverlappingexpressionpatterns for thesegenesacross
cell types (Supplemental Figures5Aand5B).Bycontrast, neitherbeh1
and beh2 single mutants nor the respective double mutant show
phenotypic defects (Lachowiec et al., 2018). However, BEH2was the
most highly expressed BZR/BEH family member across clusters and
annotated root tissue and cell types (Supplemental Figures 5A andB).
Although BEH4, the most ancient family member with the strongest
phenotypic impact, showed cortex-specific expression, none of the
BZR/BEH genes showed significance for cluster-specific expression,
suggesting that combinations of family members, possibly as heter-
odimers, may result in the corresponding motif enrichment in cortex
cells (Supplemental Figures 5A and 5B). In particular, BES1 and BZR
expression was highly correlated, consistent with these genes being
the most recent duplicates in the family (Supplemental Figure 5C;
Lachowiec et al., 2013; Lan and Pritchard, 2016).

In contrast with the BEH/BZR gene family, we found stronger
cluster specificity for some genes containing TCP transcription
factor motifs in their promoters. The TCP motif was strongly
enriched in cortex (cluster 10), endodermis (cluster 1), and stele
(cluster 7). Of the 24 TCP transcription factor genes, we detected
expression for eight. Of these, TCP14 (AT3G47620) and TCP15
(AT1G69690) were expressed primarily in stele (clusters 7 and 4),
although this cluster-specific expression was not statistically
significant (Figure 2B; Supplemental Figures 5D and 5E;
Supplemental Data Set 4). TCP14 and TCP15 encode class-I TCP
factors thought to promote development. Acting together, TCP14
andTCP15promotecell division in young internodes (Kieffer et al.,
2011), seed germination (Resentini et al., 2015), cytokinin and
auxin responses during gynoecium development (Lucero et al.,
2015), and repression of endoreduplication (Peng et al., 2015).
Both genes are expressed in stele in bulk tissue data (Brady et al.,
2007;Winter et al., 2007), withTCP14 expression alsoobserved in
the vasculature by in situ hybridization (Tatematsu et al., 2008).
TCP14 can affect gene expression in a non-cell–autonomous
manner.

To further investigate the co-occurrence of cluster-specific
transcription factor motif enrichments with transcription factor
expression, we next examined the novel genes with significant
cluster-specific expression. Eight of these encode transcription
factors with corresponding highly enriched cluster-specific
binding motifs. For one of these, BEARSKIN2 (AT4G10350),
cluster-specific expression coincidedwith enrichment of theNAC
transcription factor familymotif (cluster-8, nonhair, and lateral root
cap cells; Figure 2B). BEARSKIN2 encodes a Class IIB NAC
transcription factor implicated in rootcapmaturation togetherwith
BEARSKIN1 and SOMBRERO. Class IIB NAC transcription fac-
tors are thought to contribute to terminal cell differentiation ac-
companied by strong cell wall modifications (Bennett et al., 2010).

In our data, BEARSKIN2 was most highly expressed in cluster 8
(nonhair and lateral root cap cells) and less so in cluster 6
(Supplemental Data Set 4).

Clustering Stele Cells Identifies Novel Genes with
Cell-Type–Specific Expression in the Vasculature

Our initial attempts toannotate andseparatecell typeswithin stele
tissue with marker gene expression or Spearman’s rank corre-
lations failed. Instead, we separately clustered stele cells to reveal
six subclusters upon UMAP visualization, with five subclusters
containing more than 40 cells. Their annotation via Spearman’s
rank correlation with sorted bulk data was not successful; how-
ever, using well-established marker genes expression, we de-
tected cluster-specific expression patterns (Figures 3A and 3B).
Cells closely related to the xylem pole pericycle constituted the

largest group of cells (205 cells); phloem pole pericycle cells were
the second largest (84 cells). The high number of pericycle cells
likely reflects our experimental procedure, as these cells reside on
the exterior of the vascular bundle. Both phloem and xylem
clusters showed similar numbers of cells (77 cells and 72 cells,
respectively); the phloem companion cells formed a distinct
cluster. We observed the expected subcluster expression for
several known genes and marker genes and identified novel
genes with subcluster-specific expression (Figures 3C and 3D;
Supplemental Data Set 1). Although therewas somediscrepancy,
especially for the APL gene, which is expressed in both com-
panion and phloem cells (Figure 3C), this is largely due to
missing data.

Pseudotime Trajectories Coincide with the Development
Stages of Cortex, Endodermis, and Hair Cells

We next sought to visualize the continuous program of gene
expression changes that occurs as each cell type in the root
differentiates. Because whole roots contain a mix of cells at
varying developmental stages, we reasoned that our experiment
should have captured a representative snapshot of their differ-
entiation. Monocle not only clusters cells by type but also places
them in “pseudotime” order along a trajectory that describes their
maturity. To make these trajectories, Monocle 3 learns an explicit
principal graph from the single cell expression data through re-
versed graph embedding, an advancedmachine learningmethod
(Trapnell et al., 2014; Qiu et al., 2017a, 2017b). To dissect the
developmental dynamicsof individual clusters,wefirst focusedon
the well-defined root-hair cells, in which combined single cell
expression values highly correlated with those from bulk proto-
plasts sorted for expression of the COBL9 root-hair marker gene
(Supplemental Table 1). To annotate the unsupervised trajectory
thatMonocle 3created for hair cells,weused theSpearman’s rank
test to compare expression in all cells to bulk expression data
representing 13 different developmental stages in root tissues
from all the available sorted cell types (Supplemental Figure 6;
Brady et al., 2007; Cartwright et al., 2009). Each cell was assigned
the developmental stage and cell type most correlated with its
expression values (Figure 4A). The hair cells with the earliest
developmental stage assignment were designated as the root of
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Figure 3. Reclustering of Stele Cells Yields Distinct Subclusters of Vasculature Cell Types.

(A) Cells initially annotated as stele tissue were reclustered, resulting in six distinct subclusters cells, five of which contained >40 cells.
(B)Mean expression for previously identified cell-type–specific genes (Cartwright et al., 2009) in each cell is shown, allowing annotation of stele subcluster
identities as shown in (A).
(C) Proportion of cells (circle size) andmean expression (circle color) of genes with cluster-specific and tissue-specific expression are shown, starting with
knownmarker genes at the top, labeled with their common name (right) and their systematic name (left). Below, novel significant tissue-specific genes are
shown with their systematic names, identified by principal graph tests (Moran’s I) as implemented in Monocle 3.
(D) Example expression overlays for cluster-specific genes identified by the principal graph test in (C).
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the trajectory. Next, pseudotime was calculated for all other hair
cells based on their distance from the root of the trajectory
(Figure 4B). We compared this calculated pseudotime with the
most highly correlated developmental assignment frombulk data,
finding close agreement (Figure 4B). Examples of genes that are
expressed early or late in pseudotime in the UMAP hair cluster are
shown in Figure 4C.

Hair cells undergo endoreduplication as they mature, resulting
in up to 16Ngenomic copies in thedevelopmental stages assayed
(Bhosale et al., 2018). Although endoreduplication is thought to
increase transcription rates (Bourdon et al., 2012), general tran-
scription might decrease as hair-cell–specific genes become
more highly expressed during hair-cell differentiation. Single cell
RNA-Seq affords us the opportunity to explore whether tran-
scription rates differ across development. Single cell RNA-Seq
canmeasureboth relativeexpression (as inbulkRNA-Seq) and the
total number of RNA molecules per cell. The total amount of
cellular mRNA was drastically reduced across hair-cell de-
velopment (Figure 4D). This resultmaybedue to technical bias; for
example, gene expression in larger, endoreduplicated cells may
be more difficult to assess with this droplet-based method. If so,
the observed reduction in captured transcripts should affect all
genes more or less equally. Alternatively, this observation may
reflect hair-cell differentiation, whereby transcription of hair-
cell–specific genes should remain unaffected or increase over
pseudotime. Our results support the latter scenario as tran-
scription of hair-cell–specific genes appears to increase over
pseudotime, consistentwith thesecellsundergoingdifferentiation
toward terminallydifferentiatedhair cells (Figure4E;Supplemental
Figure 7A).

To further explore this transcriptional dynamic, we calculated
RNA velocity (La Manno et al., 2018), a measure of the tran-
scriptional rate of each gene in each cell of the hair-cell cluster.
RNA velocity takes advantage of errors in priming during 39 end
reverse transcription to determine the splicing rate per gene and
cell. It compares nascent (unspliced) mRNA to mature (spliced)
mRNA; an overall relative higher ratio of unspliced to spliced
transcripts indicates that transcription is increasing. In our data,
only;4% of reads were informative for annotating splicing rates,
a lower percentage than what has been used in mammalian cells
for velocity analyses, and thus our results may be less reliable.
Basedondata for996genes,meanRNAvelocity increasedacross
pseudotime (Supplemental Figure 7B, P = 2.2 e-16 linear model,
r = 0.73). This increase in velocity was associated with the pre-
dicted changes in endoreduplication (Bhosale et al., 2018), es-
pecially between the 4N and 8N stages (Supplemental Figure 7C;
Tukey’s multiple comparison P value = 0.0477).

We also observed developmental signals in other cell types,
including cortex and endodermis (Figures 5A to 5D; Supplemental
Figure 8). Combined single cell expression values for cortex cells
highly correlated with those from bulk protoplasts sorted for
expression of the COR cortex marker gene (Figure 5B; R2 = 0.74,
r = 0.86). As Monocle 3 did not identify a trajectory for cortex
cells in the context of all cells, we isolated the cortex cells and
reperformed UMAP dimensionality reduction, clustering, and
graph embedding (Supplemental Data Set 1). Each cortex cell
was assigned a developmental stage based on its Spearman’s
rank correlation with bulk expression data (Brady et al., 2007;

Cartwright et al., 2009). Cortex cells with the earliest de-
velopmental signal were designated as the root of the cortex
trajectory, and pseudotime was assigned to the remaining cortex
cells based on their distance from the root (Figures 5A to 5D;
Supplemental Figure 6). As pseudotime increased for cortex cells,
so did their age, indicating good agreement of the trajectory with
developmental bulk RNA-Seq data. Although we observed some
decrease in total RNA expression and increased expression in
cell-type–specific genes for endodermis, we did not see a clear
pattern of change in total RNA across cortex pseudotime
(Supplemental Figures 8 and 9).
Weaskedwhetherwecouldassign the transcription factors that

drive gene expression along these developmental trajectories in
early and latehair, cortex, andendodermiscells. Asbefore,wefirst
analyzed transcription factormotif enrichmentsand thenexplored
the expression of the corresponding transcription factor gene
families. Indeed, for most developmentally enriched transcription
factor motifs, we could pinpoint candidate transcription factors
that are expressed either early or late. For example, the APE-
TALA2/ethylene-responsive elementbindingprotein transcription
factor family is one of the largest in Arabidopsis (Riechmann et al.,
2000), with nearly 80 covered in our data set; of these, only
four (AT2G25820, AT5G65130, AT1G36060, and AT1G44830)
showed strong expression in late hair cells (Figures 4F and 4G;
Supplemental Figure 10). One of these, AT1G36060 (Translucent
Green), regulatesexpressionof aquaporingenes (Zhuetal., 2014).
Overexpression of this gene confers greater drought tolerance
(Zhu et al., 2014), consistent with its expression in older hair cells.
Similar examples of developmental stage-specific motif enrich-
ments with corresponding transcription factor expression were
also found for cortex and endodermis (Figures 5E and 5F;
Supplemental Figures 8 and 10).

Branch Points in Developmental Trajectories Mark
Developmental Decisions

Although a developmental trajectory that reflects the differenti-
ation fromearly to latecellswithinacell typeshouldbebranchless,
we did observe some branch points, for example in Louvain
component 8, affording us the opportunity to explore their bi-
ological relevance. As discussed, Louvain component 8 contains
early nonhair cells and likely some lateral root cap cells. To further
explore thecellswithin thebranch,weperformedaprincipal graph
test, comparing their expression profiles to those of cells else-
where in the cluster (Figure 6A). We found that cells within the
branch were significantly enriched for expression of genes in-
volved in cell plate formation, cytokinesis, and cell cycle. We
explored this enrichment for cell-cycle annotations by comparing
expression of previously identified core cell-cycle genes
(Gutierrez, 2009) in cells within the branch to cells in the rest of the
cluster, finding many core cell-cycle genes, in particular many G2
genes, to be specifically expressed in branch cells (Figure 6B).
Among these genes were several of the cyclin-dependent kinase
(CDK) B family members that direct the G2 to M transition. Two
CDK subunits (encoded by CKS1 and CKS2), thought to interact
with several CDK family members, were also specifically ex-
pressed in branch cells (Vandepoele et al., 2002). Other branch-
cell–specific genes included AURORA1 (AUR1) and AUR2, both
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Figure 4. Developmental Trajectory of Hair Cells.

(A)UMAP-clusteredhair cellswere assignedadevelopmental timepoint basedonhighest Spearman’s rank correlationwith bulk expression data of staged
tissue (13 developmental stages; Brady et al., 2007; Cartwright et al., 2009). Cell type and developmental time points are indicated in shades of blue (and
pink). Graphic illustrates developmental stages in Arabidopsis root (plant illustrations).
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involved in lateral root formation and cell plate formation
(Figure 6C; Van Damme et al., 2011). Louvain component 9 also
showed a strong, but short branching point. We did not find any
biological processes enriched in genes expressed specifically in
this short branch; however, one gene whose expression is known
tobeaffectedbyprotoplastingwasspecifically expressed in these
cells, perhaps reflecting that cells within this branch were more
stressed by our experimental procedure (data not shown).

Heat-Shocked Root Cells Show Subtle Expression
Differences among Cell Types

A major question in studying plant responses to abiotic stress,
such as heat or drought, is the extent towhich such responses are
nonuniform across cell types. Canonically, the heat stress re-
sponse is characterized by rapid and massive upregulation of
a few loci, mostly encoding heat-shock proteins, with dramatic
downregulation of most other loci, in part because of altered
mRNA splicing and transport (Yost and Lindquist, 1986, 1988;
Saavedra et al., 1996). In plants, a set of 63 genes, most encoding
heat-shock proteins, show extreme chromatin accessibility at
both promoter and gene body upon heat stress, consistent with
their high expression (Sullivan et al., 2014). In mammals and in-
sects, not all cells are competent to exhibit the hallmarks of the
heat-shock response (Dura, 1981; Morange et al., 1984); spe-
cifically, cells in early embryonic development fail to induce heat-
shock protein expression upon stress.

We explored whether all cells within developing roots were
capable of exhibiting a typical heat-shock response. To do so, we
applied a standardheat stress (45min, 38°C) to 8-d-old seedlings,
harvested their rootsalongwith roots fromage-and time-matched
control seedlings, and generated protoplasts for single cell RNA-
Seq of both samples. For the control sample, we captured 1,076
cells, assaying expression for a median 4,079 genes per cell and
a total of 22,971 genes; 82.7% of reads mapped to the TAIR10
genome assembly. The results for these control cells were similar
to those described earlier with regard to captured cell types,
proportion of cell types (e.g. 28.8% versus 34% annotated hair
cells and 9.7% versus 7.2% endodermis cells), and correlation of
gene expression (R2 = 0.86 for the 21,107 genes captured in both

experiments). For the heat-shock sample, we captured 1,009
cells, assaying expression for a median 4,384 genes per cell and
a total of 21,237 genes; 79.8% of reads mapped to the TAIR10
genome assembly.
Due to global gene expression changes upon heat shock, we

could not simply assign cell and tissue types as before for heat-
shocked cells. The overwhelming impact of heat shock was also
apparent when comparing the first and second highest cell-type
and developmental Spearman’s rank correlations for control cells
and heat-shocked cells. Upon heat shock, many cells, especially
those with nonhair, phloem, and columella as their highest rank,
commonly showed as their second highest rank a different cell
type instead of another developmental time point of the same cell
type as observed in control cells (Supplemental Figure 11A).
Unsurprisingly, the drastic changes in gene expression led to cells
being embedded in UMAP space primarily as a function of
treatment, making direct comparisons of treatment effects on any
one cell type impossible (Supplemental Figure 11B). To enable
such comparisons, we used amutual nearest-neighbor to embed
cells conditioned on treatment in UMAP space (Haghverdi et al.,
2018). The mutual nearest-neighbor method was originally de-
veloped toaccount for batcheffectsby identifying themost similar
cells between each batch and applying a correction to enable
proper alignment of data sets. Here, we employ this technique to
overcomethe lackofmarkerexpression inourheat-shock–treated
cells and match them to their untreated counterpart based on
overall transcriptomesimilarity (Figure7A). This procedure yielded
corresponding clusters in control and heat-shocked cells, albeit
with varying cell numbers for most (Supplemental Figure 11C;
Supplemental Table 2).
In response to stress, organisms are thought to upregulate

stress genes and to specifically downregulate genes involved in
growth and development to optimize resource allocation. In re-
sponse to heat stress, this presumed “dichotomy” in gene ex-
pression ismirrored by the rapid localization of RNApolymerase II
to the heat-shock gene loci and its depletion elsewhere in the
genome (Teves and Henikoff, 2011). Our data provide strong
evidence of this regulatory trade-off at the level of individual cells.
Using hair cells (Louvain component 2) as an example, we found
that hair-cell–specific genes are overwhelmingly repressed and

Figure 4. (continued).

(B) Cells were ordered in pseudotime; columns represent cells, rows represent expression of the 1,500 ordering genes. Rows were grouped based on
similarity in gene expression, resulting in six clusters (indicated left), with genes in clusters 2 and 5 expressed early in pseudotime, and genes in cluster 1
expressed late. Hair cells with the earliest developmental signal (Brady et al., 2007; Cartwright et al., 2009) were designated as the root of the trajectory. The
graphabove represents theaveragebest-correlation of developmental stage (Bradyet al., 2007;Cartwright et al., 2009) in a scrollingwindowof 20cellswith
pseudotime, showing the expected increase in developmental age with increasing pseudotime.
(C) Examples of an early and a late expressed hair-cell–specific gene. Gene expression in each cell is superimposed onto the UMAP cluster and trajectory,
with lighter colors indicating higher gene expression.
(D) Median total RNA captured in cells decreases across pseudotime. Number of genes included is indicated.
(E) Comparison of median total RNA for hair-cell–specific genes (in red) to a comparable random set of genes (in blue). Number of genes is indicated
(Permutation test P value �1024).
(F)Different transcription factor motifs reside in the 500-bp upstream regions of genes expressed early (clusters 2 and 5) compared with genes expressed
late (cluster 1). Transcription factor motifs specific to early hair cells are denotedwith blue bars, those for late hair cells with green bars; bar length indicates
motif frequency. Thresholds on either side (gray box, dotted lines) refer to 1.5 SD above mean motif frequency.
(G) Expression of individual members of transcription factors families highlighted in (D) across pseudotime identifies candidate factors driving early or late
gene expression.
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Figure 5. Developmental Trajectory of Cortex Cells.

(A)Cortexcellswere reclustered tocreatea trajectory, inwhicheachcellwasassignedadevelopmental timepoint and identity (shadesof yellow,brown, and
pink) based on the highest Spearman’s rank correlation of a cell’s gene expression with prior sorted bulk data (Brady et al., 2007; Cartwright et al., 2009).
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that heat-shock genes are upregulated, often dramatically so
(Figures 7B and 7D). Indeed, HEAT SHOCK PROTEIN 101
(HSP101), the most highly expressed and chromatin-accessible
gene upon heat shock in previous studies (Sullivan et al., 2014),
was strongly expressed across all clusters whereas expression of
the hair marker gene COBL9 decreased dramatically upon stress
(Figures 7C and 7D).

Having established comparable clusters, we next identified
genes that were differentially expressed as a function of treatment
andcluster identity, excluding thosewith<15cells in either control
or heat-shock conditions. This analysis identified 8,526 genes
(false discovery rate [FDR] < 0.1%) whose expression was altered
by heat-shock treatment in one or more clusters; of these, 2,627
genes were up- or downregulated at least twofold (Figure 7E;
Supplemental Data Set 5;FDR<0.1%and absolute value of log2-
fold change > 1). As for hair cells (Figure 7B), cell-type marker
genes for all clusters were enriched among the downregulated
genes upon heat shock. To identify cluster-specific differences in
the response toheatshock,wecomparedgeneexpressionofcells
within individual clusters to the rest of the cells across treatments.
We observed the largest number of cluster-specific gene ex-
pression changes in hair, nonhair, and cortex cells (Figure 7F). As
these cell types are the three outermost cell layers of the root, they
maybeexposedmoredirectly to theheatshockand respondmore
quickly. Genes differentially expressed in hair cells (Louvain
component 2) upon heat shock were enriched for ribosome-
associated genes and RNA methylation. Stele cells (Louvain
component 6) showed differential expression of genes involved in
cell wall organization and biogenesis, and endodermis cells
(Louvain component 4) showed differential expression of genes
involved in response to external, chemical, and stress stimuli as
well as nitrate and anion transport (Figure 7F).

The expression of heat-shock proteins protects cells from heat
shock and aids their recovery (Parsell et al., 1993; Parsell and
Lindquist, 1993; Queitsch et al., 2000). We were interested in
whether we could detect cluster- and cell-type–specific differ-
ences in the canonical heat-shock response. In principle, such
differences could be exploited to alter heat-shock protein ex-
pression in a cell-type–specific manner to boost plant heat and
drought tolerance without pleiotropically decreasing whole or-
ganism fitness. To address suchpossible differences,we focused

on genes that from bulk analyses have differential expression
upon heat shock (1,783 genes) or reside near regulatory regions
that change in accessibility upon heat shock (1,730 genes;
Sullivan et al., 2014; Alexandre et al., 2018). Although these gene
sets overlap (942 genes), they contain complementary in-
formation, as changes in accessibility do not necessarily translate
into altered expression, and vice versa (Alexandre et al., 2018). In
our single cell expressionanalysis,we identified752of1,783heat-
responsive genes as differentially expressed upon heat shock,
and 564 of 1,730 genes near dynamic regulatory regions as dif-
ferentially expressed. We hierarchically clustered control and
heat-shock–treated single cell transcriptomes for both gene sets
(Supplemental Figures 12A and 12C), resulting in several gene
clusters with distinct expression patterns. Overall, cellular re-
sponses were dominated by the canonical heat-shock response,
as visualized in cluster 4 (Supplemental Figure 12A) and cluster 2
(Supplemental Figure 12C). The 63 genes showing extreme ac-
cessibility and high expression upon heat shock (Sullivan et al.,
2014) are largely contained in these two clusters (Supplemental
Figure12A,cluster4, 49of63;Supplemental Figure12C,cluster 2,
42 of 63).
Our analysis also revealed subtle but significant differences

among some tissue types (Supplemental Figures 12A and 12B,
e.g. clusters 3 and 8; Supplemental Figures 12C and 12D, e.g.
clusters5and7;SupplementalDataSet6).Althoughmostof these
geneclusterswerenot enriched for specificannotations, cluster-8
genes were associated with rRNA metabolic processes (P
value=0.048)andcluster-5genes (Supplemental Figures12Aand
12B) were enriched for transport genes (P value = 0.045). These
results demonstrate both the promise and the challenges inherent
in comparing single cell data across different conditions and
treatments.

DISCUSSION

Here,weuseArabidopsis roots toestablishbothexperimental and
analytic procedures for single cell RNA-Seq in plants. Using
Monocle 3, we could assign over 3,000 cells to expected cell and
tissue types with high confidence. In particular, cortex, endo-
dermis and hair cells were easily identified. However, dis-
tinguishing other cell typeswas challenging. For example, nonhair

Figure 5. (continued).

(B)Comparisonof pseudo-bulk expression data fromcells annotated as cortex cellswith bulk expression data fromprotoplasts sorted for expressionof the
cortex marker gene COR (Li et al., 2016).
(C)Cellswereordered in pseudotime; columns indicate cells, and rows the expression, of the 1,500ordering genes. Rowswere groupedbased onsimilarity
ingeneexpression, resulting insixclusters (indicated left),withgenes inclusters2and3expressedearly inpseudotimeandgenes incluster1expressed late.
Cortex cellswith the earliest developmental signal (Brady et al., 2007; Cartwright et al., 2009) were designated as the root of the trajectory. The graph above
represents theaveragebest-correlationof developmental stage (Bradyet al., 2007;Cartwright et al., 2009) in a scrollingwindowof 20cellswith pseudotime,
showing the expected increase in developmental age with increasing pseudotime.
(D) Examples of an early and a late expressed novel cortex-cell–specific gene. Gene expression in each cell is superimposed onto the UMAP cluster and
trajectory, with lighter colors indicating higher gene expression.
(E)Different transcription factor motifs reside in the 500-bp upstream regions of genes expressed early (clusters 2 and 3) compared with genes expressed
late (cluster 1). Transcription factor motifs specific to early cortex cells are denoted with blue bars, and those for late cortex cells with green bars; bar
length = motif frequency. Thresholds on either side (gray box, dotted lines) refer to 1.5 SD above mean motif frequency.
(F) Expression of individual members of transcription factor families highlighted in (D) across pseudotime identifies candidate factors driving early or late
gene expression.
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and columella cells had high similarity in their expression profiles,
consistent with their correlation in bulk expression data (Brady
et al., 2007; Cartwright et al., 2009). Similarly, it was difficult to
designate cells in Louvain component 8 as early nonhair cells, as
these cells showed overlapping expression signatures for early
nonhair cells, lateral root caps, and epidermis cells before dif-
ferentiation to hair and nonhair cells. These Louvain component-8
cellsweredifficult todistinguish furtherwith thesparseexpression
data typical for single cell analysis; however, we postulate that the
root of the trajectory are cells dividing out of the epidermis/root
cap precursor and these cells either become root cap cells or
epidermis.
We also could not initially split stele tissue into individual cell

types, likely because the difficulty of digesting the cell walls of the
tightly packed vascular bundle resulted in fewer cells than
expected (Brady et al., 2007; Cartwright et al., 2009). However,
analyzing stele cells separately yielded six subclusters, which
correspond to known vasculature cell types. Our approach to
annotate these subclusters exemplifies the ad hoc nature of
current single cell genomics studies, which require all available
sources of information to be exploited to interpret the genomic
data. Neither Spearman rank correlations with sorted bulk RNA-
Seq data nor microarray expression data yielded obvious cluster
identities.However,meanexpressionvaluesofgenesknowntobe
expressed in vasculature cell types allowed us to assign the stele
subclusters.
We identified hundreds of novel genes with cell-type–specific

and tissue-type–specific expression, which may allow the gen-
eration of new marker lines for detailed genetic analyses. These
genes, together with cluster-specific enriched transcription factor
motifs and their corresponding transcription factors, are candi-
dates for drivingdifferentiation andcell-type identity. Similarly, the
developmental trajectories we identified highlight the potential of
single cell transcriptomics to advance a high-resolution view of
plantdevelopment. These trajectoriescanbedetectedwithout the
use of spatial information because plants have a continuous body
plan with new cells continuously arising while older cells persist.
Additionally, while this study allowed us to infer transcription
factor motifs and candidate transcription factors, future analyses
with greater numbers of cells than assayed here may include
combinatorial expression of multiple transcription factor family
members.
We explored the relationships of endoreduplication, tran-

scriptional rates, and differentiation to find that transcriptional
rates, measured as mRNA velocity, increase with increasing
ploidy. However, this transcriptional increase appears to be lim-
ited togenesspecifically expressed inhair cells, asoverall levelsof
RNA decreased over pseudotime. These observations are con-
sistent with hair cells becoming more specialized and moving
toward a terminally differentiated state over time. However, this
phenomenon of increasing specialization was not as apparent in
other cell types. This difference may be due to biological causes,Figure 6. Branch Analysis Reveals Actively Dividing Cells.

(A) The 70 cells that resided in the branch of Louvain component 8 (purple)
show significant branch-specific expression of genes enriched for cell-
cycle function.
(B)Comparisonof all knowncell-cyclegeneswithexpression inat least 5%
of cells in Louvain component 8. Known cell-cycle expression is denoted
for each gene, if unknown ‘?’.

(C) Two kinases, AUR1 and AUR2, were specifically expressed in branch
cells. These genes are involved in cell plate formation and lateral root
formation.
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Figure 7. Single-Cell RNA-Seq Highlights Canonical and Novel Aspects of the Heat-Shock Response.

(A) A nearest-neighbor approach aligns control and heat-shocked cells in a UMAP embedding to allow for concomitant cluster/cell-type assignment.
(B)Volcanoplotsof averagegeneexpressionchangeuponheat shockwithin Louvain component 2 for all genes (black), knownhairmarker genes (blue), and
heat-shock signature genes (red).
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such as the higher rates of endoreduplication in hair cells, or to
technical causes, such as the better clustering and trajectory of
hair cells compared with the other cell types assayed.

By allowing trajectories with side branches, we discovered that
branch points can mark developmental decisions. In Louvain
component 8, the small but distinct cell-cycle–enriched branch
maymark lateral root primordia cells differentiating into epidermal
cells or epidermal/lateral root precursor cells. Cells within this
branch express many cell-cycle genes, among themmembers of
the CDK B family that govern the G2 to M transition. Moreover,
these cells specifically express theAUR1 andAUR2 genes, which
function in cell plate formation; plants with mutations in these
genes lack lateral roots (Van Damme et al., 2011). Although ex-
pression of cell-cycle genes may persist in nondividing cells
because of their roles in endoreduplication, AUR1 and AUR2
expression (andcell plate formation) shouldnotpersist, consistent
with our speculation that the cells within this branch are actively
dividing cells in the G2 to M transition (Gutierrez, 2009). We also
examined the cells in Louvain component 1 (designated endo-
dermis) that are nearer to Louvain component 10 (designated
cortex). Thecells residing in thisposition correlatebestwith cortex
endodermis initial cells.

We explored the Arabidopsis heat-shock response with
single cell RNA-Seq because not all cells and tissues are
equally competent to respond to stress. By identifying plant cell
types that most strongly respond to abiotic stresses such as
heat, drought, and nutrient starvation, ultimately we may be
able to genetically manipulate relevant cell types to generate
stress-tolerant crops without pleiotropically affecting plant
fitness and yield. Although all heat-shocked cells showed gene
expression changes typical of the canonical heat-shock genes,
we detected subtle but highly significant expression differ-
ences among cells and tissue types for other genes. Thus,
single cell transcriptomics across stress conditions holds
potential for future crop breeding and genetic engineering.
However, such analyses require much larger numbers of cells
than currently accessible by droplet-based methods. More-
over, such analyses should focus on treatments that are less
overwhelmed by a strong canonical signal to increase reso-
lution in detecting cell-type–specific differences.

In this study, we relied on the extensive and detailed expression
data for bulk Arabidopsis cell and tissue types to establish the
validity of our approaches. The overwhelming correspondence
of our findings with these and other data derived from tradi-
tional molecular genetics provides confidence that less well-
characterized Arabidopsistissues and other plants, including
crops, will be amenable to these approaches. Thus, continued
progress onsingle cell RNA-Seqexperiments shouldhaveamajor

impact on the analysis of plant development and environmental
response.

METHODS

Plant Material and Growth Conditions

Arabidopsis (Arabidopsis thaliana) Col-0 seedlingswere grown vertically at
22°C,on13MurashigeandSkoog (MS)+1%Suc (w/v)platescoveredwith
one layer of filter paper. Seven- or 8-d-old seedlings (Long Day, 16-h light/
8-h dark, ;100 mmol m2 s, 50% relative humidity) were collected around
Zeitgeber Time 3, and the roots/shoots excised with a sharp razor blade.
For the heat shock, seedling plates were transferred from 22°C to 38°C for
45 min (Conviron TC-26, ;100 mmol m2 s, 4100 K, 82 CRI, Sylvania
Octron F017/84/Eco fluorescence bulbs), and the roots harvested
immediately after.

Protoplast Isolation

Protoplast isolation was done as described in Bargmann and Birnbaum
(2010), with slight modifications. Briefly, 1 g of whole-roots was incubated
in 10mLof protoplasting solution for 1.5 h at 75 rpm. After passing through
a 40-mm strainer, protoplasts were centrifuged at 500 g for 5 min and
washed once in protoplasting solution without enzymes. Final suspension
volumewasadjusted toadensityof500 to1,000cells/mL.Protoplastswere
placed on ice until further processing.

Single-Cell RNA-Seq Protocol

On two separate sets of Arabidopsis root protoplasts on separate days,
single cell RNA-Seq was performed using the 103 scRNA-Seq platform,
the Chromium Single Cell Gene Expression Solution (103 Genomics).

Data Analysis

Estimating Gene Expression in Individual Cells

Single cell RNA-Seq reads were sequenced and then mapped to the
TAIR10 Arabidopsis genome using the software Cellranger (v. 2.1.0;
https://support.10xgenomics.com/single-cell-gene-expression/software/
pipelines/latest/what-is-cell-ranger). Cellranger produces a matrix of UMI
counts where each row is a gene and each column represents a cell. The
ARAPORT gene annotation was used. For the heat-shock analysis, reads
from a control sample and reads from a heat-shocked sample were ag-
gregated using “cellranger aggr” to normalize libraries to an equivalent
number of mean reads per cell across libraries.

Running Monocle 3: Dimensionality Reduction, and Cell Clustering

The output of the Cellranger pipeline was parsed into R (v. 3.5.0) using the
Cellranger R kit (v. 2.0.0) and converted into aCellDataSet (CDS) for further
analysisusing thesoftwareMonocle3Alpha (v. 2.99.1; http://cole-trapnell-
lab.github.io/monocle-release/monocle3/). All Monocle 3 analysis was

Figure 7. (continued).

(C) HSP101, a signature heat-shock gene, shows dramatic increase of expression in all cell types upon heat shock.
(D) COBL9, a well-studied hair marker gene, is strongly repressed upon heat shock.
(E)Heat map of differentially expressed genes upon heat shock (top red bar; control, top gray bar), hierarchically clustered by both cells and genes (FDR <
0.1% and absolute value of the log2 fold change > 1).
(F) “Upset”plot (Lexet al., 2014) of thenumberofdifferentially expressedgenesasa functionof heat shock for eachLouvaincluster inourUMAPembedding
(bars on top) along with the number of the intersect of differentially expressed genes between Louvain clusters (bars on the right). A surprising number of
differentially expressed genes were specific to certain clusters (single dot in vertical row of dots).
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performedonaHighPerformanceComputingcluster using128GBofRAM
spread across eight cores. The lower detection limit for the CDSwas set at
0.5, and the expression family used set to negbinomial.size().

We visualized cell clusters and trajectories using the standard Monocle
workflow. Monocle internally handles all normalization needed for di-
mensionality reduction,visualization,anddifferentialexpressionviasizefactors
that control for variability in library construction efficiency across cells. After
estimating the library size factors for each cell (via estimateSizeFactors) and
estimating thedispersion inexpression foreachgene (viaestimateDispersions)
in thedata set, the top1,500genes in termsofdispersion, i.e. 1,500geneswith
themost expression variability in our data set, were selected to order the cells
intoclusters.Theexpressionvaluesof these1,500genesforeachcellwere log-
transformed and projected onto the first 25 PCs via Monocle’s data pre-
processing function (preprocessCDS). Then, these lower-dimensional coor-
dinates were used to initialize a nonlinear manifold learning algorithm
implemented in Monocle 3 called “UMAP” (via reduceDimension; McInnes
et al., 2018). This allows us to visualize the data into two or three dimensions.
Specifically, we projected onto two components using the “cosine distance”
metric, setting the parameters n_neighbors = 50, and min_dist = 0.1.

The Louvain method was used to detect cell clusters in our two-
dimensional representation of the data set (partitionCells); this resulted
in 11 cell clusters, or Louvain components. Cells were then clustered into
super groups using amethod derived from approximate graph abstraction
(Wolf et al., 2018) and for eachsuper group, acell trajectorywasdrawnatop
the projection using Monocle’s reversed graph embedding algorithm,
which is derived from SimplePPT (learnGraph; Mao et al., 2015). This
yielded six cell trajectories.

To further analyze theclustersweannotatedas stele, clusters 3, 4, and7
were reclustered together and were reanalyzed using Monocle 3 as pre-
viously described in this article except the parameter “min_dist” was
changed to “0.05” when the “reduceDimension function” was called. This
revealed six additional subclusters.

To further analyze the cluster we annotated as cortex, Cluster 10 was
reclusteredand reanalyzedusingMonocle 3aspreviously described in this
article except the parameters “n_neighbors” was reduced to 25. This did
not reveal any subclusters, but a trajectory was generated.

Estimating Doublets

Single Cell Remover of Doublets (Scrublet) was used to predict doublets in
our scRNA-Seq data (https://github.com/AllonKleinLab/scrublet). Using
the software Python 3.5, Scrublet was run using default settings as de-
scribed by the example tutorial that is available as a Python notebook
(https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_
basics.ipynb). Theonly significantchangewas that expecteddouble ratewas
set to 0.1; in the tutorial it is 0.06.

Identifying Cell Types

To categorize the cells into cell types and to apply developmental in-
formation, a deconvolved root expression map was downloaded from The
Arabidopsis Gene Expression Database (AREX LITE; http://www.arexdb.
org/data/decondatamatrix.zip). Using this data matrix, the Spearman’s rank
correlation was calculated between each cell in our data set and each cell
type and longitudinal annotation in the datamatrix (3,1213128Spearman’s
rank correlations total). Specifically, we looked at the correlation of 1,229
highlyvariablegenes inourdataset.These1,229genesrepresenttheoverlap
between our 1,500 highly variable genes and genes in the root expression
map data matrix. Cells in our data set were assigned a cell type and a de-
velopmental label based on the annotation with which each cell had the
highest correlation (i.e. if a cell correlatedhighestwith theendodermiscells in
longitudinal zone 11, then it would be called as endodermis_11).

In addition to using the Spearman’s rank correlation to assign cells their
cell type, a set of known marker genes derived from green fluorescent

protein (GFP)marker lines of the Arabidopsis root were used to identify cell
types based on the high gene expression of these marker genes. These
genes were obtained from Brady et al. (2007) and Cartwright et al. (2009).
Specifically, Supplemental Table 2 from Cartwright et al. (2009) was used.
For the analysis comparing bulk RNA and pseudo bulk scRNA-Seq data,
the bulk data were obtained from Li et al. (2016); specifically, we used
Supplemental Table 5 from that study. Isoforms of each gene were av-
eraged, to be comparable to the pseudo bulk data. Lastly, using this same
bulk RNA-Seq data, the Pearson correlation was calculated between each
cell in our data set and each GFP marker line. Cells in our data set were
assigned to a GFP marker line based on the GFP marker line with which
each cell had the highest correlation.

Running Monocle 3: Identifying High-Specificity Genes

To identify differentially expressed genes between cell clusters, the
Moran’s I test was performed on our UMAP (principalGraphTest), with the
projection being broken up into 253 25 spatial units. Then marker genes
were identified for each cluster, and each annotated grouping of clusters
using aMoran’s I threshold of 0.1 and a qval threshold of 0.05. For a gene to
be considered highly specific, it must have had a specificity rating of >0.7.

Transcription Factor Motif Analysis

Highly specific genes were identified for each cell cluster, and their pro-
moters were analyzed for presence of transcription factor motifs. Pro-
moters were defined as 500 bp upstream of the start site of each gene.
Instances of each motif were identified using the method from Grant et al.
(2011) at a P value cutoff of 1e-5 for eachmatch. The input position weight
matrices for each motif were enumerated in a previous study of binding
preferences for nearly all Arabidopsis transcription factors (O’Malley et al.,
2016). Motif frequencies in genes specific to each cell cluster were
comparedwith a background set ofmotif frequencies across all promoters
in the Arabidopsis genome to determine a log2 enrichment score. Tran-
scription factor family genes were pulled from the gene family page of
TAIR10 (https://www.arabidopsis.org/browse/genefamily/index.jsp).

Running Monocle 3: Assigning Pseudotime

Pseudotime analysis requires the selection of a cell as an origin for the
pseudotime trajectory. Origin assignment was based on the Spearman’s
rank assignments for each cell. The following cells were used as origins for
their respective cell-type trajectories: cortex_2, hair_2, endodermis_2,
nonHair_3. The get_correct_root_state() function was used to assign the
root of a trajectory, and the orderCells() function was used to assign cells
a pseudotime value.

Calculating Total mRNA

After pseudotime analysis was performed on a cell cluster, cells were
binned together such that each bin contained a similar number of cells and
each bin represented cells from similar pseudotimes. The median total
mRNA and the SD of the total mRNA of each bin was then calculated.

Calculating Significance with the Permutation Test

The permutation test was used to calculate the significance of observed
trends that the total mRNA of hair marker genes and hair-specific genes
increased as pseudotime increased in hair cells. To do this, 10,000 random
samplings of 441 genes (the number of hair marker genes) and 201 genes
(the number of hair specific genes) were taken respectively. Next, the
median total mRNA was calculated across pseudotime for each random
sampling and the slope of this data was calculated using a generalized
linearmodel. The observed slope of themarker genes and the hair-specific
genes was compared with the distribution of slopes generated by 10,000
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random samplings. No random sampling of genes had a slope that was
higher than the observed slopes generated by the hair marker genes or the
hair-specificgenes. The significance, or theP value, of the trend seen in the
hair marker genes and the hair-specific genes can then be calculated
simply as the proportion of sampled permutations that have a slope that is
equal to or greater than the slope generated by our genes of interest. This
gives us a P value = 1/10,001, or roughly 1024.

Analyzing Expression Differences between Branches of Louvain
Component 8 (Early Nonhair)

To identify genes responsible for the branching in the pseudotime trajectory
of Louvain component 8 (early nonhair), the principal graph test was used to
identify genes with expression specific to the side branch versus the main
branch. Genes were considered specific if they had a specificity value >0.8.
Genes were removed from the analysis if they did not have expression in at
least 10% of the cells considered and a mean expression >0.25.

Calculating RNA Velocity

Weused the Velocyto R andPython packages (v. 0.6 and 0.17, respectively)
toestimateRNAvelocity for roothair cells (LaMannoetal., 2018).Matricesof
spliced and unspliced RNA counts were generated fromCellranger outputs
using velocyto.pyCLI and run10x defaults.We followed the velocyto.py and
velocyto.R manuals (http://velocyto.org/) and used spliced (emat) and un-
spliced (nmat) matrices to estimate RNA velocity. With predefined cell-type
annotations,weperformedgenefilteringwith theparametermin.max.cluster.
average set to 0.2 and 0.05 for emat and nmat respectively. RNA velocity
using the selected 996geneswas estimatedwith the defaults to the function
gene.relative.velocity.estimates() except parameters kCells and fit.quantile
which were set to 5 and 0.05, respectively. Velocity measurements for each
cell were calculated as the difference between $projected and$current (with
$deltaT = 1) results from the estimated velocity output.

Analysis of Heat-Shock Data

For each pair of cell types and for each gene cluster, we used a generalized
linear model to determine the significance of an interaction between the
effects of cell type and heat treatment on the normalized expression level
of genes in that cluster. Then, to identify differentially expressed genes
specific foreveryLouvaincluster,wesubsettedcells fromeverycluster that
contained 15 or more cells in both control and treated conditions, esti-
mated dispersions for each subset, and tested for differential gene ex-
pression identified using the differentialGeneTest function in Monocle
specifying a full model of Treatment cluster and a residual model of 1. FDR
values per gene were then obtained across all tests using the Benjamini-
Hochberg method. The overlap of differentially expressed genes as
a function of heat-shock treatment between clusters was visualized using
an UpsetR plot. Briefly, a binarymatrix of differentially expressed genes by
cluster was generated where gene-cluster combinations were set to 1
(significant) or 0 (not significant). This matrix was then passed to the upset
function from the UpsetR R package specifying nine sets and ordering by
frequency. To identify whether clusters contained subtle differences in the
expression of previously identified heat-shock–responsive genes, we
tested for differential gene expression across all cells and clusters and
identified the intersect between differentially expressed genes obtained
from single cell profiles and previously identified dynamic changes in
DNase I Hypersensitive Sites (DHSs)-linked genes and bulk-differentially
expressed genes upon heat shock. Differentially expressed genes as
a function of heat-shock treatment for all cells in unison were identified
using the differentialGeneTest function inMonocle, specifying a fullmodel of
Treatment*UMAPcluster anda residualmodel ofUMAPcluster.Hierarchical
clustering of these DHS-linked and bulk-differentially expressed gene sets
across control and heat-shock–treated cells was performed using the

pheatmapfunction in thepheatmapRpackage (v.1.0.10)specifyingward.D2
as the clusteringmethod.Geneswith similar dynamicsacross treatmentand
cell typeswere recovered using thecutree function from the “stats”package
in R, specifying k = 8 for both DHS-linked genes and bulk differentially ex-
pressed genes. To generate signatures from these eight groups of clustered
genes, we log-normalized expression values using a pseudocount of 1, and
for each cell calculated themean normalized expression value across genes
that belong to one of the eight gene clusters.

Accession Numbers

All sequencingdata can be found onGeneExpressionOmnibus at: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121619.

Supplemental Data

Supplemental Figure 1. General tissue and data features.

Supplemental Figure 2. Pearson correlation to sorted RNA-seq
samples.

Supplemental Figure 3. Marker gene expression in cell-type clusters.

Supplemental Figure 4. Examples of tissue-specific gene expression.

Supplemental Figure 5. Transcription factor family expression
patterns.

Supplemental Figure 6. Spearman’s rank correlation for each cell’s
development and tissue type.

Supplemental Figure 7. Changes in transcription across hair cell
development.

Supplemental Figure 8. Developmental trajectory of endodermal cells.

Supplemental Figure 9. Median total RNA in cortex across
pseudotime.

Supplemental Figure 10. Developmental expression of individual
transcription factors.

Supplemental Figure 11. Heat-shock clustering and expression
profiling.

Supplemental Figure 12. Conditional expression in genes with
dynamic chromatin accessibility during heat shock.

Supplemental Table 1. Bulk RNA-seq comparisons to single cell
RNA-seq.

Supplemental Table 2. Number of cells in the control-versus-heat-
shock analysis.

Supplemental Data Set 1. List of ordering/high-dispersion genes.

Supplemental Data Set 2. Correlation with bulk expression data.

Supplemental Data Set 3. Marker genes.

Supplemental Data Set 4. Novel high-specificity genes.

Supplemental Data Set 5. Cluster-specific heat-shock differentially
expressed genes.

Supplemental Data Set 6. Generalized linear model pairwise test of
significance among cortex, hair, and nonhair cells.
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