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A B S T R A C T

Biomedical images contain a large volume of sensor measurements, which can reveal the descriptors of
the disease under investigation. Computer-based analysis of such measurements helps detect the disease,
and thereby swiftly aid medical professionals to choose adequate therapy. In this paper, we propose a
robust deep learning ensemble framework known as COVID Fuzzy Ensemble Network, or COFE-Net. This
strategy is proposed for the task of COVID-19 screening from chest X-rays (CXR) and CT Scans, as a part
of Computer-Aided Detection (CADe) for medical practitioners. We leverage the strategy of Transfer Learning
for Convolutional Neural Networks (CNNs) widely adopted in recent literature, and further propose an efficient
ensemble network for their combination. The principles of fuzzy logic have been leveraged to combine the
measured decision scores generated by three state-of-the-art CNNs – Inception V3, Inception ResNet V2 and
DenseNet 201 – through the Choquet fuzzy integral. Experimental results support the efficacy of our approach
over empirical ensembling, as the fuzzy ensembling strategy for biomedical measurement consists of dynamic
refactoring of the classifier ensemble weights on the fly, based upon the confidence scores for coalitions of
inputs. This is the chief advantage of our biomedical measurement strategy over others as other methods do
not adjust to the multiple generated measurements dynamically unlike ours.Impressive results on multiple
datasets demonstrate the effectiveness of the proposed method. The source code of our proposed method is
made available at: https://github.com/theavicaster/covid-cade-ensemble.
. Introduction

The rapid spread of the Novel Coronavirus disease (COVID-19) has
een a cause for great concern ever since it first emerged in Wuhan,
hina in 2019. It has resulted in a global pandemic situation and
erved as a catalyst to the disruption of normal life worldwide. COVID-
9 or SARS-CoV-2 is a severe acute respiratory syndrome, the typical
ymptoms of which include breathlessness, fever, weakness, cough and
old, and loss of smell and taste. The virus has infected over 176 million
eople worldwide as of the 15th of June 2021, with over 3.8 million
f them succumbing to the disease. An SIR model-based investigation
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about the propagation of the disease has been carried out by Saxena
et al. in [1].

The primary problem of the COVID-19 disease is the high incubation
period of the virus ranging from few days to up to multiple weeks, and
in some cases, we come across asymptomatic patients as well. Due to
this, the person acts as an active carrier of the disease, spreading it
to other people in their vicinity unknowingly during this period. The
applications of technology, such as proposed in the works [2–5] for
monitoring, biomedical imaging and early detection of disease have
had a positive impact on the medical field. Applications of research
such as the work [6] have helped in proper social distancing measures.
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Though conventional detection methods like Reverse Transcription
Polymerase Chain Reaction (RT-PCR) from a nasopharyngeal swab has
proved to be highly effective [7], the time taken by such methods is
high and there are quite a few false positives as in the results of the
work [8]. Hence, Computer Aided Detection (CADe) has been looked
into as an alternative and viable solution.

CADe is a sub-field of the Biomedical Image Analysis domain, which
is one of rapidly growing interdisciplinary research fields that includes
biology, engineering and medicine. It is concerned with measurements
of the human body on macroscopic and microscopic scales. The core
part of this research field is the application of image processing method-
ologies in order to solve various medical problems of the human
bodies. As biomedical images contain important information about the
anatomical structure of the affected body parts, it would be extremely
useful for proper detection, thus it assists the medical experts for better
treatment of the patients.

Generally, medical experts analyse such images manually and apply
their experience to understand the severity of the disease. However, it
can be easily understood that such manual analysis of these images by
the medical professionals is limited owing to differences in interper-
sonal interpretation capability among others, which make this analysis
a subjective matter. On the contrary, computer-based automated inves-
tigation of biomedical images favours objective analysis, thus leading
to the better diagnosis of the patients. Such systems can make the
diagnosis more economical and less time-consuming which is the one
of the basic needs of the developing nations.

It is notable that in recent years, CADe has proved to be very
successful for biomedical purposes. It has been used for detection
of pulmonary disorders, coronary artery disease, Alzheimer’s disease
and other such diseases. For COVID-19, CADe based methods focus
on analysing the Chest X-ray (CXR) or chest Computed Tomography
(CT) Scan images for detecting the presence of COVID-19. The sample
CXR images for COVID-19, pneumonia and normal patients are shown
in Fig. 1. More recently, alternative modalities such as Scattergram
images [9] have also found success in COVID-19 CADe.

Deep learning has shown rapid improvement in CADe based treat-
ment in various fields, the latest being COVID-19. Quite a few attempts
have been made to develop a robust system capable of efficiently
detecting COVID-19 in a person such as in the works [10–15] Most of
these have utilized deep learning due to its high efficiency in recent
years. Specifically speaking, Convolutional Neural Networks (CNNs)
have been used in most cases due to the fact that they have obtained
great success in recent years for classifying radiological images. Fur-
ther, deep CNNs also do not need to be fed handcrafted features using
feature engineering due to which they are preferred over conventional
machine learning classifiers. They have also proved to be more effective
in image classification in general than most other methods due to which
most researchers resort to it for classification purposes for any category
of images.

1.1. Motivation

In this paper, we propose a CADe framework which benefits from
the combined prediction abilities of CNN models. The entire steps of
the proposed work are summarized in Fig. 2.

Initially, we process the acquired images to be of uniform shape.
This is necessary to harness the standard CNN architectures as feature
extractors. A large body of methods have investigated the use of trans-
fer learning for CNN classifiers. We employ three such state-of-the-art
CNN architectures to generate decision scores based on the processed
inputs.

Owing to the stochastic learning process of deep learning models,
the decision scores generated by CNNs contain a degree of uncertainty.
Each of the constituent models converges at a particular local minimum
of the loss function used, as a result of the particular gradient descent
2

algorithm used for training. The imperfectly converged models, as well
as noises in the sampled observations upon which they are trained
lead to the uncertainty in the predictions. To counter this, we rely
on the principles of fuzzy logic to harness this degree of uncertainty
and use it effectively to generate our final predictions. This is done
by an efficient ensembling strategy which uses fuzzy logic principles
to combine the results of the individual classifiers weighing them in
accordance with their scores. Fuzzy logic performs exceptionally well
in situations wherein decisions are made upon imprecise information.
We investigate the Choquet integral for the classifier ensemble through
fuzzy integrals, which works as a generalization of previously explored
empirical schemes. It additionally supports conditioning the weightage
of each classifier at inference based upon the decision scores of prior
classifiers in the ensemble process. Specifically, it caters to the fact that
the biomedical images may contain crucial information which is too
specific to be detected by a particular CNN of the network, which is
important for other details.

1.2. Contributions

We have chosen a unique combination of three CNN based classi-
fiers such that the outputs complement each other appropriately while
generating decision scores upon CXRs or CT Scans. Transfer learning is
used to reduce training time as well as increase the efficiency of the
networks. An ensemble method is employed using an efficient strategy
based on the Choquet Fuzzy Integral method, and the performance
obtained is compared with empirical ensemble strategies. We have
achieved impressive performance on multiple COVID-19 image datasets
through the ensemble framework, wherein the result achieved is be-
yond the reach of the individual classifiers. Appreciable performance
on multiple datasets in varied fields of medical imaging using a variety
of metrics along with a detailed ablation study, K-fold cross validation
results, and a comparative study with other methods demonstrate the
robustness of the network. Overall, the method is an unique combi-
nation of both new as well as a few existing research topics which
generates desirable results and mostly outperforms its predecessors.

2. Related work

Among the recently proposed CADe methods for COVID-19, there
are two sources of medical images — CXRs and CT scans. The authors
of [16] had utilized an ensembling approach via majority vote on
classical machine learning models, using texture features extracted
from the X-ray images. A hierarchical classification methodology for
the multiple class problem had been utilized.

CNN based classifiers have been a popular choice for CADe in recent
literature. In the work [17], the authors had adapted the Darknet-19
CNN architecture from YOLO object detection to work on X-ray scans,
with evaluation of activation maps generated in the training process
by an expert radiologist. In the work [18], the authors leveraged a
CNN based architecture where the design of the network was explored
through generative synthesis, a machine-driven exploration strategy.

The principle of transfer learning has been extensively explored
when utilizing CNNs. It is useful for the application of deep learning
in various domains, as in the work [19]. The authors of [20] had
utilized a transfer learning based approach by harnessing the archi-
tecture and saved weights of state-of-the-art CNN classifiers on the
ImageNet benchmark. In the study [21], the authors had investigated
a large number of state-of-the-art CNN models with transfer learning
along with image augmentation to enhance the limited number of
X-ray samples. In the work [22], the ResNet-50 architecture was fine-
tuned by progressively resizing, and data augmentation techniques
were utilized. In [23], an Xception architecture based CNN transfer
learning method had been utilized. In [24], a hierarchical classifica-
tion methodology for a multi-class approach had been utilized. This
multi-stage cascaded disease classification also leveraged transfer learn-

ing using CNNs. In [25], transfer learning had been utilized via the
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Fig. 1. Sample Images of chest X-rays for all three classes in the COVID-X dataset.
Fig. 2. Schematic diagram of our proposed methodology which consists of: (I) Preprocessing input biomedical images to conform to expected input of standard CNN architectures,
(II) Classification using three CNNs leveraging Transfer Learning, and (III) Ensemble of classifiers using Choquet fuzzy integral to yield prediction, available for medical practitioners.
SqueezeNet CNN architecture, along with Bayesian optimization and
data augmentation.

In the work [26], VGG architecture based CNNs with transfer learn-
ing had been ensembled with the empirical late fusion strategy of
stacking. In the work [27], a capsule-based network had been used, a
similar approach to CNNs, however including a ‘‘routing by agreement’’
3

component which was utilized to combine different capsules and iden-
tify spatial relations. Transfer learning was utilized on an X-ray based
dataset. The authors of [28] proposed an ensemble approach exploring
several empirical fusion schemes upon transfer learning based CNNs
which were pruned for optimal hyperparameters.

Fuzzy logic is a natural choice for the ensemble of classifiers,
given the uncertainty of decision scores from each of the learners. The
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principles of fuzzy measures and fuzzy integrals were first introduced in
the work [29]. Building on those ideas, the authors of [30], introduced
𝜆-measures. These state that the sum of all interactions of sources is 1,
allowing the efficient calculation of 𝜆. In the study [31], the authors
had introduced the concept of the Choquet integral as a non-linear
aggregation in the form of the generalization of product and addition
rules, two empirical rules for classifier ensembles.

The concept of fuzzy integrals has been used to solve a variety of
pattern recognition problems across various domains including human
action recognition [32].

2.1. Research gaps

The existing supervised classification algorithms using machine
learning, such as used in the work [16], are unable to harness the
data-rich image modalities as effectively as the deep learning strategies
such as the CNN. This is because in conventional machine learning,
the features mostly need to be handcrafted and fed to the model,
whereas in deep learning, the features are automatically extracted by
the network such that its purpose is best suited. Thus, the handcrafted
features are mostly not as efficient as those extracted by the deep
learning architectures, which are delineated by the ability to learn
complex representations from the image data, without any feature
engineering by the researchers. The ensemble strategy used in the
classical models, however, can also be enhanced by the proposed
fuzzy ensemble framework in such cases where class probabilities are
generated by the models.

While multiple works [20,21,23–28,33] have utilized transfer learn-
ing on standard CNN architectures for CADe, most of them do not
harness complementary constituent base classifiers for the ensemble.
Moreover, the ensemble strategies used do not support the dynamic
refactoring of weights at inference time, and are mostly static which
affects performance to an extent. The dynamic refactoring using the
principles of fuzzy logic as introduced in the work [29] have been
utilized as part of the proposed framework.

3. Proposed method

We approach the problem of COVID-19 CADe from biomedical
images as a multi-class classification setting. The classifiers used in
our approach are state-of-the-art CNNs, which are further supported
by leveraging transfer learning to utilize the knowledge of existing pre-
trained models. Besides, the principles of fuzzy logic have been used as
a classifier combination technique, specifically based upon the Choquet
fuzzy integral.

3.1. CNN classifiers

In this paper, the pre-trained convolutional blocks and the weights
of some standard CNN architectures are utilized, followed by a deep
learning based classifier which is trained end-to-end. The training
phase involves fine-tuning the convolutional feature extractors, and
training the classifier which is accelerated by the saved weights of the
convolutional layers. This strategy has been followed to leverage the
effective convolutional feature extractors with knowledge mined from
the ImageNet dataset, as well as the reduced computational complexity
leading to faster training.

We utilize the strategy of transfer learning to fine-tune pre-trained
CNN models which were originally trained on the task of ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) dataset, to work on
COVID-19 detection from CXRs. Thus, owing to the large size of the
ImageNet dataset, the classifier is well-trained to recognize certain low-
level features from the biomedical images even before being trained on
them. This is also helpful when the dataset of the necessary domain is
of limited size, as the knowledge from other domains upon which the
4

Fig. 3. Proposed classification network following state-of-the-art CNN architectures.

networks are already trained on can be transferred to overcome the
limitations of data in terms of size.

The CNN models are originally trained on the ImageNet dataset.
However, the CXRs used in this study are of varying dimensions, while
ImageNet input images are of the dimension 224 × 224. Subsequently,
it is necessary to resize the images to be of a compatible dimension.
Hence, at the boundaries of the images, black borders are added to
ensure that they conform to a square input.

The same architecture of the original model has been adopted,
except the layers following the convolutional layers. The weights of the
convolutional layers are frozen, and additional layers are added after
the feature extractors. The block diagram of the layers following the
feature extractors is shown in Fig. 3.

The last layer of each of the CNN models comprises of the Softmax
activation function, which is defined by the following formula:

𝑞𝑐 =
𝑒𝑧𝑐

∑𝐶
𝑐=1 𝑒

𝑧𝑐
(1)

The output of this layer represents a probability distribution over
the predicted output classes, which we refer to as the confidence score
generated by the classifier.

An overview of each of the classifiers used in the present work has
been provided in the upcoming subsections.

3.1.1. Inception V3
The inception module was proposed by the authors of [34] in

2014. This first version involves using multiple filter sizes on the same
convolutional level, hence increasing the width of the network. The
idea behind this was to negate the effect of the size of the object in
question and improve the efficiency of the localization of information.
It also includes an extra 1 × 1 convolution for dimensionality reduction.
The GoogLeNet architecture proposed in the same paper includes nine
such inception modules.

Inception V2 and V3 were proposed in the work [35]. Inception V2
includes certain enhancements to improve the computational speed of
the network such as factorization of layers and expansion of the filter
banks to make the network wider instead of deeper. Inception v3 uses
RMSProp Optimizer, batch normalization in the auxiliary classifiers and
label smoothing as well to improve performance of the network. For
our purpose, we use this version of Inception (i.e., Inception V3) while
using the SGD optimizer. The architecture of our Inception classifier
consists of 11 separate inception modules stacked linearly, each of
which consists of four separate networks at the first level. Each network
consists of a series of convolutional, batch normalization and pooling
layers of varying sizes. As mentioned before, the sizes of the filters for
the layers in concern are appropriately factored and 1 × 1 convolutions
are added. Factorization such as breaking up a 𝑛 × 𝑛 filter into a
1 × 𝑛 and 𝑛 × 1 filter helps in reducing the time taken by the network
and improves the performance of the network by a great margin.
However, by altering the dimensions of a network drastically, crucial
information may be lost. To handle this, the filter banks in the network
are expanded so that the representational bottleneck is removed and
the network is further wider than deeper. The four separate networks
are then concatenated to get a single output which is then fed into the
next module. The output from the final module gives the result.
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3.1.2. Inception ResNet V2
Inspired by the performance of the ResNet, researchers came up

with a hybrid model that took into account both the Inception and the
ResNet models. Thus, Inception-ResNet was proposed in the work [36].
Inception-ResNet involves residual connections that feed the output of
the convolutional layer to the input. It also includes explicit reduction
blocks that are used to change the height and width of the grid.

In Inception ResNet V2, inception modules are used and we add
residual connections that combine the convolution output of the in-
ception module to the input. For this to work, the two of these must
have the same dimensions. Hence 1 × 1 convolutions are used after
the original convolutions to match the depths of the two. Pooling is
replaced by residual connections, and the pooling is performed by
the residual blocks as and when required. The residual activations are
scaled appropriately to ensure that the network does not die out. The
stem and hyperparameter settings are in line with Inception ResNet V2
as mentioned in the original paper.

3.1.3. DenseNet 201
DenseNet was proposed in the work [37] as an advancement over

traditional CNNs. In conventional models, subsequent layers are con-
nected by just one connection from its preceding layer in a feedforward
fashion. DenseNet, however, exploits the outputs of all previous layers
and uses them as input to generate the output for the current layer.
This eliminates the vanishing gradient problem to a large extent while
facilitates easier flow of information among the layers of the network
and hence, the network needs fewer parameters to train.

For our purpose, we use the version DenseNet 201 where 201
indicates the number of layers in the network. The architecture starts
off with conventional convolution and pooling layers followed by three
sequences of dense blocks and transition layers. This is followed by
a dense block and classification layer which gives us the output. As
mentioned previously, in a dense block, each layer receives inputs from
all previous layers. The difference with its counterparts lies in the
number of convolutional layers in the third and fourth dense blocks.
Overall, there are 201 layers in the network.
Algorithm 1: Choquet integral based fuzzy ensemble
Input : Softmax output - Confidence scores 𝐶,

Empirically determined - Fuzzy measures 𝐹
Output: Predicted class 𝑦̂

Initialize One-time process
𝜆 ← solution of Eq. (3) using 𝐹 ,
where 𝜆 ∈ R, 𝜆 > −1

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← [ ]
foreach class index 𝑖 ∈ 𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do

𝐶𝜋 ← permutation of 𝐶 following Eq. (5)
𝐹𝜋 ← permutation of 𝐹 corresponding to 𝐶𝜋
𝑓 (𝑔)𝑝𝑟𝑒𝑣 ← 𝐹𝜋 [1]
𝑓𝑧𝑝𝑟𝑒𝑑 ← 𝐶𝜋 [1] × 𝐹𝜋 [1]

for n ∈ 1,2,..,N do
𝑓 (𝑔)𝑐𝑢𝑟𝑟 ← 𝑓 (𝑔)𝑝𝑟𝑒𝑣 + 𝐹𝜋 [𝑛] + 𝜆𝐹𝜋 [𝑛] × 𝑓 (𝑔)𝑝𝑟𝑒𝑣
𝑓𝑧𝑝𝑟𝑒𝑑 ← 𝑓𝑧𝑝𝑟𝑒𝑑 + 𝐶𝜋 [𝑛] × (𝑓 (𝑔)𝑐𝑢𝑟𝑟 − 𝑓 (𝑔)𝑝𝑟𝑒𝑣)
𝑓 (𝑔)𝑝𝑟𝑒𝑣 ← 𝑓 (𝑔)𝑐𝑢𝑟𝑟

end
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠[𝑖] ← 𝑓𝑧𝑝𝑟𝑒𝑑

end
̂ ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝑖∈𝑀
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠[𝑖])

3.2. Fuzzy integral based classifier fusion

The fuzzy integral has obtained considerable success in the process
of combining the classifiers’ outputs in various pattern recognition
problems [32]. Fuzzy integrals exploit the decision scores obtained
from individual classifiers as means to effectively produce a final
5

output. The effectiveness comes as a result of the output being a
set of confidence scores instead of singleton values. These scores are
subsequently being combined with some measures for each classifier,
with the measures assigned beforehand according to prior results. The
combination process also allows a dynamic refactoring of weights for
each classifier, dependent upon the scores.

As per the work reported in [29], the fuzzy measure concerned in
our case lies in the range [0, 1]. Formally, a fuzzy measure is a real
valued set function.

Each of the constituent CNN classifiers is responsible for generating
a distinct confidence score. If the confidence scores are given by 𝐶 =
{𝑐1, 𝑐2,… , 𝑐𝑁−1, 𝑐𝑁} with N denoting the total number of scores, and
𝑔 ⊆ 𝐶, we can infer that the fuzzy measure is a function 𝑓 ∶ 2𝑁 → [0, 1],

ith 𝑓 (𝜙) = 0, 𝑓 (𝐶) = 1. As a matter of fact, the following formula holds
onotonically:

𝑖 ⊂ 𝑔𝑗 ⇒ 𝑓 (𝑔𝑖) ≤ 𝑓 (𝑔𝑗 ) . (2)

The identification of 2𝑁 fuzzy measures as per the classic approach
s a learning problem that scales exponentially with respect to the
arameter 𝑁 , the number of information sources.

The concept of a specific type of measure is presented in the
ork [30]. It is known as the Sugeno fuzzy-𝜆 measure with an addi-

ional characteristic that if 𝑔𝑖 ∩ 𝑔𝑗 = 𝜙, there exists 𝜆 > −1, where —

(𝑔𝑖 ∪ 𝑔𝑗 ) = 𝑓 (𝑔𝑖) + 𝑓 (𝑔𝑗 ) + 𝜆𝑓 (𝑔𝑖)(𝑔𝑗 ) . (3)

From the previous definitions, we can find the value of 𝜆 by solving
he following equation —

+ 1 =
𝑁
∏

𝑛=1
(𝜆𝑓 (𝑔𝑛) + 1) , (4)

here, 𝑁 = 3 in our case, as each model generates a set of scores. So
is the real root of a quadratic equation which is > −1.

Hence, there is a need to identify only 𝑁 fuzzy measures instead of
𝑁 , as 𝜆 can be used to generate fuzzy measures for all coalitions of
he inputs through Eq. (2). The reduction in the search space offered
y Sugeno fuzzy-𝜆 measures enables experimental determination of
easures to be a computationally feasible strategy.

The Choquet integral described in the study [31] can be utilized to
mplement all linear algebraic combinations such as sum and product to
e used as a generalized combination of empirical ensemble strategies
uch as average and multiplication. It is a form of a non-linear aggre-
ation operation. Its performance is dependent on the choice of fuzzy
easures. Inferring from the trivial definition of integration operator,

t can be expanded as

𝑓 (𝐶) =
𝑁
∑

𝑛=1
𝑐𝜋𝑛 [𝑓 (𝑔𝜋𝑖 ) − 𝑓 (𝑔𝜋𝑖−1 )] , (5)

here, the set of scores 𝐶 is permuted to 𝐶𝜋 such that

𝜋1 ≥ 𝑐𝜋2 ≥,… ,≥ 𝑐𝜋𝑁−1
≥ 𝑐𝜋𝑁 , (6)

nd 𝑔𝜋𝑖 is the subset of the 𝑖 highest scores in 𝐶𝜋 given by Sugeno
uzzy-𝜆 measures. 𝐼𝑓 (𝐶) is used to generate 𝑓𝑧𝑝𝑟𝑒𝑑 in Algorithm 1.

Choquet integral utilizes both the fuzzy weight assigned to a classi-
ier score along with the confidence of the score itself. It can be inferred
hat 𝑓 (𝑔𝜋𝑖 ) depends upon 𝑓 (𝑔𝜋𝑖−1 ). Algorithm 1 entails many decisions
n the entire process based on the different confidence scores, leading
o a sensitive and exhaustive decision making process based on the
oalitions of input scores which is proven to be much more effective
han normal softmax probabilities. The time complexity of the process
s 𝑂(𝑀 × ((𝑁) log(𝑁))), with 𝑁 representing the number of classifiers
nd 𝑀 representing the number of classes.

Among empirical ensemble based methods, the unweighted averag-
ng scheme is the most commonly used. This has the natural advantage
f reducing the variance of CNN classifiers, as deep learning based
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Table 1
Class-wise distribution of CXR samples in the COVID-X dataset.

Phase COVID-19 Pneumonia Normal Total

Train 468 5458 7966 13892
Test 100 594 885 1579

stochastic methods have high variance and low bias. However, when
the ensemble network consists of heterogeneous learners such as in
our case, even if the classifiers have a comparable performance, the
unweighted averaging scheme is vulnerable to the situation in which
a weak learner is given higher weightage, or when an overconfident
candidate leads to incorrect predictions.

The weighted average ensemble strategy is another empirical strat-
egy, wherein the weights for each learner is determined experimentally.
This allows a degree of adaptive combination of learners, such as the
case in which a weaker learner might be good at predicting certain
classes.

However, the determination of the weights in this strategy is a
one-time process. There is no opportunity to fine-tune or update these
weights at the inference time, hence this strategy is not dynamic, unlike
the principle of fuzzy fusion. To be specific, the fuzzy fusion allows fine-
tuning of these weights for each classifier on the fly, and does so on
the basis of the predictions for each individual sample of data. Subsets
or coalitions of multiple classifier predictions are processed with their
corresponding fuzzy measures at intermediate stages of the ensemble
strategy. Thus, there is a scope for further refinement even after the
fuzzy measures have been determined, unlike the weights in typical
averaging methods.

4. Results and analysis

We have performed several experiments upon multiple datasets
which demonstrate the robustness of our proposed method. In this
section, we discuss empirical details about our method and interpret
the results which we have obtained.

4.1. Data description

The proposed method is used upon four medical imaging datasets.
The detail description of these datasets, used in the present work, are
highlighted in the following subsections.

4.1.1. COVID-X (CXRs)
The database, namely COVID-X, introduced in the work [18], has

been utilized in this paper. To the best of our knowledge, this is the
largest open access COVID-19 X-ray dataset which is currently avail-
able, consisting of 15471 CXR images. This dataset has been generated
y merging five different repositories of chest X-ray scans. It consists
f three different classes of scans — COVID-19 positive patients, pneu-
onia infected patients, and normal patients. The distribution of data
sed in this current work is shown in Table 1. We have utilized the
rain-test split as per the labels provided by the authors.

.1.2. COVID-19 Radiography Database (CXRs)
We have used the database introduced in the work [21], called

OVID-19 Radiography Database on Kaggle in this paper. The COVID-19
-ray dataset is a balanced dataset, with the three classes comprising
f COVID-19 positive patients, viral pneumonia infected patients, and
ormal patients. There are 1200 COVID-19, 1345 Viral Pneumonia and
342 normal samples in this dataset, with a total of 3886 samples. We
ave utilized a 90-10 train-test split upon this dataset, to use the same
plit as other recent methods.
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4.1.3. SARS-COV-2 CT Scan Dataset
We have utilized the dataset shared by the authors of the work [38],

namely the SARS-COV-2 CT Scan Dataset on Kaggle. This dataset com-
prises of CT Scans of two categories of Brazilian patients — COVID-19
infected and non-infected patients. There are 1252 COVID-19 samples,
and 1230 non COVID-19 samples in this dataset, with a total of 2482
samples. We have utilized both a 70-30 train-test split as well as a 5-fold
cross validation split where each fold consists of 20% of the samples.

4.1.4. Montgomery Dataset (CXRs)
We have evaluated the proposed ensemble method upon the prob-

lem of Tuberculosis detection from CXRs as an additional test to
evaluate the performance on a related biomedical imaging domain. The
Montgomery Dataset shared by the authors of the work [39] has been
utilized. This dataset comprises of Tuberculosis positive patients, and
non affected patients. There are 58 Tuberculosis samples and 80 normal
samples, with a total of 139 samples in this dataset. We have used a
80-20 train-test split to compare with recent methods.

4.2. Performance metrics

For evaluation of performance from our experiments, we have used
a variety of performance metrics. These metrics are defined briefly as
follows. In the mathematical formulas given below, 𝑇𝑃 denotes True
Positive, 𝐹𝑃 denotes False Negative, 𝑇𝑁 denotes True Negative, and
𝐹𝑁 denotes False Negative.

• Accuracy — Here, accuracy is defined by the number of samples
correctly classified out of the total number of samples expressed
as a percentage. Mathematically,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(7)

• Precision — Precision of a class denotes the number of samples
of that class which are correctly classified out of the total num-
ber of samples which are classified as to belong to that class.
Mathematically,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

• Recall — Recall of a class denotes the number of correctly clas-
sified samples of that class which are correctly classified out of
the total number of samples which actually belong to that class.
Mathematically, for a class denoted by class label 𝑖,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

• F1-Score — F1-Score is the harmonic mean of precision and recall.
Mathematically,

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(10)

• Specificity — Specificity is denoted by the number of correct
negative predictions out of the total number of negative samples.
It is also known as the True Negative Rate. Mathematically,

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(11)

• False Positive Rate (FPR) — False Positive Rate is the number of
incorrect positive predictions out of the total number of negative
samples. Mathematically,

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(12)

• Area Under the Curve (AUC) — The AUC is a measure of the
region under the Receiver Operator Characteristic (ROC) curve
for binary classification. It measures the ability of the classifier to
distinguish between classes. Mathematically,

𝐴𝑈𝐶 = 0.5 × ( 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+ 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

) (13)
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Table 2
Comparison of base learners on the SARS-COV 2 CT Scan Dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) FPR (%) AUC (%) MCC (%) McNemar’s Test 𝑝-value

DenseNet 201 98.79 98.38 99.18 98.78 98.40 1.59 98.79 97.58 –
Inception v3 97.18 97.02 97.28 98.92 97.07 2.92 97.18 94.36 0.0247
Inception ResNet v2 97.58 97.30 97.83 97.56 97.34 2.65 97.58 95.16 0.0323
ResNet 152 v2 96.24 96.20 96.20 96.20 96.27 3.72 96.24 92.48 0.0085
EfficientNet B7 97.44 98.88 95.93 97.38 98.93 1.06 97.43 94.93 0.0441
Xception 97.18 98.06 96.20 97.12 98.13 1.86 97.17 94.37 0.0247
VGG 19 97.71 97.82 97.56 97.69 97.87 2.12 97.71 95.43 0.05330
M
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• Matthew’s Correlation Coefficient (MCC) — The MCC, also known
as phi coefficient, is an evaluation metric that measures the
difference between the actual values and predicted values. It is
balanced performance metric which works well even when the
classes are of different sizes, as the coefficient considers all four
categories of prediction. It is equivalent to the chi-square statistic
for a 2 × 2 contingency table. Mathematically,

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃
√

(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃 ) × (𝑇𝑃 + 𝐹𝑃 ) × (𝑇𝑁 + 𝐹𝑁)

(14)

4.3. Training configuration

In the transfer learning stage, all the CNN models are trained
using the stochastic gradient descent algorithm having the momentum
value as 0.9 and the initial learning rate as 0.01. The batch size is
experimentally fixed to be 32. The models are trained till saturation
of accuracy, with training continuing to a maximum of 50 epochs in
the case of the DenseNet 201 model. The learning rate is decreased on
plateau of performance by a factor of 0.7.

4.4. Choice of constituent learners

We have initially trained a large number of state-of-the-art CNN
models to evaluate which architecture would be the best fit for the
medical imaging classification task under consideration. Our experi-
mental results, as shown in Table 2, illustrates that the DenseNet 201
architecture achieves the highest performance. Hence this model has
been included in the ensemble.

We have performed a non-parametric statistical hypothesis test, the
McNemar’s test [40], to analyse the performance of the CNN architec-
tures, compared to the DenseNet 201 architecture. The null hypothesis
in this statistical test is that the different classifiers have the same error
rate based upon the predictions made upon the test set. Table 2 shows
the results of McNemar’s test on the SARS COV-2 CT Scan dataset. A
lower 𝑝-value indicates that the distribution of the predictions made by
the classifiers are dissimilar, and hence complementary.

We have further included the Inception v3 architecture within the
ensemble as it shows significantly high performance, while showing a
small 𝑝-value when compared to DenseNet201 as observed in Table 2.
Moreover, the Inception ResNet v2 architecture is also included within
the ensemble framework as it also achieves impressive performance,
while being statistically verified to be dissimilar to the chosen DenseNet
201 architecture. It is to be noted that even if the 𝑝-value obtained by
the ResNet152 v2 architecture is lower than Inception ResNet v2, the
former model achieves much superior performance in terms of other
metrics such as accuracy and F1-Score, which is why we have chosen
it to be the final member of the ensemble.

The confusion matrices generated by the constituent classifiers,
namely Inception v3, Inception ResNet v2, and DenseNet 201 are
shown in Tables 3, 4 and 5 respectively. It can be seen from the
predictions made upon the validation set that the classifiers offer
differing performance metrics. The source of errors for the classifiers
are different, as upon certain samples one classifier makes the right
7

Table 3
Confusion matrix for Inception V3 on SARS-COV 2 CT Scan Dataset.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19

True 𝐶𝑂𝑉 𝐼𝐷 − 19 365 11

𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19 10 359

Table 4
Confusion matrix for Inception ResNet v2 on SARS-COV 2 CT Scan Dataset.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19

True 𝐶𝑂𝑉 𝐼𝐷 − 19 366 10

𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19 8 361

Table 5
Confusion matrix for DenseNet 201 on SARS-COV 2 CT Scan Dataset.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19

True 𝐶𝑂𝑉 𝐼𝐷 − 19 370 6

𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19 3 366

Table 6
McNemar’s test on the SARS COV-2 CT Scan Dataset compared to ensemble model.

CNN Model McNemar’s Test 𝑝-value

Inception v3 0.0360
Inception ResNet v2 0.0442
DenseNet 201 0.0483

prediction, while failing upon other samples which another classifier
correctly classifies.

Our next experiment compares the distribution of the predictions
made by the constituent classifiers to that of the proposed ensemble
method. The null hypothesis in this case is that the distribution of the
predictions made by the ensemble and that made by the constituents
has the same error rate. To reject the null hypothesis, the 𝑝-value in

cNemar’s test should be below a certain threshold, which we have
hosen as 5%. According to Table 6, for every case, the 𝑝-value is
elow 0.05. Thus, the null hypothesis is rejected for all the cases
hich verifies that the proposed ensemble framework captures the

omplementary information supplied by the considered classifiers. This
s a contributory factor to the superior predictions of the proposed
ethod, which is dissimilar to any of the contributing models.

To confirm the dissimilarity among the decision scores generated
y the three constituent classifiers, we use KL divergence, also known
s relative entropy. It is an asymmetrical measure of dissimilarities
etween two probability distributions. For distributions 𝑃 and 𝑄 on
ame probability space 𝑋, we have KL divergence from 𝑄 to 𝑃 as

𝐾𝐿(𝑃∥𝑄) =
∑

𝑃 (𝑥) log(
𝑃 (𝑥)

) . (15)

𝑥∈𝑋 𝑄(𝑥)
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Table 7
KL and JS divergences among CNN classifiers on SARS COV-2 CT Scan Dataset.

Distribution 𝑃 Distribution 𝑄 𝐷𝐾𝐿(𝑃 ||𝑄) 𝐷𝐽𝑆 (𝑃 ||𝑄)

Inception V3 DenseNet 201 0.3452 0.1020DenseNet 201 Inception V3 0.2202

Inception ResNet v2 DenseNet 201 0.3245 0.1262DenseNet 201 Inception ResNet v2 0.2506

Inception V3 Inception ResNet v2 0.3330 0.0983Inception ResNet v2 Inception V3 0.3100

Table 8
Configuration for fuzzy ensemble on the 3-class classification problem on the COVID-X
Dataset.

CNN Model Accuracy (%) Fuzzy Measure

Inception v3 95.06 0.038
Inception ResNet v2 94.62 0.015
DenseNet 201 95.88 0.074

Table 9
Configuration for fuzzy ensemble on the 2-class classification problem on the COVID-X
Dataset.

CNN Model Accuracy (%) Fuzzy Measure

Inception v3 99.36 0.030
Inception ResNet v2 99.36 0.043
DenseNet 201 99.36 0.026

Table 10
Comparison with empirical ensemble methods on the COVID-X Dataset.

Ensemble Method Accuracy (%) 3-Class Accuracy (%) 2-Class

Maximum 94.68 99.36
Multiplication 95.22 99.36
Average 95.87 99.41
Weighted Average 96.20 99.46

Fuzzy 96.39 99.49

As 𝐷𝐾𝐿(𝑃∥𝑄) ≠ 𝐷𝐾𝐿(𝑄∥𝑃 ), we have a symmetrical measure known
s JS divergence derived from the KL divergence. It is given as

𝐽𝑆 (𝑃∥𝑄) = 1
2
𝐷𝐾𝐿(𝑃∥𝑀) + 1

2
𝐷𝐾𝐿(𝑄∥𝑀) , (16)

where, 𝑀 = 1
2 (𝑃+𝑄). KL and JS divergences among the different scores

f the CNN classifiers on SARS COV-2 CT Scan Dataset are shown in
able 7.

.5. Comparison of Fuzzy ensemble

Tables 8 and 9 show the choice of fuzzy measures which are
xperimentally determined for the ensemble strategy in our method
or the COVID-X dataset. The fuzzy measure is a real valued set func-
ion for each confidence score, and it is integral to the performance
f the proposed method. The other empirical fusion strategies com-
ared are unweighted average, weighted average, Hadamard product
r element-wise multiplication, and maximum. Table 10 highlights the
dvantage offered by fuzzy integral based ensembling over empirical
usion strategies through superior performance.

From Table 10, it is to be noted that the dynamic assignment
f weights using the fuzzy strategy yields better results than other
ethods. This is reflective of the fact that our method can adjust the
eights in the ensemble strategy on the fly according to the confidence
f the individual classifiers as opposed to the other methods which are
ot capable of doing so. This justifies the better performance for the
uzzy ensemble.

.6. Performance

We have evaluated the proposed method on multiple datasets and
8

eported multiple metrics for our experiments.
Table 11
Confusion matrix for 3-class classification on COVID-X.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑟𝑚𝑎𝑙 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎

𝐶𝑂𝑉 𝐼𝐷 − 19 95 5 0

True 𝑁𝑜𝑟𝑚𝑎𝑙 0 870 15

𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎 2 35 557

Table 12
Confusion Matrix for 2-class classification on COVID-X dataset.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19

True 𝐶𝑂𝑉 𝐼𝐷 − 19 93 7

𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19 1 1478

Table 13
Performance Metrics for 3-class classification on COVIDx dataset.

Metric (%) COVID-19 Normal Pneumonia Overall

Accuracy 99.56 96.51 96.70 96.39
Precision 97.94 95.60 97.38 96.97
Recall 95.00 98.30 93.77 95.69
F1-Score 96.44 96.93 95.54 96.30
Specificity 99.86 94.24 98.47 97.52
FPR 0.135 5.764 1.523 2.474
AUC 97.43 96.27 96.12 –
MCC 96.22 92.95 92.97 93.31

Table 14
Performance Metrics for 2-Class classification on COVIDx dataset.

Metric (%) COVID-19 Non COVID-19 Overall

Accuracy 99.49 99.49 99.49
Precision 98.94 99.52 99.23
Recall 93.00 99.93 96.46
F1-Score 95.88 99.73 97.80
Specificity 93.00 99.93 96.46
FPR 0.068 7.00 3.53
AUC 96.46 96.46 –
MCC 95.66 95.66 95.66

4.6.1. COVID-X CXR dataset
The confusion matrices generated by the prediction of the proposed

method for 3-class and 2-class classification problems are shown in
Tables 11 and 12 respectively.

Tables 13 and 14 show the class-wise performance of the proposed
method.

From the results, we note that our method classifies most of the
samples correctly as demonstrated by the high accuracy of our method.
We further note that the precision is especially high for the COVID-19
class which proves that it is very highly likely that the patients detected
positive for COVID-19 indeed have the disease. The other performance
metrics indicate good performance as well which, combined with the
overall high accuracy, denote the robustness of our method.

4.6.2. COVID-19 Radiography Database
The confusion matrix generated by the predictions of the proposed

method upon the COVID-19 Radiography Database is shown in Table 15.
The performance metrics of the proposed method is shown in Table 16.

Upon this dataset, the proposed method have achieved exemplary
performance. In particular, not a single COVID-19 sample has been
misclassified, and there are only two cases where there is a confusion
between the Normal and Viral Pneumonia classes. We see that the
ensemble strategy is also successful in distinguishing between COVID-
19 and Viral Pneumonia, which is a difficult task as these are both
of viral origin. The exceptional results are manifested through the
extremely low error rate for all three of the classes in this dataset.
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Table 15
Confusion matrix for classification on COVID-19 Radiography Database.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑟𝑚𝑎𝑙 𝑉 𝑖𝑟𝑎𝑙 𝑃 𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎

𝐶𝑂𝑉 𝐼𝐷 − 19 120 0 0

True 𝑁𝑜𝑟𝑚𝑎𝑙 0 133 1

𝑉 𝑖𝑟𝑎𝑙 𝑃 𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎 0 1 133

Table 16
Performance Metrics for Classification on COVID-19 Radiography Database.

Metric (%) COVID-19 Normal Viral Pneumonia Overall

Accuracy 100.00 99.46 99.46 99.49
Precision 100.00 99.25 99.25 99.50
Recall 100.00 99.25 99.25 99.50
F1-Score 100.00 99.25 99.25 99.50
Specificity 100.00 99.61 99.61 99.74
FPR 0.00 0.394 0.394 0.262
AUC 100.00 99.43 99.43 –
MCC 100.00 98.86 98.86 99.22

Table 17
Confusion matrix for classification on SARS-COV 2 CT Scan Dataset.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19

True 𝐶𝑂𝑉 𝐼𝐷 − 19 370 6

𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19 2 367

Fig. 4. ROC Curve for SARS-COV 2 CT Scan Dataset.

4.6.3. SARS-COV 2 CT Scan Dataset
The confusion matrix generated by the predictions of the proposed

method upon the SARS-COV 2 CT Scan dataset is shown in Table 17.
The performance metrics of our ensemble method along with the
constituent base learners are depicted in Table 18. The ROC curve
generated by our method is shown in Fig. 4.

We note that along with the high classification accuracy achieved,
the proposed method yields good performance on the rest of the metrics
as well, which experimentally validates the robustness of the approach.
9

Table 19
Confusion matrix for classification on the Montgomery Dataset.

Predicted

𝑁𝑜𝑟𝑚𝑎𝑙 𝑇 𝑢𝑏𝑒𝑟𝑐𝑢𝑙𝑜𝑠𝑖𝑠

True 𝑁𝑜𝑟𝑚𝑎𝑙 16 0

𝑇 𝑢𝑏𝑒𝑟𝑐𝑢𝑙𝑜𝑠𝑖𝑠 1 11

Table 20
Performance Metrics on the Montgomery Dataset.

Metric (%) Normal Tuberculosis Overall

Accuracy 96.43 96.43 96.43
Precision 94.11 100.00 97.06
Recall 100.00 91.67 95.83
F1-Score 96.97 95.65 96.31
Specificity 91.67 100.00 95.83
FPR 8.333 0.000 4.167
AUC 95.83 95.83 –
MCC 92.88 92.88 92.88

4.6.4. Montgomery Dataset
The confusion matrix generated by the predictions of the proposed

method on theMontgomery Dataset are shown within Table 19. Table 20
highlights the impressive performance metrics achieved by the method.

It can be noted that the ensemble strategy in the present work
produces extremely sound results upon this related biomedical imaging
domain. Only one sample upon the test set has been misclassified.
Hence, the proposed method is successful for multiple classification
problems and can be adapted for any requisite purposes by the users.

4.7. Ablation study

We have performed an ablation study to investigate the relative
contribution of the different architectural components in the proposed
method. Along with the individual constituent learners, we have also
considered the ensemble of the pairs of classifiers. The performance
metrics obtained from these experiments are shown in Table 21

It can be noted that on the SARS COV-2 CT Scan Dataset, the
choice of a complementary classifier as a pair with DenseNet 201 has
not significantly boosted the performance as compared to a singular
classifier. However, when the ensemble of three classifiers is taken, the
Choquet integral algorithm is able to run for an additional iteration,
which results in superior results and increases the performance of the
proposed method.

Further results from the ablation study on the COVID-X dataset are
presented in Tables 22 and 23. Owing to the larger scale of this dataset,
the results herein are more representative of our method. The efficacy
of using all three classifiers is demonstrated Through these results.

4.8. K-Fold cross validation

We have performed the K-Fold cross validation to verify the robust-
ness of the proposed method. We have prepared 5 folds from the SARS
COV-2 CT Scan dataset. Each fold consists of 20% of the samples from
the dataset. It has been ensured that each fold contains an equivalent
proportion of the two classes, i.e stratified K-Fold cross validation has
been followed. The results of this experiment are shown in Table 24.
The ROC curve obtained for the first fold is shown in Fig. 5 while the
corresponding confusion matrix is in Table 25.
Table 18
Performance metrics upon SARS-COV 2 CT Scan Dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) FPR (%) AUC (%) MCC (%)

COFE-Net 98.93 98.40 99.46 98.92 98.40 1.59 98.93 97.86
Inception V3 97.18 97.02 97.28 98.92 97.07 2.92 97.18 94.36
Inception ResNet V2 97.58 97.30 97.83 97.56 97.34 2.65 97.58 95.16
DenseNet 201 98.79 98.38 99.18 98.78 98.40 1.59 98.79 97.58
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Table 21
Results of the ablation study upon SARS-COV 2 CT Scan Dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) FPR (%) AUC (%) MCC (%)

Inception V3 97.18 97.02 97.28 98.92 97.07 2.92 97.18 94.36
Inception ResNet V2 97.58 97.30 97.83 97.56 97.34 2.65 97.58 95.16
DenseNet 201 98.79 98.38 99.18 98.78 98.40 1.59 98.79 97.58

Inception V3 and Inception ResNet V2 97.71 96.56 98.91 97.72 96.54 3.457 97.72 95.46
Inception V3 and DenseNet 201 98.79 98.38 99.18 98.78 98.40 1.595 98.79 97.58
Inception ResNet V2 and DenseNet 201 98.79 98.64 98.91 98.78 98.67 1.329 98.79 97.58

Ensemble of all three 98.93 98.40 99.46 98.92 98.40 1.59 98.93 97.86
Table 22
Results of the ablation study for three-class classification upon COVID-X Dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) FPR (%) MCC (%)

Inception V3 95.06 96.77 94.01 95.30 95.50 3.491 90.86
Inception ResNet V2 97.58 93.07 91.81 92.42 96.59 3.41 90.05
DenseNet 201 95.88 96.03 95.02 95.50 97.22 2.77 92.38

Inception V3 and Inception ResNet V2 95.95 94.88 94.42 94.65 97.44 2.557 92.50
Inception V3 and DenseNet 201 96.07 96.76 95.15 95.92 97.30 2.700 92.73
Inception ResNet V2 and DenseNet 201 96.20 95.28 94.36 94.81 97.60 2.393 92.96

Ensemble of all three 96.39 96.97 95.69 96.30 97.52 2.474 93.31
Table 23
Results of the ablation study for two-class classification upon COVID-X Dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) FPR (%) AUC (%) MCC (%)

Inception V3 99.36 98.67 95.93 97.25 95.93 4.06 95.93 94.56
Inception ResNet V2 99.36 99.15 95.46 97.22 95.46 4.53 95.46 94.56
DenseNet 201 99.36 98.67 95.93 97.25 95.93 4.06 95.93 94.56

Inception V3 and Inception ResNet V2 99.36 99.15 95.46 97.22 95.46 4.534 95.46 94.54
Inception V3 and DenseNet 201 99.43 98.71 96.43 97.54 96.43 3.56 96.43 95.11
Inception ResNet V2 and DenseNet 201 99.43 99.19 95.96 97.51 95.96 4.03 95.96 95.10

Ensemble of all three 99.49 99.23 96.46 97.80 96.46 3.53 96.46 95.66
Table 24
K-Fold performance metrics upon SARS-COV 2 CT Scan Dataset.
Fold Number Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) FPR (%) AUC (%) MCC (%)

1 99.80 100.00 99.59 99.79 100.00 0.000 99.79 99.59
2 99.60 100.00 99.19 99.59 100.00 0.000 99.59 99.20
3 99.79 99.59 100.00 99.79 99.60 0.0040 99.80 99.59
4 99.59 99.19 100.00 99.59 99.20 0.0079 99.60 99.35
5 99.60 98.38 99.60 99.60 99.60 0.0040 99.60 99.49

Average 99.68 98.38 99.68 99.68 99.68 0.0032 99.68 99.44
Table 25
Confusion matrix for first fold on SARS COV-2 CT Scan Dataset.

Predicted

𝐶𝑂𝑉 𝐼𝐷 − 19 𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19

True 𝐶𝑂𝑉 𝐼𝐷 − 19 250 0

𝑁𝑜𝑛𝐶𝑂𝑉 𝐼𝐷 − 19 1 244

As evident from our results, we achieve high performance across
each of the folds. Hence, our proposed method is not prone to overfit-
ting, and the results achieved are extremely sound.

4.9. Comparison with some past methods

The proposed method in the present work has been compared with
multiple other high performing methods which have been recently
published.

4.9.1. COVID-X
Table 26 shows comparison with other methods that use the same

dataset from [18] as the proposed work. Tables 27 and 28 show
comparison with methods on other COVID-19 CXR datasets for the
multi-class and binary classification problems.
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Fig. 5. ROC curve for first fold on SARS-COV 2 CT Scan Dataset.

The COVID-X dataset is comprised of five different open source

datasets which are continuously updated. The number of samples in
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Table 26
Comparison with state-of-the-art methods for COVID-19 CADe on the COVID-X dataset [18].

Method Data Distribution Accuracy (%)

COVID-Net [18] 358 COVID-19, 5538 Pneumonia, 8066 Normal 93.3
COVID-ResNet [22] 68 COVID-19, 1591 Pneumonia, 1203 Normal 96.23
COVID-CAPS [27] Not specified 98.3
COVIDiagnosis-Net [25] 76 COVID-19, 4290 Pneumonia, 1583 Normal 98.26

COFE-Net 568 COVID-19, 6052 Pneumonia, 8851 Normal 96.39
COFE-Net 568 COVID-19, 14903 nonCOVID-19 99.49
Table 27
Comparison with state-of-the-art methods for COVID-19 CADe on multi-class classification.

Method Data Distribution Accuracy (%)

Transfer Learning Dataset 1 [20] 224 COVID-19, 700 Pneumonia, 504 Normal 93.48
Transfer Learning Dataset 2 [20] 224 COVID-19, 714 Pneumonia, 504 Normal 94.72
Majority Voting ML [16] 782 COVID-19, 782 Pneumonia, 782 Normal 93.41
DenseNet201 [21] 423 COVID-19, 1485 Pneumonia, 1579 Normal 97.94
Cascaded CNNs [24] 69 COVID-19, 79 Bact. Pneumonia, 79 Viral Pneumonia, 79 Normal 99.9
CoroNet Dataset 1 [23] 284 COVID-19, 657 Pneumonia, 310 Normal 95.0
CoroNet Dataset 2 [23] 157 COVID-19, 500 Pneumonia, 500 Normal 90.21
Stacked VGG Ensemble [26] 219 COVID-19, 1345 Pneumonia, 1341 Normal 97.4
Pruned Weighted Average [28] 313 COVID-19, 8792 Pneumonia, 7595 Normal 99.01

COFE-Net 568 COVID-19, 6052 Pneumonia, 8851 Normal 96.39
Table 28
Comparison with state-of-the-art methods for COVID-19 CADe on binary-class classification.

Method Data Distribution Accuracy (%)

Transfer Learning Dataset 1 [20] 224 COVID-19, 1204 nonCOVID-19 98.75
Transfer Learning Dataset 2 [20] 224 COVID-19, 1214 nonCOVID-19 96.78
DenseNet201 [21] 423 COVID-19, 3064 nonCOVID-19 99.70
CoroNet Dataset 1 [23] 284 COVID-19, 967 nonCOVID-19 99.0
DarkCovidNet [17] 127 COVID-19, 500 nonCOVID-19 98.08
Majority Voting ML [16] 782 COVID-19, 1564 nonCOVID-19 98.06
Stacked VGG Ensemble [26] 219 COVID-19, 2686 nonCOVID-19 99.48
Class Decomposition [41] 116 COVID-19, 80 nonCOVID-19 97.35

COFE-Net 568 COVID-19, 14903 nonCOVID-19 99.49
Table 29
Comparison with state-of-the-art methods on the COVID-19
Radiography Database.
Method Accuracy (%)

VGG 19 [20] 93.00
Transfer Learning [42] 98.29
AlexNet [43] 97.59 ± 0.60

COFE-Net 99.49

the data distribution used in the current work is larger than any of the
compared methods, as it is more updated.

From the comparison, we note that for methods which have been
reported using the same as well as different datasets, the proposed
method outperforms most of the other methods. For multi-class clas-
sification, we note that there are very few state-of-the-art methods that
are able to outperform the proposed method and the margin for that is
small. It must be noted that due to the lack of a standardized benchmark
dataset, past methods cannot be directly compared. Even so, the pro-
posed method has been validated to achieve impressive performance
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with a considerably larger number of CXR samples than all compared
methods. For binary-class classification, the proposed method outper-
forms all state-of-the-art methods and achieves an extremely sound
accuracy. Overall, we can safely comment that the results are extremely
competitive and the proposed method is technically sound and robust.

4.9.2. COVID-19 Radiography Database
Table 29 shows the comparison with state-of-the-art methods upon

the COVID-19 Radiography Database. The proposed method exceeds
the performance of competing methods by a margin of greater than 1%
accuracy, which is a significant gain. Hence, the method in the present
work can be said to be superior to all the methods which have validated
their experiments upon this dataset.

4.9.3. SARS-COV-2 CT scans
The present work has been compared with seven different high

performing methods on the SARS-COV 2 CT Scan dataset, and has
exceeded them in performance by a considerable margin. Table 30
shows comparison of these methods with the current work. Specifically,
the proposed method achieves a higher F1-score compared to the
Table 30
Comparison with state-of-the-art methods on the SARS-COV 2 CT Scan Dataset.
Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%)

xDNN [44] 88.60 89.70 88.60 89.15 –
Transfer Learning [45] 94.04 95.00 94.00 94.50 95.86
Bi-stage FS [13] 95.32 95.30 95.30 95.30 –
DenseNet 201 [46] 96.25 96.29 96.29 96.29 96.21
KarNet [47] 97.00 95.00 98.00 97.00 95.00
Gabor Ensemble [48] 97.40 99.10 95.50 97.30 –

COFE-Net 98.93 98.40 99.46 98.92 98.40
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Table 31
Comparison with state-of-the-art methods on the Montgomery
Dataset.
Method Accuracy (%)

FRCNN [49] 92.60
HDHFS [50] 92.70
HCDEL [51] 93.47
VoPreCNNFT [52] 97.50

COFE-Net 96.43

Fig. 6. Misclassified CT Scan sample with true class non COVID-19.

previous state-of-the-art method by a margin of greater than 2%, which
is an essential increase when considering the nature of the classification
problem.

4.9.4. Montgomery dataset
Table 31 shows the comparison of the proposed method with other

recent strategies upon the Montgomery dataset. The ensemble strategy
in the proposed method has shown appreciable performance on this
dataset while outperforming most recent methods in terms of classifi-
cation accuracy. With larger samples sizes for training, there is more
variance in the classifiers, so the ensemble performance of our method
is expected to increase upon larger datasets.

4.10. Error analysis

While the proposed ensemble strategy in the present work is able
to achieve results which are beyond the reach of the constituent clas-
sifiers, there are certain sample images upon which the strategy fails.
Some of these sources of errors and their probable causes are discussed
in this section.

Fig. 6 displays a sample CT scan image which was misclassified as
COVID-19 positive. It is to be noted that unlike other CT scan images,
this sample image is of a very high contrast, and subsequently very
few distinguishing features can be found within the lobes. Hence, the
CNN feature extractors are not able to gather useful information so the
proposed strategy failed on this anomalous sample.

Fig. 7 displays a sample CT scan image which was misclassified
as COVID-19 negative. Upon visual inspection, it is to be noted that
this sample lacks the characteristic ground glass opacity which is a
major distinguishing feature in COVID-19. Hence it is possible that the
models were not able to concentrate about the specific local features
within each lobe, and instead only utilized the lack of the common
distinguishing feature to make a prediction.

Fig. 8 displays a sample CXR image which was misclassified as
Normal. It can be noted that there are certain occlusions along the
sternum of the patient which might be a contributory factor to the
misclassification.
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Fig. 7. Misclassified CT Scan sample with true class COVID-19.

Fig. 8. Misclassified CXR sample with true class Viral Pneumonia.

5. Conclusion

This paper has addressed the problem of screening of COVID-19
CXRs and CT scans, hence providing a computer-assisted prediction
upon biomedical measurements. Initially, transfer learning upon com-
plementary state-of-the-art CNNs has been utilized to generate decision
scores from the medical images. Next, a fuzzy ensemble framework
through the Choquet integral has been used to combine decision scores
of CNNs through an adaptive combination strategy depending upon
the confidence of each decision score. Results upon multiple COVID-19
datasets highlight the superior performance over empirical ensemble
methods. The proposed framework can be utilized to enhance the
predictive power of the existing methods, which by large do not follow
a classifier fusion approach. The fuzzy integral based ensemble strategy
we have utilized is sensitive to the dynamic measurements of the
confidence of each classifier in the ensemble. This is in contrast to other
traditionally used strategies which are not sensitive and flexible to the
generated measurements at runtime.

While we experimentally verify our approach upon CXR and CT
scan samples for COVID-19, pneumonia, and tuberculosis diseases, it
is to be noted that the proposed framework is a robust detection
system for any form of biomedical measurements. In fact, using other
measurements such as MRI scans would also be a viable input for the
proposed ensemble framework. Furthermore, the fuzzy integral based
confidence aggregation is an ensemble strategy which is sensitive to
the confidence of individual classifiers at runtime. This sensitivity to
dynamic measurements is another desirable characteristic which makes
the proposed framework suitable for not only biomedical imaging,
but also other domains of measurement from sensor data, wherein
ensemble learning may find use.

To summarize, this paper proposes an ensemble network, known
as COFE-Net, of three CNN-based classifiers, which are chosen to
be complimentary through various parameters and experiments, for
COVID-19 Detection. The results from the complimentary set of clas-
sifiers are fused using a fuzzy ensembling strategy using the Choquet
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Integral Method which dynamically assigns weights to the component
CNNs based on the confidence scores of their predictions. Exhaustive
experimentation on a variety of datasets using various metrics prove
the robustness of our method and it outperforms the state-of-the-art
in the domain on most occasions. It obtains an accuracy of 96.39%
for 3-class classification and 99.49% for 2-class classification on the
COVIDx dataset and performs appreciably well on most datasets in the
domain. Additionally, it also performs well on the Montgomery dataset
for Tuberculosis detection as well with an accuracy of 96.43% which
proves that our method can adapt to other field of medical imaging as
well.

The proposed method has some limitations. These include the em-
pirical determination of fuzzy measures, which is the basis of the fuzzy
combination mechanism. Although the use of the Sugeno fuzzy-𝜆 mea-
sure has highly reduced the search space, it is still a time consuming
process to experimentally identify the optimal measurements. Another
limitation of the proposed method is that the CNN classifiers involved
utilize globally extracted features from the whole input images, while
the distinguishing elements may be concentrated in a specific part of
the image.

Going forward, we would like to use an attention mechanism to
improve the focus on the affected lung regions in the image so that
more accurate features can be extracted. We would also like to extend
this method to other areas of healthcare where it can make an impact
to help the biomedical community at large.
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