
Generative Adversarial Networks and Radiomics Supervision for 
Lung Lesion Synthesis

Shaoyan Pan1, Jessica Flores2, Cheng Ting Lin3, J. Webster Stayman2, Grace J. Gang2

1Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore MD, 
21205, USA

2Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, 21205, USA

3Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore MD, 
21205, USA

Abstract

Realistic lesion generation is a useful tool for system evaluation and optimization. In this work, 

we investigate a data-driven approach for categorical lung lesion generation using public lung CT 

databases. We propose a generative adversarial network with a Wasserstein discrimination and 

gradient penalty to stabilize training. We further included conditional inputs such that the network 

can generate user-specified lesion categories. Novel to our network, we directly incorporated 

radiomic features in an intermediate supervision step to encourage similar textures between 

generated and real lesions. We evaluated the network using lung lesions from the Lung Image 

Database Consortium (LIDC) database. The lesions are divided into two categories: solid vs. 

non-solid. We performed quantitative evaluation of network performance base on four criteria: 1) 

overfitting in terms of structural and morphological similarity to the training data, 2) diversity of 

generated lesions in terms of similarity to other generated data, 3) similarity to real lesions in 

terms of distribution of example radiomics features, and 4) conditional consistency in terms of 

classification accuracy using a classifier trained on the training lesions. We imposed a quantitative 

threshold for similarity based on visual inspection. The percentage of non-solid and solid lesions 

that satisfy low overfitting and high diversity is 96.9% and 88.6% of non-solid and solid lesions 

respectively. The distribution of example radiomics features are similar in the generated and 

real lesions indicated by a low Kullback–Leibler divergence score. Classification accuracy for 

the generated lesions are comparable with that for the real lesions. The proposed network is a 

promising approach for data-driven generation of realistic lung lesions.
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1. INTRODUCTION

Realistic lesion generation is a useful tool for system evaluation and optimization. Generated 

lesions can serve as realistic imaging tasks for task-base image quality assessment, as well 

as targets in virtual clinical trials. Virtual clinical trial (VCT) in particular has been receiving 

increasing attention as an efficient and cost-effective tool for the preclinical assessment 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 October 14.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2021 February ; 11595: . doi:10.1117/12.2582151.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of imaging systems. Within the VCT workflow, realistic lesion generation is a critical 

element. Not only should the lesions capture realistic morphology and texture, but should 

also systematically represent different categories of lesion types and diagnostic features.

Traditionally, lesion generation has mostly relied on procedural approaches. In this work, 

we propose a data-driven approach which leverages the increasing availability of large-scale 

patient databases and enables rich feature discovery unconstrained by a pre-selected set of 

basis functions. In particular, we develop a novel network architecture based on generative 

adversarial network (GAN). We directly incorporated radiomics features in the training 

process via an intermeidate supervision step. We additionally combined several state-of­

the-art elements to improve stability and convergence of the network. We implemented 

the network to conditionally generate solid and non-solid lung lesions, and presented 

quantitative evaluation of network performance.

2. METHOD

2.1 Network Architecture

As illustrated in Fig.1, the network employs a GAN architecture where the generator G 
learns a mapping from samples from a prior distribution z′ ~ p(z′) to the real distribution x′ 
~ p(x′). We included the following extensions to a basic GAN:

2.1.1 Wassertein discriminator with gradient penalty—To improve training 

stability, we implemented a Wasserstein GAN where the discriminator D computes the 

Wasserstein-1 distance y between the synthetic samples G(z′) and the real samples x′. 

We additionally included a gradient penalty1 in the objective function to constrain the 

discriminator to be K-Lipschitz. The objective function is given by:

min
G

max
D

Ex[D(y, x ∣ y)] − Ez[D(y, G(z ∣ y))]

+ γEx ∣ y ∇x ∣ yD(y, x ∣ y) 2 − 1 2 (1)

where γ is the penalty coefficient empirically chosen to be 10, and x is a random mixture 

uniformly sampled from the pairs of real and synthetic images.

2.1.2 Conditional GAN—To enable lesion generation in different categories, we 

included lesion category (in this work, solid vs non-solid) as a one-hot encoded label 

vector.2 The label vector is concatenated with input z to the generator, and input x to the 

discriminator.

2.1.3 Self-attention layers—To model long-range dependencies across image regions, 

we implement one SA layer3 in both the generator and the discriminator. The 3D SA layer 

performs the following operation:

ys = γW fS xsTW θ
TW ϕxs W gxs + xs (2)
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where ys is the output and xs is the input of the SA layer, S indicates Softmax operation. 

Wf, Wθ, Wϕ and Wg are trainable 1x1x1 convolution layers. γ is a trainable weight for the 

non-local responses.

2.1.4 Intermediate supervision using radiomics features—Novel to our network, 

we directly included radiomics features in an intermediate supervision step. Intermediate 

supervision was originally proposed for convolutional neural networks to speed up 

convergence and alleviate vanishing gradient.4 As shown in Fig.1, the intermediate 

supervision network effectively serves as a discriminator for the first half of the generator to 

encourage similar textures between the generated and real lesions. The objective function for 

this block is given by:

min
G

max
ℛD

Ex ℛD(ℛ(x)) − Ez′ ℛD ℛ ϕ I z′ + γEℛ ∇ℛD(ℛ) 2 − 1 2
(3)

where R is the radiomics feature, chosen here as the homogeneity feature computed from 

the gray-level co-occurance matrix (GLCM-Homongeneity), computed for a 1-pixel offset 

at 13 angles (i.e., all adjacent pixel neighbors in 3D); R is the radiomics computed from a 

randomly chosen pairs of real lesions and intermediate outputs. For each iteration, training 

is divided into two stages, first for the radiomics supervision network according to the 

objective function in Eq.3, and second for the complete generator and discriminator using 

the objective function in Eq.1.

2.2 Training Data and Preprocessing

For training data, we used segmented 3D lung lesions from the Lung Image Database 

Consortium (LIDC) database.5 For this work, we aim to conditionally generate lesions 

of different textures. Therefore, we used the “Texture” ratings provided in the LIDC and 

divided all lesions into two categories: non-solid (by aggregating Texture ratings 1 to 3), 

and solid (Texture ratings 4 and 5). We excluded lesions smaller than 8x8x8, since clinical 

assessment of textures are only performed for larger lesions. Each lesion volume is centered 

and resized to 32x32x32 by cubic interpolation. For training, all voxel values are normalized 

between −1 and 1. A common normalization scheme is used for the entire dataset so that 

Hounsfield numbers can be recovered post training.

2.3 Performance Evaluation

We evaluate four aspects of network performance: overfitting, diversity of generated 

lesions, statistical similarity between generated and real lesions, and conditional consistency 

of generated lesion categories. A total of 640 lesions were generated for performance 

evaluation.

Overfitting—We first analyze whether generated lesions are as a result of overfitting to 

the training data. Each generated lesion was compared with each training lesion in terms of 

their shape similarity (in terms of the Dice score) and structural similarity (in terms of the 

Multi-scale Structural Similarity Index, MS-SSIM). An empirical threshold was chosen for 
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each score based on visual inspection to exclude lesions deemed too similar to the training 

lesions.

Diversity—GANs are known to suffer from mode collapse where different noise inputs 

produce similar outputs. To assess the extent of mode collapse, the remaining lesions were 

analyzed for diversity, i.e., whether generated lesions are unique. Each generated lesion was 

compared with every other generated lesion in terms of the Dice score and MS-SSIM. A 

threshold was similarly chosen to select unique lesions.

Statistical similarity to real lesions—Lesion passing the first two tests were then 

evaluated on whether they are drawn from the same statistical distribution as the real lesions. 

We computed the distributions of several radiomics features (GLCM-homogeneity, contrast, 

energy,) of generated lesions and compared with those for real lesions. Similarity between 

the distributions were assessed using the Kullback–Leibler divergence(KL).

Conditional consistency—Lastly, we assess whether the lesions were correctly 

generated to their respective categories. To highlight the effect of the labels, we generated 

lesions belonging to both categories using the same noise realization by only changing 

the label vector. We deploy MATLAB library to trained a L1 soft-margin Support Vector 

Machine (SVM) to classify the training lesions as solid vs. non-solid based on 38 radiomics 

features, including features from GLCM, Gray-Level Run-Length Matrix (GLRLM), Gray­

Level Size Zone Matrix (GLSZM) and three more global features: Skewness, Variance and 

Kurtosis. The SVM is trained with radial basis function kernel and optimized by quadratic 

programming. It is applied to the generated lesions to test whether they can be correctly 

categorized.

3. RESULT

Eight example generated lesions in each category is shown in Fig.2. Quantitative analysis 

results in Sec.2.3 is summarized in Table 1.

Overfitting

The distribution of Dice score and MS-SSIM for solid and non-solid lesions are shown in 

Fig.4. From visual inspection, the thresholds separating similar and dissimilar lesions are set 

to 0.9567 for the MS-SSIM and 0.9175 for the Dice score, where the justification is shown 

in Fig.3. Out of 640 total lesions, 100% of non-solid lesions and solid lesions satisfy both 

criteria simultaneously and are therefore considered sufficiently different from the training 

data.

Diversity

The distribution of Dice score and MS-SSIM for solid and non-solid lesions are shown in 

Fig.5. Using the same thresholds determined previously, 96.9% non-solid lesions and 88.6% 

solid lesions are considered unique. We observed lower diversity in solid lesions, which 

indicates a partial mode collapse (the network produces limited varieties of samples) for 

solid lesion generation. This is likely due to insufficient data for solid lesions: in empirical 
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experiments, we tend to see more mode collapse with a small dataset with relative large 

variance (see Fig. 7). This behavior can be mitigated with more training data.

Statistical similarity to real lesions

The distributions of example radiomics features computed for the generated lesions are 

overlaid with those for the real lesions. For non-solid lesions, high similarity (indicated by 

low KL score) is observed for all four radiomics features. On the other hand, solid lesions 

have lower similarity, possibly attributed to the partial mode collapse mentioned previously.

Conditional consistency

For visualization purpose, we apply Principle Component Analysis (PCA) to the features 

and only plot the first two components, which together can explain 99.98% variance. 

The SVM classifier trained on the real lesions is capable of achieving 85.7% accuracy 

for non-solid lesions and 88.6% for solid lesions. When applied to the generated lesions, 

classification accuracy is 94.8% for non-solid lesions and 92.7% for solid lesions.

Combining all quantitative assessment above, the percentage of lesions that pass all criteria 

are 92.7% and 84.2% for non-solid and solid lesions, respectively.

4. CONCLUSION

In this work, we present a novel GAN with radiomics supervision for 3D lung lesion 

generation. The network structure has shown capability of conditionally generating user­

specified lesion categories that exhibit low levels of overfitting and high intra-condition 

diversity. Ongoing and future work will focus on expanding lesion categories beyond texture 

to include features such as lesion shapes. We will further evaluate the generated lesions 

through an observer study involving radiologists.
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Figure 1: 
Network structure: The GAN network proposed adopts a Wasserstein discriminator with 

gradient penalty. Self-attention layers are included in both the generator and discriminator to 

model long-range dependencies in the image. The radiomics supervision network is included 

after the first half of the generator to encourage texture similarity between generated and real 

lesions. Input conditions are encoded in a one-hot label vector and appended to the inputs 

of both the generator and discriminator. Upsampling and down-sampling ratios are 2. We 

adopted the RMSprop optimizer with an initial learning rate of 0.0001. The learning rate 

decays to 0.9 of its value every 20 epochs. Batch size is 8 and a total of 1200 epochs were 

used in training.

Pan et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Example lesions from both non-solid and solid categories.
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Figure 3: 
Quantitative thresholds for the MS-SSIM metric and Dice score were chosen based on visual 

inspection. Example lesions that, are considered dissimilar (below the threshold, top row, 

and at the threshold, middle row) and similar (above the threshold, bottom row) are plotted. 

In both (a) and (b), The left column shows four axial slices through a generated lesion 

volume, while the right column shows the same for a real lesion.
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Figure 4: 
Overfitting: The maximum MS-SSIM and Dice score between generated lesions and each 

real lesions are shown for both the solid and non-solid categories. The red dotted bars 

indicate the location of the threshold below which lesions are considered dissimilar.
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Figure 5: 
Diversity: The maximum MS-SSIM find Dice score between each generated lesions and 

every other generated lesions are shown for both the solid and non-solid categories. Red bars 

indicates the thresholds below which lesions are considered unique.
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Figure 6: 
Example radiomics features for real (blue) and generated (orange) lesions are plotted for 

comparison. The histograms should have high similarity if lesion generation faithfully 

reproduce the range of texture features of real lesions. Generated non-solid lesions are able 

to achieve high similarity and low KL score with real lesions, while solid lesions perform 

worse, possibly due to partial mode collapse during training.
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Figure 7: 
Conditional consistency: The SVM classifier trained to classify solid vs non-solid 

lesions. The classifier were trained on real lesions and applied to generated lesions. The 

classification accuracy is comparable between real and generated lesions, indicating the 

conditional network could produce lesions belong to distinct categories.
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Table 1:

Quantitative analysis: Table shows statistics for the overfitting analysis, the diversity analysis, the conditional 

consistency analysis and the overall statistical consistency. And a percentage of the high-quality synthetic 

lesion is presented.

Overfitting Statistics Diversity Analysis Condition 
Analysis

Statistical 
Analysis

High-quality 
lesion (%)

MS-SSIM Dice New lesion 
(%) MS-SSIM Dice Unique 

lesion (%)

Match 
expected 

condition (%)

Empirical KL 
divergence

Non-
solid 0.75 0.62 100 0.91 0.81 96.9 94.8 2.05 92.7

Solid 0.78 0.75 100 0.92 0.87 88.6 92.7 5.92 84.2
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