Skip to main content
. 2021 Oct 14;16(10):e0257857. doi: 10.1371/journal.pone.0257857

Table 9. Accuracy, cohen’s κ, TPR and TNR values based for the all ML tools and using either 5-fold cross validation or 20% testing set for prediction people with T2DM from people without T2DM.

ML tool Type of Data Measure
Accuracy Cohen’s TPR TNR
Logistic 5-fold cross validation 0.75 0.50 0.76 0.74
20% Testing 0.97 0.94 1.00 0.95
RF 5-fold cross validation 0.76 0.51 0.79 0.73
20% Testing 0.66 0.34 0.97 0.38
XGBoost 5-fold cross validation 0.73 0.64 0.72 0.73
20% Testing 0.66 0.33 0.94 0.41
PNN 5-fold cross validation 0.62 0.24 0.60 0.64
20% Testing 0.86 0.71 0.88 0.84
C-LibSVM 5-fold cross validation 0.65 0.31 0.71 0.60
20% Testing 0.47 0.00 1.00 0.00
nu-LibSVM 5-fold cross validation 0.66 0.32 0.68 0.64
20% Testing 0.53 0.00 1.00 0.00
AdaBoost 5-fold cross validation 0.74 0.49 0.82 0.61
20% Testing 0.60 0.23 0.97 0.27
Gradient-boost 5-fold cross validation 0.73 0.46 0.71 0.75
20% Testing 0.59 0.18 0.64 0.54
KNN* 5-fold cross validation 0.62 0.24 0.54 0.70
20% Testing 0.47 0.00 1.00 0.00
K-star 5-fold cross validation 0.73 0.46 0.68 0.78
20% Testing 0.53 0.07 0.67 0.41

* Features with non-numeric values are ignored.