Table 9. Accuracy, cohen’s κ, TPR and TNR values based for the all ML tools and using either 5-fold cross validation or 20% testing set for prediction people with T2DM from people without T2DM.
ML tool | Type of Data | Measure | |||
---|---|---|---|---|---|
Accuracy | Cohen’s | TPR | TNR | ||
Logistic | 5-fold cross validation | 0.75 | 0.50 | 0.76 | 0.74 |
20% Testing | 0.97 | 0.94 | 1.00 | 0.95 | |
RF | 5-fold cross validation | 0.76 | 0.51 | 0.79 | 0.73 |
20% Testing | 0.66 | 0.34 | 0.97 | 0.38 | |
XGBoost | 5-fold cross validation | 0.73 | 0.64 | 0.72 | 0.73 |
20% Testing | 0.66 | 0.33 | 0.94 | 0.41 | |
PNN | 5-fold cross validation | 0.62 | 0.24 | 0.60 | 0.64 |
20% Testing | 0.86 | 0.71 | 0.88 | 0.84 | |
C-LibSVM | 5-fold cross validation | 0.65 | 0.31 | 0.71 | 0.60 |
20% Testing | 0.47 | 0.00 | 1.00 | 0.00 | |
nu-LibSVM | 5-fold cross validation | 0.66 | 0.32 | 0.68 | 0.64 |
20% Testing | 0.53 | 0.00 | 1.00 | 0.00 | |
AdaBoost | 5-fold cross validation | 0.74 | 0.49 | 0.82 | 0.61 |
20% Testing | 0.60 | 0.23 | 0.97 | 0.27 | |
Gradient-boost | 5-fold cross validation | 0.73 | 0.46 | 0.71 | 0.75 |
20% Testing | 0.59 | 0.18 | 0.64 | 0.54 | |
KNN* | 5-fold cross validation | 0.62 | 0.24 | 0.54 | 0.70 |
20% Testing | 0.47 | 0.00 | 1.00 | 0.00 | |
K-star | 5-fold cross validation | 0.73 | 0.46 | 0.68 | 0.78 |
20% Testing | 0.53 | 0.07 | 0.67 | 0.41 |
* Features with non-numeric values are ignored.