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Abstract

This paper introduces a new concept called “transferable visual words” (TransVW), aiming to 

achieve annotation efficiency for deep learning in medical image analysis. Medical imaging—

focusing on particular parts of the body for defined clinical purposes—generates images of 

great similarity in anatomy across patients and yields sophisticated anatomical patterns across 

images, which are associated with rich semantics about human anatomy and which are natural 

visual words. We show that these visual words can be automatically harvested according to 

anatomical consistency via self-discovery, and that the self-discovered visual words can serve 

as strong yet free supervision signals for deep models to learn semantics-enriched generic 

image representation via self-supervision (self-classification and self-restoration). Our extensive 

experiments demonstrate the annotation efficiency of TransVW by offering higher performance 

and faster convergence with reduced annotation cost in several applications. Our TransVW has 

several important advantages, including (1) TransVW is a fully autodidactic scheme, which 

exploits the semantics of visual words for self-supervised learning, requiring no expert annotation; 

(2) visual word learning is an add-on strategy, which complements existing self-supervised 

methods, boosting their performance; and (3) the learned image representation is semantics­

enriched models, which have proven to be more robust and generalizable, saving annotation efforts 

for a variety of applications through transfer learning. Our code, pre-trained models, and curated 

visual words are available at https://github.com/JLiangLab/TransVW.

fhaghigh@asu.edu . 
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I. Introduction

A grand promise of computer vision is to learn general-purpose image representation, 

seeking to automatically discover generalizable knowledge from data in either a supervised 

or unsupervised manner and transferring the discovered knowledge to a variety of 

applications for performance improvement and annotation efficiency.

In the literature, convolutional neural networks (CNNs) and bags of visual words (BoVW) 

[1] are often presumed to be competing methods, but they actually offer complementary 

strengths. Training CNNs requires a large number of annotated images, but the learned 

features are transferable to many applications. Extracting visual words in BoVW, on the 

other hand, is unsupervised in nature, demanding no expert annotation, but the extracted 

visual words lack transferability. Therefore, the first question that we seek to answer is 

how to beneficially integrate the transfer learning capability of CNNs with the unsupervised 
nature of BoVW in extracting visual words for image representation learning?

In the meantime, medical imaging protocols, typically designed for specific clinical 

purposes by focusing on particular parts of the body, generate images of great similarity in 

anatomy across patients and yield an abundance of sophisticated anatomical patterns across 

images. These anatomical patterns are naturally associated with rich semantic knowledge 

about human anatomy. Therefore, the second question that we seek to answer is how to 
exploit the deep semantics associated with anatomical patterns embedded in medical images 
to enrich image representation learning?

In addressing the two questions simultaneously, we have conceived a new concept: 

transferable visual words (TransVW), where the sophisticated anatomical patterns across 

medical images are natural “visual words” associated with deep semantics in human 

anatomy (see Fig. 1). These anatomical visual words can be automatically harvested from 

unlabeled medical images and serve as strong yet free supervision signals for CNNs to 

learn semantics-enriched representation via self-supervision. The learned representation 

is generalizable and transferable because it is not biased to the idiosyncrasies of pre­

training (pretext) tasks and datasets, thereby it can produce more powerful models to solve 

application-specific (target) tasks via transfer learning. As illustrated in Fig. 2, our TransVW 

consists of three components: (1) a novel self-discovery scheme that automatically harvests 

anatomical visual words, exhibiting consistency (in pattern appearances and semantics) and 

diversity (in organ shapes, boundaries, and textures), directly from unlabeled medical images 

and assigns each of them with a unique label that bears the semantics associated with a 

particular part of the body; (2) a unique self-classification scheme that compels the model 

to learn semantics from anatomical consistency within visual words; and (3) a scalable 

self-restoration scheme that encourages the model to encode anatomical diversity within 

visual words.
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Our extensive experiments demonstrate the annotation efficiency of TransVW in higher 

performance, faster convergence, and less annotation cost on the applications where there is 

a dearth of annotated images. Compared with existing publicly available models, pre-trained 

by either self-supervision or full-supervision, our TransVW offers several advantages, 

including (1) TransVW is a fully autodidactic scheme, which exploits the semantics 

of visual words for self-supervised learning, requiring no expert annotation; (2) visual 

word learning is an add-on strategy, which complements existing self-supervised methods, 

boosting their performance; and (3) the learned image representation is semantics-enriched 

models, which have proven to be more robust and generalizable, saving annotation efforts 

for a variety of applications through transfer learning. In summary, we make the following 

contributions:

• An unsupervised clustering strategy, curating a dataset of anatomical visual 

words from unlabeled medical images.

• An add-on learning scheme, enriching representations learned from existing 

self-supervised methods [2]-[5].

• An advanced self-supervised framework, elevating transfer learning 

performance, accelerating training speed, and reducing annotation efforts.

II. Transferable Visual Words

TransVW aims to learn transferable and generalizable image representation by leveraging 

the semantics associated with the anatomical patterns embedded in medical images (see 

Fig. 1). For clarity, as illustrated in Fig. 2a, we define a visual word as a segment of 

consistent anatomy recurring across images and the instances of a visual word as the patches 

extracted across different but resembling images for this visual word. Naturally, all instances 

of a visual word exhibit great similarity in both appearance and semantics. Furthermore, 

to reflect the semantics of its corresponding anatomical parts, a unique (pseudo) label is 

automatically assigned to each visual word during the self-discovery process (see Section 

II-A); consequently, all instances of a visual word share the same label bearing the same 

semantics in anatomy.

A. TransVW learns semantics-enriched representation

TransVW enriches representation learning with the semantics of visual words, as shown in 

Fig. 2, through the following three components.

1) Self-discovery—harvesting the semantics of anatomical patterns to form 
visual words.—The self-discovery component aims to automatically extract a set of C 
visual words from unlabeled medical images as shown in Fig. 2a. To ensure a high degree 

of consistency in anatomy among the instances of each visual word, we first identify a set 

of K patients that display a great similarity in their overall image appearance. To do so, 

we use the whole patient scans in the training dataset to train a feature extractor Φ( . ), an 

auto-encoder network, to learn an identical mapping from a whole-patient scan to itself. 

Once trained, its latent features can be used as an indicator of the similarity among patient 

scans. As a result, we can form such a set of K patient scans by randomly anchoring a 
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patient scan as the reference and appending its top K–1 nearest neighbors found throughout 

the entire training dataset based on the L2 distance in the latent feature space. Given the 

great resemblance among the selected K patient scans, the patches extracted at the same 

coordinate across these K scans are expected to exhibit a high degree of similarity in 

anatomical patterns. Therefore, for each visual word, we extract its K instances by cropping 

around a random but fixed coordinate across a set of selected K patients, and assign a unique 

pseudo label to them. We repeat this process C times, yielding a set of C visual words, 

each with K instances, extracted from C random coordinates. The extracted visual words 

are naturally associated with the semantics of the corresponding human body parts. For 

example, in Fig. 2a, four visual words are defined randomly in a reference patient (top-left), 

bearing local anatomical information of (1) anterior ribs 2–4, (2) spinous processes, (3) 

right pulmonary artery, and (4) LV. In summary, our self-discovery automatically generates a 

dataset of visual words associated with semantic labels, as a free and rich source for training 

deep models to learn semantics-enriched representations from unlabeled medical images

2) Self-classification—learning the semantics of anatomical consistency 
from visual words.—Once a set of visual words are self-discovered, representation 

learning can be formulated as self-classification, a C-way multi-class classification that 

discriminates visual words based on their semantic (pseudo) labels. As illustrated in Fig. 

2b, the self-classification branch is composed of (1) an encoder that projects visual words 

into a latent space, and (2) a classification head, a sequence of fully-connected layers, 

that predicts the pseudo label of visual words. It is trained by minimizing the standard 

categorical cross-entropy loss function:

ℒcls = − 1
B ∑

b = 1

B
∑

c = 1

C
Ybc log Pbc (1)

where B denotes the batch size; C denotes the number of visual words; Y and P represent 

the ground truth (one-hot pseudo label vector) and the network prediction, respectively. 

Through training, the model is compelled to learn features that distinguish the anatomical 

dissimilarity among instances belonging to different visual words and that recognize the 

anatomical resemblance among instances belonging to the same visual words, resulting 

in image representations associated with the semantics of anatomical patterns underneath 

medical images. Therefore, self-classification is for learning image representation enriched 

with semantics that can pull together all instances of each visual word, while pushing apart 

instances of different visual words.

3) Self-restoration—encoding the semantics of anatomical diversity of visual 
words.—In self-discovery, we intentionally selected patients, rather than patches, according 

to their resemblance at the whole patient level. Given that no scans of different patients 

are the same in appearance, behind their great similarity, the instances of a visual word are 

also expected to display subtle anatomical diversity in terms of organ shapes, boundaries, 

and texture. Such a balance between the consistency and diversity of anatomical patterns 

for each visual word is critical for deep models to learn robust image representation. To 

encode this anatomical diversity within visual words for image representation learning, we 
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augment our framework with self-restoration, training the model to restore the original 

visual words from the perturbed ones. The self-restoration branch, as shown in Fig. 2c, is an 

encoder-decoder with skip connections in between. We apply a perturbation operator g(.) on 

a visual word x to get the perturbed visual word x = g(x). The encoder takes the perturbed 

visual word x as an input and generates a latent representation. The decoder takes the latent 

representation from the encoder and decodes it to produce the original visual word. Our 

perturbation operator g(.) consists of non-linear, local-shuffling, out-painting, and inpainting 

transformations, which are proposed by Zhou et al. [5], [6], as well as identity mapping 

(i.e., x = g(x)). Restoring visual word instances from their perturbations enables the model 

to learn image representation from multiple perspectives [5], [6]. The restoration branch is 

trained by minimizing the L2 distance between the original and reconstructed visual words:

ℒrec = 1
B ∑

i = 1

B
‖xi − xi′‖2 (2)

where B denotes the batch size, x and x′ represent the original visual word and the 

reconstructed prediction, respectively.

To enable end-to-end representation learning from multiple sources of information and yield 

more powerful models for a variety of medical tasks, in TransVW, self-classification and 

self-restoration are integrated together by sharing the encoder and jointly trained with one 

single objective function:

ℒ = λclsℒcls + λrecℒrec (3)

where λcls and λrec adjust the weights of classification and restoration losses, respectively. 

Our unique definition of ℒcls empowers the model to learn the common anatomical 

semantics across medical images from a strong discriminative signal—the semantic label 

of visual words. The definition of ℒrec equips the model to learn the anatomical finer 

details of visual words from multiple perspectives by restoring original visual words from 

varying image perturbations. We should emphasize that our goal is not simply discovering, 

classifying, and restoring visual words per se, rather advocating it as a holistic pre-training 

scheme for learning semantics-enriched image representation, whose usefulness must be 

assessed objectively based on its generalizability and transferability to various target tasks.

B. TransVW has several unique properties

1) Autodidactic—exploiting semantics in unlabeled data for self supervision.
—Due to the lack of sufficiently large, curated, and labeled medical datasets, self-supervised 

learning holds a great promise for representation learning in medical imaging because it 

does not require manual annotation for pre-training. Unlike existing self-supervised methods 

for medical imaging [4], [5], [14], our TransVW explicitly employs the (pseudo) labels 

that bear the semantics associated with the sophisticated anatomical patterns embedded in 

the unlabeled images to learn more pronounced representation for medical applications. 

Particularly, TransVW benefits from a large, diverse set of anatomical visual words 

discovered by our self-discovery process, coupled with a training scheme integrating 
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both self-classification and self-restoration, to learn semantics-enriched representation from 

unlabeled medical images. With zero annotation cost, our TransVW not only outperforms 

other self-supervised methods but also surpasses publicly-available, fully-supervised pre­

trained models, such as I3D [15], NiftyNet [16], and MedicalNet [17].

2) Comprehensive—blending consistency with diversity for semantics 
richness.—Our self-discovery component secures both consistency and diversity within 

each visual word, thereby offering a lucrative source for pre-training deep models. More 

specifically, our self-discovery process computes similarity at the patient level and selects 

the top nearest neighbors of the reference patient. Extracting visual word instances 

from these similar patients, based on random but fixed coordinates, strikes a balance 

between consistency and diversity of the anatomical pattern within each visual word. 

Consequently, our self-classification exploits the semantic consistency by classifying visual 

words according to their pseudo labels, resulting in class-level feature separation among 

visual word classes. Furthermore, our self-restoration leverages the fine-grained anatomical 

information–the subtle diversity of intensity, shape, boundary, and texture enables instance­

level feature separation among instances within each visual word. As a result, our TransVW 

projects visual words into more comprehensive feature space in both class-level and 

instance-level by blending consistency with diversity.

3) Robust—preventing superficial solutions for deep representation.—Self­

supervised learning is notorious for learning shortcut solutions in tackling pretext tasks, 

leading to less generalizable image representations [18], [19]. However, our method, 

especially our self-classification component, is discouraged from learning superficial 

solutions since our self-discovery process imposed substantial diversity among instances of 

each visual word. Furthermore, we follow two well-known techniques to further improve the 

diversity of visual words. Firstly, following Doersch et al. [19] and Mundhenk et al. [20], we 

extract multi-scale instances for each visual word within a patient, in which each instance 

is randomly jittered by a few pixels. Consequently, having various scale instances in each 

class enforces self-classification to perform more semantic reasoning by preventing easy 

matching of simple features among the instances of the same class [20]. Secondly, during 

pre-training, we augment visual words with various image perturbations to increase the 

diversity of data. Altogether, the substantial diversity of visual words coupled with various 

image perturbations enforce our pretext task to capture semantic-bearing features, resulting 

in a compelling and robust representation obtained from anatomical visual words.

4) Versatile—complementing existing self-supervised methods for 
performance enhancement.—TransVW boasts an innovative add-on capability, a 

versatile feature that is unavailable in other self-supervised learning methods. Unlike 

existing self-supervised methods that build supervision merely from the information within 

individual images of training data, our self-discovery and self-classification leverage the 

anatomical similarities present across different images (reflected in visual words) to learn 

common anatomical semantics. Consequently, incorporating visual word learning into 

existing self-supervised methods enforces them to encode semantic structures of visual 

words into their learned embedding space, resulting in more versatile representations. 
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Therefore, our self-discovery and self-classification components together can serve as an 

add-on to boost existing self-supervised methods, as evidenced in Fig. 3.

III. Experiments

A. Pre-training TransVW

TransVW models are pre-trained solely on unlabeled images. Nevertheless, to ensure no 

test-case leaks from pretext tasks to target tasks, any images that will be used for validation 

or test in target tasks (see Table I) are excluded from pre-training. We have released two 

pre-trained models: (1) TransVW Chest CT in 3D, which was pre-trained from scratch using 

623 chest CT scans in LUNA16 [7] (the same as the publicly released Models Genesis1), 

and (2) TransVW Chest X-rays in 2D, which was pre-trained on 76K chest X-ray images 

in ChestX-ray14 [12] datasets. We set C = 45 for TransVW Chest CT and C = 100 for 

TransVW Chest X-rays (see Appendix I-B for the ablation studies on the impact of the 

number of visual words on performance). We empirically set K = 200 and K = 1000 for 

TransVW Chest CT and TransVW Chest X-rays, respectively, to strike a balance between 

diversity and consistency of the visual words. For each instance of a visual word, multi-scale 

cubes/patches for 3D/2D images are cropped, and then all are resized to 64×64×32 and 

224×224 for TransVW Chest CT and TransVW Chest X-rays, respectively (see Appendix 

I-C for samples of the discovered visual words).

B. Fine-tuning TransVW

The pre-trained TransVW can be used for a variety of target tasks through transfer learning. 

To do so, we utilize (1) the encoder for target classification tasks by appending a target task­

specific classification head, and (2) the encoder and decoder for target segmentation tasks by 

replacing the last layer with a 1×1×1 convolutional layer. In this study, we have evaluated 

the generalization and transferability of TransVW by fine-tuning all the parameters of target 

models on seven diverse target tasks, including image classification and segmentation tasks 

in both 2D and 3D. As summarized in Table I and detailed in Appendix I-A, these target 

tasks offer the following two advantages:

• Covering a wide range of diseases, organs, and modalities. This allows us to 

verify the add-on capability of TransVW on various 3D target tasks, covering 

a diverse range of diseases (e.g., nodule, embolism, tumor), organs (e.g., lung, 

liver, brain), and modalities (e.g., CT and MRI). It also enables us to verify the 

generalizability of TransVW in not only the target tasks on the same dataset as 

pre-training (NCC and NCS), but also target tasks with a variety of domain shifts 

(ECC, LCS, and BMS) in terms of modality, scan regions, or dataset. To our best 

knowledge, we are among the first to investigate cross-domain self-supervised 

learning in medical imaging.

• Enjoying a sufficient amount of annotation. This paves the way for conducting 

annotation reduction experiments to verify the annotation efficiency of TransVW.

1Models Genesis: github.com/MrGiovanni/ModelsGenesis
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C. Benchmarking TransVW

For a thorough evaluation, in addition to the training from scratch (the lower-bound 

baseline), TransVW is compared with a whole range of transfer learning baselines, including 

both self-supervised and (fully-)supervised methods.

Self-supervised baselines: We compare TransVW with Models Genesis [5], the state­

of-the-art self-supervised learning method for 3D medical imaging, as well as Rubik’s cube 

[14], the most recent multi-task self-supervised learning method for 3D medical imaging. 

Since most self-supervised learning methods are initially proposed in the context of 2D 

images, we also have extended three most representative ones [4], [3], [2] into their 3D 

version for a fair comparison.

Supervised baselines: We also examine publicly available fully-supervised pre-trained 

models for 3D transfer learning in medical imaging, including NiftyNet [16] and Medical­

Net [17]. Moreover, we fine-tune Inflated 3D (I3D) [15] in our 3D target tasks since it 

has been successfully utilized by Ardila et al. [22] to initialize 3D models for lung nodule 

detection.

We utilize 3D U-Net2 for 3D applications, and U-Net3 with ResNet-18 as the backbone 

for 2D applications. For our pretext task, we modify those architectures by appending 

fully-connected layers to the end of the encoders for the classification head. In pretext 

tasks, we set the weights of losses as λrec = 1 and λcls = 0.01. All the pretext tasks are 

trained using Adam optimizer, with a learning rate of 0.001, where β1 = 0.9 and β2 = 0.999. 

Regular data augmentation techniques including random flipping, transposing, rotating, 

elastic transformation, and adding Gaussian noise are utilized in target tasks. We use the 

early-stop technique on the validation set to prevent over-fitting. We run each method ten 

times on each target task and report the average, standard deviation, and further provide 

statistical analyses based on independent two-sample t-test.

IV. Results

This section presents the cornerstones of our results, demonstrating the significance of 

our self-supervised learning framework. We first integrate our two novel components, self­

discovery and self-classification of visual words, into four popular self-supervised methods 

[2]-[5], suggesting that these two components can be adopted as an add-on to enhance 

the existing self-supervised methods. We then compare our TransVW with the current 

state-of-the-art approaches in a triplet of aspects: transfer learning performance, convergence 

speedup, and annotation cost reduction, concluding that TransVW is an annotation-efficient 

method for medical image analysis.

A. TransVW is an add-on scheme

Our self-discovery and self-classification components can readily serve as an add-on to 

enrich existing self-supervised learning approaches. In fact, by introducing these two 

23D U-Net: github.com/ellisdg/3DUnetCNN
3Segmentation Models: github.com/qubvel/segmentation_models
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components, we open the door for the existing image-based self-supervision approaches 

to capture a more high-level and diverse visual representation that reduces the gap between 

pre-training and semantic transfer learning tasks.

Experimental setup: To study the add-on capability of our self-discovery and self­

classification components, we incorporate them into four representative self-supervised 

methods, including (1) Models Genesis [5], which restores the original image patches from 

the transformed ones; (2) Inpainting [3], which predicts the missing parts of the input 

images; (3) Context restoration [4], which restores the original images from the distorted 

ones that are obtained by shuffling small patches within the images; and (4) Rotation 

[2], which predicts the rotation angles that are applied to the input images. Since all the 

reconstruction-based self-supervised methods under study [3]-[5] utilize encoder-decoder 

architecture with skip connections in between, we append additional fully-connected layers 

to the end of the encoder, enabling models to learn image representation simultaneously 

from classification and restoration tasks. For Rotation, the network only includes an encoder, 

followed by two classification heads to learn representations from rotation angle prediction 

as well as the visual words classification tasks. Note that the original self-supervised 

methods in [2], [3], and [4] were implemented in 2D, but we have extended them into 

3D.

Observations: Our results in Fig. 3 demonstrate that incorporating visual words with 

existing self-supervised methods consistently improves their performance across five 3D 

target tasks. Specifically, visual words significantly improve Rotation by 3%, 1.5%, 2%, 

1.5%, and 5%; Context restoration by 1.75%, 1%, 5%, 2%, and 8%; Inpainting by 2%, 

1.5%, 3%, 3%, and 6% in NCC, NCS, ECC, LCS, and BMS applications, respectively. 

Moreover, visual words significantly advance Models Genesis by 1%, 1.5%, and 1% in 

NCC, LCS, and BMS, respectively.

Discussion: How can TransVW improve representation learning?—Most existing 

self-supervised learning methods, such as predicting contexts [3]-[5], [27] or discriminating 

image transformations [2], [14], [18], [28], concentrate on learning the visual representation 

of each image individually, thereby, overlooking the notion of semantic similarities across 

different images [29], [30]. In contrast, appreciating the recurrent anatomical structure in 

medical images, our self-discovery can extract meaningful visual words across different 

images and assign unique semantic pseudo labels to them. By classifying the resultant 

visual words according to their pseudo labels, our self-classification is enforced to explicitly 

recognize these visual words across different imagesgrouping similar visual words together 

while separating dissimilar ones apart. Consequently, integrating our two novel components 

into existing self-supervised methods empowers the model to not only learn the local context 

within a single image but also learn the semantic similarities of the consistent and recurring 

visual words across images. It is worth noting that self-discovery and self-classification 

should be considered a significant add-on in terms of methodology. As shown in Fig. 3, 

simply adding these two components on top of four popular self-supervised methods can 

noticeably improve their fine-tuning performance.
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B. TransVW is an annotation-efficient method

To ensure that our method addresses annotation scarcity challenge in medical imaging, we 

first precisely define the annotation-efficiency term. We consider a method as annotation­
efficient if (1) it achieves superior performance using the same amount of annotated training 

data, (2) it reduces the training time using the same amount of annotated data, or (3) it offers 

the same performance but requires less annotated training data. Based on this definition, we 

adopt a rigorous three-pronged approach in evaluating our work, by considering not only 

the transfer learning performance but also the acceleration of the training process and label 

efficiency on a variety of target tasks, demonstrating that TransVW is an annotation-efficient 

method.

1) TransVW provides superior transfer learning performance: A generic pre­

trained model transfers well to many different target tasks, indicated by considerable 

performance improvements. Thus, we first evaluate the generalizability of TransVW in 

terms of improving the performance of various medical tasks across diseases, organs, and 

modalities.

Experimental setup:  We fine-tune TransVW on five 3D target tasks, as described in Table 

I, covering classification and segmentation. We investigate the generalizability of TransVW 

not only in the target tasks with the pre-training dataset (NCC and NCS), but also in the 

target tasks with a variety of domain shifts (ECC, LCS, and BMS).

Observations:  Our evaluations in Table II suggest three major results. Firstly, TransVW 

significantly outperforms training from scratch in all five target tasks under study by a large 

margin and also stabilizes the overall performance.

Secondly, TransVW surpasses all self-supervised counterparts in the five target tasks. 

Specifically, TransVW significantly outperforms Models Genesis, state-of-the-art self­

supervised 3D models pre-trained using image restoration, in three applications, i.e., NCC, 

LCS, and BMS, and offers equivalent performance in NCS and ECC. Moreover, TransVW 

yields remarkable improvements over Rubik’s cube, the most recent 3D multi-task self­

supervised method, in all five applications. Particularly, Rubik’s cube formulates a multi­

task learning objective solely based on contextual cues within single images while TransVW 

benefits from semantic supervision of anatomical visual words, resulting in more enhanced 

representations.

Thirdly, TransVW achieves superior performance in comparison with publicly available 

fully-supervised pre-trained 3D models, i.e., NiftyNet, MedicalNet, and I3D, in all five 

target tasks. It is noteworthy that our TransVW does not solely depend on the architecture 

capacity to achieve the best performance since it has much fewer model parameters than 

its counterparts. Specifically, TransVW is trained on basic 3D U-Net with 23M parameters, 

while MedicalNet with ResNet-101 as the backbone (reported as the best performing model 

in [17]) carries 85.75M parameters, and I3D contains 25.35M parameters in the encoder. 

Although NiftyNet model is offered with 2.6M parameters, its performance is not as good as 

its supervised counterparts in any of the target tasks.
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Interestingly, although TransVW is pre-trained on chest CT scans, it is still beneficial 

for different organs, diseases, datasets, and even modalities. In particular, the pulmonary 

embolism false positive reduction (ECC) is on Contrast-Enhanced CT scans, which may 

appear differently from the normal CT scans that are used for pre-training; yet, according 

to Table II, TransVW obtains a 7% improvement over training 3D models from scratch 

in this task. Additionally, fine-tuning from TransVW provides a substantial gain in liver 

segmentation (LCS) accuracy despite the noticeable differences between pretext and target 

domains in terms of organs (lung vs. liver) and datasets (LUNA 2016 vs. LiTS 2017). We 

further examine the transferability of TransVW in brain tumor segmentation on MRI Flair 

images (BMS). Referring to Table II, despite the marked differences in organs, datasets, 

and even modalities between the pretext and BMS target task, we still observe a significant 

performance boost from fine-tuning TransVW in comparison with learning from scratch. 

Moreover, TransVW significantly outperforms Models Genesis in the most distant target 

domains from the pretext task, i.e., LCS, and BMS.

Discussion: How can TransVW improve the performance of cross-domain target 
tasks?: Learning universal representations that can transfer effectively to a wide range 

of target tasks is one of the supreme goals of computer vision in medical imaging. The 

best known existing examples of such representations are pre-trained models on ImageNet 

dataset. Although there are marked differences between natural and medical images, the 

image representations learned from ImageNet can be beneficial not only for natural imaging 

[31] but also for medical imaging [32], [33]. Therefore, rather than developing pre-trained 

models specifically for a particular dataset/organ, TransVW aims to develop generic pre­

trained 3D models for medical image analysis that are not biased to idiosyncrasies of 

the pre-training task and dataset and generalize effectively across organs, datasets, and 

modalities.

As is well-known, CNNs trained on large scale visual data form feature hierarchies; lower 

layers of deep networks are in charge of general features while higher layers contain 

more specialized features for target domains [33]-[35]. Due to generalizability of low and 

mid-level features, they can lead to significant benefits of transfer learning, even when there 

is a substantial domain gap between the pretext and target task [33], [35]. Therefore, while 

TransVW is pre-trained solely on chest CT scans, it still elevates the target task performance 

in different organs, datasets, and modalities since its low and mid-level features can be 

reused in the target tasks.

2) TransVW accelerates the training process: Although accelerating the training of 

deep neural networks is arguably an influential line of research [36], its importance is often 

underappreciated in the medical imaging literature. Transfer learning provides a warm-up 

initialization that enables target models to converge faster and mitigates the vanishing and 

exploding gradient problems. In that respect, we argue that a good pre-trained model should 

yield better target task performance with less training time. Hence, we further evaluate 

TransVW in terms of accelerating the training process of various medical tasks.

Experimental setup:  We compare the convergence speedups obtained by TransVW with 

training from scratch (the lower bound baseline) and Models Genesis (the state-of-the-art 
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baseline) in our five 3D target tasks. For conducting fair comparisons in all experiments, all 

methods benefit from the same data augmentation and use the same network architecture 

while we endeavor to optimize each model with the bestperforming hyper-parameters.

Observations:  Fig. 4 presents the learning curves for training from scratch, fine-tuning 

from Models Genesis, and fine-tuning from TransVW. Our results demonstrate that 

initializing 3D models from TransVW remarkably accelerates the training process of target 

models in comparison with not only learning from scratch but also Models Genesis in all 

five target tasks. These results imply that TransVW captures representations that are more 

aligned with the subsequent target tasks, leading to faster convergence of the target models.

Putting the transfer learning performance on five target tasks in Table II and the 

training times in Fig. 4 together, TransVW demonstrates significantly better or equivalent 

performance with remarkably less training time in comparison to its 3D counterparts. 

Specifically, TransVW significantly outperforms Models Genesis in terms of both 

performance and saving training time in three out of five applications, i.e., NCC, LCS, 

and BMS, and achieves equivalent performance in NCS and ECC but in remarkably less 

time. Altogether, we believe that TransVW can serve as a primary source of transfer learning 

for 3D medical imaging applications to boost the performance and accelerate the training of 

target tasks.

3) TransVW reduces the annotation cost: Transfer learning yields more accurate 

models by reusing the previously learned knowledge in target tasks with limited annotations. 

This is because a good representation should not need many samples to learn about a 

concept [21]. Thereby, we conduct experiments on partially labeled data to investigate 

transferability of TransVW in small data regimes.

Experimental setup:  We compare the transfer learning performance of TransVW using 

partial labeled data with training from scratch and fine-tuning from Models Genesis in five 

3D target tasks. For clarity, we determine the minimum required data for training from 

scratch and fine-tuning Models Genesis to meet the comparable performance (based on 

independent two-sample t-test) when training using the entire training data. Moreover, we 

investigate the minimum required data for TransVW to meet the equivalent performance that 

training from scratch and fine-tuning Models Genesis can achieve.

Observations:  Fig. 5 illustrates the results of using the partial amount of labeled data 

during the training of five 3D target tasks. As an illustrative example, in lung nodule false 

positive reduction (NCC), our results demonstrate that using only 35% of training data, 

TransVW achieves equivalent performance to training from scratch using 70% of data. 

Therefore, around 50% of the annotation cost in NCC can be reduced by fine-tuning models 

from TransVW compared with training from scratch. In comparison with Models Genesis 

in the same application (NCC), TransVW with 75% of data achieves equal performance 

with Models Genesis using 90% of data. Therefore, about 17% of the annotation cost 

associated with fine-tuning from Models Genesis in NCC is recovered by fine-tuning from 

TransVW. In general, transfer learning from TransVW reduces the annotation cost by 50%, 

50%, 57%, 60%, and 80% in comparison with training from scratch in NCC, NCS, ECC, 
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LCS, and BMS applications, respectively. In comparison with Models Genesis, TransVW 

reduces the annotation efforts by 17%, 24%, and 50% in NCC, LCS, and BMS applications, 

respectively, and both models performs equally in the NCS and ECC applications. These 

results suggest that TransVW achieves state-of-the-art or comparable performance over 

other self-supervised approaches while being more efficient, i.e., less annotated data is 

required for training high-performance target models.

Summary:  We demonstrate that TransVW provides more generic and transferable 

representations compared with self-supervised and supervised 3D competitors, confirmed 

by our evaluations on a triplet of transfer learning performance, optimization speedup, and 

annotation cost. To further illustrate the effectiveness of our framework, we adopt TransVW 

to the nnU-Net [26], a state-of-the-art segmentation framework in medical imaging, and 

evaluate it on liver tumor segmentation task from the Medical Segmentation Decathlon 

[37]. Our results demonstrate that TransVW obtains improvements in segmentation accuracy 

over training from scratch and Models Genesis by 2.5% and 1%, respectively (details in 

Appendix I-E). These results, in line with our previous results, reinforce our main insight 

that TransVW provides an annotation-efficient solution for 3D medical imaging.

V. Ablation experiments

In this section, we first conduct ablation experiments to illustrate the contribution of 

different components to the performance of TransVW. We then train a 2D model using 

chest X-ray images, called TransVW 2D, and compare it with state-of-the-art 2D models. 

In the 2D experiments, we consider three target tasks: thorax diseases classification (DXC), 

pneumothorax segmentation (PXS), and lung nodule false positive reduction (NCC). We 

evaluate NCC in a 2D slice-based solution, where the 2D representation is obtained by 

extracting axial slices from the volumetric dataset.

A. Comparing individual self-supervised tasks

Our TransVW takes the advantages of two sources in representation learning: self­

classification and self-restoration of visual words. Therefore, we first directly compare the 

two isolated tasks and then investigate whether joint-task learning in TransVW produces 

more transferable features compared with isolated training schemes. In Table II, the last 

three rows show the transfer learning results of TransVW and each of the individual tasks 

in five 3D applications. According to the statistical analysis results, self-restoration and 

self-classification reveal no significant difference (p-value > 0.05) in three target tasks, 

NCS, ECC, and LCS, and self-restoration achieves significantly better performance in 

NCC and BMS. Despite the success of self-restoration in encoding fine-grained anatomical 

information from individual visual words, it neglects the semantic relationships across 

different visual words. In contrast, our novel self-classification component explicitly 

encodes the semantic similarities that presents across visual words into the learned 

embedding space. Therefore, as evidenced by Table II, integrating self-classification and 

self-restoration into a single framework yields a more comprehensive representation that 

can guarantee the highest target task performance. In particular, TransVW outperforms each 
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isolated task in four applications, i.e., NCC, ECC, LCC, and BMS, and provides comparable 

performance with self-restoration in NCS.

B. Evaluating 2D applications

We evaluate our TransVW 2D with Models Genesis 2D (self-supervised) and ImageNet 

(fully-supervised) pre-trained models in two experimental settings: (1) linear evaluation 

on top of the fixed features from the pre-trained network, and (2) full fine-tuning of the 

pre-trained network for target tasks.

Linear evaluation: To evaluate the quality of the learned representations, we follow the 

common practice in [21], [29], which trains linear classifiers on top of the fixed features 

obtained from various layers of the pre-trained networks. Specifically, for ResNet-18 

backbone, we extract image features from the last layer of every residual stage (denoted 

as res1, res2, etc) [21], and then evaluate them in two classification target tasks (DXC 

and NCC). Based on our results in Fig. 6a, TransVW 2D representations are transferred 

better across all the layers on both target tasks in comparison with Models Genesis 2D and 

ImageNet, demonstrating the generalizability of TransVW 2D representations. Specifically, 

in thorax diseases classification (DXC), which is in the same dataset as the pretext task, 

the best performing features are extracted from res4 in the last layer of the TransVW 2D 

network. This indicates that TransVW 2D encourages the models to squeeze out high-level 

representations, which are aligned with the target task, in the deeper layers of the network. 

Moreover, in lung nodule false positive reduction (NCC), which presents a domain shift 

compared with the pretext task, TransVW 2D remarkably reduces the performance gap 

between res3 and res4 features compared with Models Genesis 2D and ImageNet. This 

suggests that TransVW reduces the overfitting of res4 features to the pretext task and 

dataset, resulting in more generic features.

Full fine-tuning: We evaluate the initialization provided by our TransVW 2D via fine­

tuning it for three 2D target tasks, covering classification (DXC and NCC) and segmentation 

(PXS) in X-ray and CT. As evidenced by our statistical analysis in Fig. 6b, TransVW 

2D: (1) significantly surpasses training from scratch and Models Genesis 2D in all three 

applications, and (2) achieves equivalent performance with ImageNet in NCC and PXS, 

which is a significant achievement because to date, all self-supervised approaches lag 

behind fully supervised training [38]-[40]. Taken together, these results indicate that our 

TransVW 2D, which comes at zero annotation cost, generalizes well across tasks, datasets, 

and modalities.

Discussion: Is there any correspondence between linear evaluation and fine­
tuning performance?—As seen in Fig. 6, ImageNet models underperform in linear 

evaluations with fixed features; however, full fine-tuning of ImageNet features yield higher 

(in DXC) or equal (in NCC and PXS) performance compared with TransVW 2D. We 

surmise that although ImageNet models leverage large-scale annotated data during pre­

training, due to the marked domain gap between medical and natural images, the fixed 

features of ImageNet models may not be aligned with medical applications. However, 

transfer learning from ImageNet models can still provide a good initialization point for 
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the CNNs since its low and mid-level features can be reused in the target tasks. Thus, 

fine-tuning their features on a large-scale dataset such as ChestX-ray14 could mitigate the 

discrepancy between natural and medical domains, yielding good target task performance.

Our observations in line with [41] suggest that although linear evaluation is informative for 

utilizing fixed features, it may not have a strong correlation to the fine-tuning performance.

VI. Related works

Bag-of-Visual-Words (BoVW):

The BoVW model [1] represents images by local invariant features [42] that are condensed 

into a single vector representation. BoVW and its extensions have been widely used in 

various tasks [43]. A major drawback of BoVW is that the extracted visual words cannot 

be transferred and fine-tuned for new tasks and datasets like CNN models. To address this 

challenge, recently, a few works have integrated BoVW in the training pipeline of CNNs 

[44], [45]. Among them, Gidaris et al. [44] proposed a pretext task based on the BoVW 

pipeline, which first discretizes images to a set of spatially dense visual words using a 

pre-trained network, and then trains a second network to predict the BoVW histogram of 

the images. While this approach displays impressive results for natural images, the extracted 

visual words may not be intuitive and explainable from a medical perspective since they are 

automatically determined in feature space. Moreover, using K-means clustering in creating 

the visual vocabulary may lead to imbalanced clusters of visual words (known as cluster 

degeneracy) [46]. Our method differs from previous works in (1) automatically discovering 

visual words that carry explainable semantic information from medical perspective, (2) 

bypassing the clustering, reducing the training time and leading to the balanced classes of 

visual words, and (3) proposing a novel pretext rather than predicting the BoVW histogram.

Self-supervised learning:

Self-supervised learning methods aim to learn general representations from unlabeled 

data. In this paradigm, a neural network is trained on a manually designed (pretext) 

task for which ground-truth is available for free. The learned representations can be later 

fine-tuned on numerous target tasks with limited annotated data. A broad variety of self­

supervised methods have been proposed for pre-training CNNs in natural images domain, 

solving jigsaw puzzles [28], predicting image rotations [2], inpainting of missing parts [3], 

clustering images and then predicting the cluster assignments [29], [47], and removing 

noise from noisy images [27]. However, self-supervised learning is a relatively new trend 

in medical imaging. Recent methods, including colorization of colonoscopy images [48], 

anatomical positions prediction within cardiac MR images [49], context restoration [4], and 

Rubik’s cube recovery [14], which were developed individually for specific target tasks, 

have a limited generalization ability over multiple tasks. TransVW distinguishes itself from 

all other existing works by explicitly employing the strong yet free semantic supervision 

signals of visual words, leading to a generic pre-trained model effective for various target 

tasks. Recently, Zhou et al. [5] proposed four effective image transformations for learning 

generic autodidactic models through a restoration-based task for 3D medical imaging. While 

our method derives the transformations from Models Genesis [5], it shows three significant 
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advancements. First, Models Genesis has only one self-restoration component, while we 

introduce two more novel components: self-discovery and self-classification, which are sole 

factors in the performance gain. Second, our method learns semantic representation from 

the consistent and recurring visual words discovered during our self-discovery phase, but 

Models Genesis learns representation from random sub-volumes with no semantics, since 

no semantics can be discovered from random sub-volumes. Finally, our method serves as an 

add-on for boosting other self-supervised methods while Models Genesis do not offer such 

advantage.

Our previous work:

Haghighi et al. [50] first proposed to utilize consistent anatomical patterns for training 

semantics-enriched pre-trained models. The current work presents several extensions to 

the preliminary version: (1) We introduce a new concept: transferable visual words, 

where the recurrent anatomical structures in medical images are anatomical visual words, 

which can be automatically discovered from unlabeled medical images, serving as strong 

yet free supervision signals for training deep models; (2) We extensively investigate the 

add-on capability of our self-discovery and self-classification, demonstrating that they 

can boost existing self-supervised learning methods (Sec. IV-A); (3) We expand our 3D 

target tasks by adding pulmonary embolism false positive reduction, indicating that our 

TransVW generalizes effectively across organs, datasets, and modalities (Sec. III-B); (4) 

We extend Rotation [2] into its 3D version as an additional baseline (Sec. IV-B1); (5) 

We adopt a rigorous three-pronged approach in evaluating the transferability of our work, 

including transfer learning performance, convergence speedups, and annotation efficiency, 

highlighting that TransVW is an annotation-efficient solution for 3D medical imaging. As 

part of this endeavor we illustrate that transfer learning from TransVW provides better 

optimization and accelerates the training process (Sec. IV-B2) and dramatically reduces 

annotation efforts (Sec. IV-B3). (6) We conduct linear evaluations on top of the fixed 

features, showing that TransVW 2D provides more generic representations by reducing the 

overfitting to the pretext task (Sec. V-B); and (7) We conduct ablation studies on five 3D 

target tasks to search for an effective number of visual word classes (Appendix I-B).

VII. Conclusion

A key contribution of ours is designing a self-supervised learning framework that 

not only allows deep models to learn common visual representation from image data 

directly, but also leverages the semantics associated with the recurrent anatomical patterns 

across medical images, resulting in generic semantics-enriched image representations. 

Our extensive experiments demonstrate the annotation-efficiency of TransVW by offering 

higher performance and faster convergence with reduced annotation cost in comparison 

with publicly available 3D models pre-trained by not only self-supervision but also full 

supervision. More importantly, TransVW can be used as an add-on scheme to substantially 

improve other self-supervised methods. We attribute these outstanding results to the 

compelling deep semantics derived from recurrent visual words resulted from consistent 

anatomies naturally embedded in medical images.
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Fig. 1. 
Without loss of generality, we illustrate our idea in 2D with chest X-rays. The great 

similarity of the lungs in anatomy, partially annotated in (a), across patients yields complex 

yet consistent and recurring anatomical patterns across X-rays in healthy (a, b, and c) or 

diseased (d and e), which we refer to as anatomical visual words. Our proposed TransVW 

(transferable visual words) aims to learn generalizable image representation from the 

anatomical visual words without expert annotations, and transfer the learned deep models 

to create powerful application-specific target models. TransVW is general and applicable 

across organs, diseases, and modalities in both 2D and 3D.
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Fig. 2. 
Our proposed self-supervised learning framework TransVW is for learning general-purpose 

image representation enriched with the semantics of anatomical visual words by (a) self­

discovery, (b) self-classification, and (c) self-restoration. First, to discover anatomically 

consistent instances for each visual word across patients, we train a feature extractor Φ( . )
(e.g., auto-encoder) with unlabeled images, so that images of great resemblance can be 

automatically identified based on its deep latent features. Second, after selecting a random 

reference patient and using the feature extractor to find patients similar in appearance, to 

extract instances of a visual word, we crop image patches at a random yet fixed coordinate 

across all selected patients and assign a unique (pseudo) label to the extracted patches 

(instances). For simplicity and clarity, we have shown instances of four visual words 

extracted at four different random coordinates to illustrate the similarity and consistency 

among the discovered instances of each visual word. Our self-discovery automatically 

curates a set of visual words associated with semantically meaningful labels, providing a 

free and rich source for training deep models to learn semantic representations. Finally, we 

perturb instances of the visual words with g(.) and give them as input to an encoder-decoder 

network with skip connections in between and a classification head at the end of the encoder. 

Our self-classification and self-restoration of visual words empower the deep model to learn 

anatomical semantics from the visual words, resulting in image representation, which has 

proven to be more generalizable and transferable to a variety of target tasks.
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Fig. 3. 
Our self-supervised learning scheme serves as an add-on, which can be added to 

enrich existing self-supervised learning methods. By introducing self-discovery and self­

classification of visual words, we empower four representative self-supervised learning 

advances (i.e., Inpainting [3], Context restoration (Shuffling) [4], Rotation [2], and Models 

Genesis [5]) to capture more high-level and diverse representations, resulting in substantial 

(p < 0.05) performance improvements on five 3D target tasks.
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Fig. 4. 
Fine-tuning from TransVW provides better optimization and accelerates the training process 

in comparison with training from scratch as well as state-of-the-art Models Genesis [5], as 

demonstrated by the learning curves for the five 3D target tasks. All models are evaluated on 

the validation set, and the average accuracy and dice-coefficient over ten runs are plotted for 

the classification and segmentation tasks, respectively.
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Fig. 5. 
Fine-tuning TransVW reduces the annotation cost by 50%, 50%, 57%, 60%, and 80% 

in NCC, NCS, ECC, LCS, and BMS applications, respectively, when comparing with 

training from scratch. Moreover, TransVW reduces the annotation efforts by 17%, 24%, 

and 50% in NCC, LCS, and BMS applications, respectively, compared with state-of-the-art 

Models Genesis [5]. The horizontal gray and orange lines show the performance achieved by 

training from scratch and Models Genesis, respectively, when using the entire training data. 

The gray and orange bars indicate the minimum portion of training data that is required for 

training models from scratch and Models Genesis to achieve the comparable performance 

(based on the statistical analyses) with the corresponding models when training with the 

entire training data.
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Fig. 6. 
We compare the learned representation of TransVW 2D with Models Genesis 2D (self­

supervised) and ImageNet (fully-supervised) by (a) training linear classifiers on top 

of fixed features, and (b) full fine-tuning of the models on 2D applications. In the 

linear evaluations (a), TransVW representations are transferred better across all the 

layers on both DXC and NCC in comparison with Models Genesis 2D and ImageNet, 

demonstrating more generalizable features. Based on the fine-tuning results (b), TransVW 

2D significantly surpasses training from scratch and Models Genesis 2D, and achieves 

equivalent performance with ImageNet in NCC and PXS.
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