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The ascending arousal system shapes neural
dynamics to mediate awareness of cognitive states

Brandon R. Munn 1'2'3@, Eli J. I\/\UIIer1'2'3, Gabriel Wainstein® 2 & James M. Shine® 2%

Models of cognitive function typically focus on the cerebral cortex and hence overlook
functional links to subcortical structures. This view does not consider the role of the highly-
conserved ascending arousal system's role and the computational capacities it provides the
brain. We test the hypothesis that the ascending arousal system modulates cortical neural
gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use
spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus
coeruleus and basal forebrain, demonstrating precise time-locked relationships between
brainstem activity, low-dimensional energy landscapes, network topology, and spatio-
temporal travelling waves. We extend our analysis to a cohort of experienced meditators and
demonstrate locus coeruleus-mediated network dynamics were associated with internal
shifts in conscious awareness. Together, these results present a view of brain organization
that highlights the ascending arousal system’s role in shaping both the dynamics of the
cerebral cortex and conscious awareness.

TComplex Systems Research Group, The University of Sydney, Sydney, NSW, Australia. 2 Brain and Mind Centre, The University of Sydney, Sydney, NSW,
Australia. >These authors contributed equally: Brandon R. Munn, Eli J. Maller. ®email: brandon.munn@sydney.edu.au; mac.shine@sydney.edu.au

| (2021)12:6016 | https://doi.org/10.1038/s41467-021-26268-x | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26268-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26268-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26268-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26268-x&domain=pdf
http://orcid.org/0000-0002-3638-1605
http://orcid.org/0000-0002-3638-1605
http://orcid.org/0000-0002-3638-1605
http://orcid.org/0000-0002-3638-1605
http://orcid.org/0000-0002-3638-1605
http://orcid.org/0000-0002-8106-6647
http://orcid.org/0000-0002-8106-6647
http://orcid.org/0000-0002-8106-6647
http://orcid.org/0000-0002-8106-6647
http://orcid.org/0000-0002-8106-6647
http://orcid.org/0000-0003-1762-5499
http://orcid.org/0000-0003-1762-5499
http://orcid.org/0000-0003-1762-5499
http://orcid.org/0000-0003-1762-5499
http://orcid.org/0000-0003-1762-5499
mailto:brandon.munn@sydney.edu.au
mailto:mac.shine@sydney.edu.au
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

t is often difficult to see the forest for the trees, but to fully

understand a concept typically involves an accurate depiction

of both. That is, we need to comprehend not only the detailed
workings of a specific system, but also how that system functions
within a broader context of interacting parts. Modern theories of
whole-brain function exemplify this challenge. For instance,
activity in the brain has been shown to incorporate signatures of
both local computational specificity (e.g. specialized regions
within the cerebral cortex) as well as system-wide integration
(e.g. interactions between the cortex and the rest of the brain)!»2.
Anatomical evidence suggests that the balance between integra-
tion and segregation is mediated in part by the relatively fixed
white matter connections between cerebral cortical regions!—
local connectivity motifs support segregated activity, whereas the
axonal, re-entrant connections between regions act to integrate
the distributed signals via a highly interconnected structural
backbone3. However, how the human brain is also capable of
remarkable contextual flexibility given this relatively fixed con-
nectivity remains poorly understood.

During cognitive tasks, neural activity rapidly reconfigures the
functional large-scale network architecture of the brain to facil-
itate coordination between otherwise segregated cortical regions.
Precisely how this flexibility is implemented in the brain without
altering structural connectivity remains an open question in
systems neuroscience. Although it is often overlooked in theories
of whole-brain function, the neuromodulatory ascending arousal
system is well-placed to mediate this role*. The arousal system is
comprised of a range of nuclei spread across the brainstem and
forebrain that send wide-reaching axons to the rest of the central
nervous systems. At their target sites, arousal neurons release
neuromodulatory neurotransmitters that shape and constrain a
region’s processing mode—altering their excitability and
responsivity without necessarily causing them to fire an action
potential*©. As a result, subtle changes in the concentration of
neuromodulatory chemicals can cause massive alterations in the
dynamics of the target regions, leading to nonlinear effects on the
coordinated patterns of activity that emerge from ‘simple’ neu-
ronal circuits*.

The ascending arousal system also contains substantial het-
erogeneity — unique cell populations project in diverse ways to the
cerebral cortex and release distinct neurotransmitters. One key
dichotomy is the distinction between adrenergic neuromodula-
tion (predominantly via the locus coeruleus, LC), which promotes
arousal and exploratory behaviour’, and cholinergic neuromo-
dulation (such as via the basal nucleus of Meynert, BNM), which
is associated with attentional focus and vigilance®. These highly
interconnected® structures both promote wakefulness and
arousall®11, albeit via distinct topological projections to the cer-
ebral cortex: the LC projects in a diffuse manner that crosses
typical specialist boundaries, whereas the BNM projects in a more
targeted, region-specific manner!? (Fig. la). The two systems
have also been linked with distinct and complimentary compu-
tational principles: the noradrenergic LC is presumed to modulate
interactions between neurons (multiplicative gain; Fig. 1a, red)!3,
whereas the cholinergic BNM is presumed to facilitate divisive
normalization (response gain; Fig. la, green)!4. Based on these
anatomical and computational features, we have hypothesized
that the interaction between these two neuromodulatory systems
is crucial for mediating the dynamic, flexible balance between
integration and segregation in the brain!°.

Another crucial feature of the ascending arousal system is that
the number of neurons that project to the cerebral cortex is
several orders of magnitude smaller than those that project back
to the brainstem and forebrain!®~18. Based on this feature, we
further hypothesize that shifts in arousal are realized through a
low-dimensional modulation of the ongoing neural activity

(‘brain state’)!”. Conceptually, low-dimensional neural dynamics
can be depicted as evolving on a brain-state energy landscape!,
where the energy of a given state corresponds to the probability of
occurrence, e.g. high-energy brain states have a low probability of
occurrence (and v.v.). Brain states evolve along the energy land-
scape topography, much like a ball rolls under the influence of
gravity down a valley and requires energy to traverse up a hill,
this corresponds to an evolution towards an attractive or repul-
sive brain state, respectively. This technique can resolve what
might otherwise be obscured states of attraction (and repulsion)
in a multi-stable system and has been successfully applied to the
dynamics of spiking neurons202!, blood oxygenation level-
dependent (BOLD) functional magnetic resonance imaging
(fMRI)2223  and magnetoencephalography (MEG)2%  The
approach offers several conceptual advances, but perhaps most
importantly, it renders the otherwise daunting task of systems-
level interpretation relatively intuitive.

In this manuscript we test these ideas by combining high-
resolution resting-state fMRI data with analytic techniques from
the study of complex systems. We show the low-dimensional
landscape framework is not a mere analogy, as the topography of
the energy landscape shares a one-to-one correspondence with
the theorized role of the ascending arousal system through their
effect on neural gain. We then extend our analysis to a cohort of
experienced meditators and demonstrate changes in the cortical
dynamical signatures following LC-mediated network dynamics
were associated with internal shifts in conscious awareness.
Together, these results present a view of brain organization that
highlights the ascending arousal system’s role in shaping both the
dynamics of the cerebral cortex and conscious awareness.

Results

To begin with, we extracted time series data from major sub-
cortical hubs within the noradrenergic LC® (Fig. 1a, red; Sup-
plementary Fig. 1) and cholinergic BNM?> (Fig. la, green)
systems from 59 healthy participants who had undergone high-
resolution, 7 T resting-state fMRI (2 mm3 voxels; TR = 586 ms
repetition time). Given the known spatiotemporal interactions
between the ascending arousal system and fluctuations in cere-
brospinal fluid, we first controlled for activity fluctuations in the
nearby fourth ventricle, which contains no neural structures, but
nonetheless can cause alterations in the BOLD signal over time.
We next accounted for nearby grey-matter signals, by regressing
the signal from the nearby pontine nuclei. Using the residuals
from these regressions from the LC signal, 7;c and the BMN
signal, TpnMm, we focused on the difference between these signals
(tLcnm and Tpnm.rc) and then identified time points associated
with phasic bursts of LC activity (identified via peaks in the
signals second derivative) that led to sustained adrenergic (vs.
cholinergic) influence over evolving brain-state dynamics (and
v.v. for phasic bursts of BNM; see ‘Methods’). Importantly, the
phasic mode of firing within the noradrenergic arousal system has
been specifically linked to systemic influences that occur on time
scales relevant to cognitive function®26. Tracking the mean cor-
tical BOLD response around these peaks identified a spatio-
temporal travelling wave (Fig. 1b; velocity=0.13ms™!) that
propagated from frontal to sensory cortices and tracked closely
with the known path of the dorsal noradrenergic bundle?, albeit
with a preserved island within the parietal operculum (Fig. 1b). A
block-resampling null model was applied to ensure that the
results were not due to spatial autocorrelation (p <0.05; see
‘Methods’). These results are inverted for BNM phasic activity
(relative to LC) as Tpym_rc = —Trc—pnwme thus, BNM activity
elicited a travelling wave that propagated from sensory to frontal
cortices. Furthermore, these results confirm that coordinated
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Fig. 1 Sympathetic activity precedes network-level integration. a Regional time series were extracted from the subcortical locus coeruleus (red), which is
thought to alter multiplicative gain, and the basal nucleus of Meynert (green), which is thought to alter response gain, and they were compared to cortical
BOLD signal and topological signatures during the resting state. b We observed an anterior-to-posterior travelling wave (velocity ~ 0.13 m s=1) following
peaks in 7 c.gnm, Which are shown on both the left (LH) and right (RH) hemispheres of a cortical flat map (and v.v. following peaks in zgnm-Lc). € Lagged
cross-correlation between 7, _gyw and PC for each parcel (faint line) and mean PC (solid line); dotted line depicts the zero-lag correlation, and the

black lines depict the upper (lower) bounds of the block-resampled null model 95% CI. d Mean cortical participation coefficient (PC) preceding (left) and
following (right) the zero-lagged 7, _gywm Vvalue, only the right hemisphere is shown, which is mirrored for Post. @ Mean participation coefficient following
peak 7 c_gym Was higher in the right (red) vs. the left (blue) hemisphere (error bars represent mean+ SEM, n = 200 parcels within a hemisphere, p <0.001

green bar one-sided permutation test 5000 random permutations).

macro-scale activity patterns align to fluctuations in activity
within the ascending arousal system of the brainstem?’.

Time-varying network topology. Based on previous empirical?8,
modelling?® and theoretical!> work, we predicted that phasic bursts
in 71 c_pnv would facilitate network-level integration by modulating
increased neural gain among regions distributed across the cerebral
cortex. As predicted, we observed a strong positive correlation
between 11 pny and network-level integration (p <0.05, block-
resampling null model; Fig. 1c) across the brain (Fig. 1d). An
increase in phasic activity within the LC (relative to the BNM)
preceded an increase in the mean level of integration (Fig. 1d)
within the cerebral cortex that was dominated by the frontoparietal
cortices (Supplementary Fig. 2; parcellated according to the 17
resting-state networks identified in30). Interestingly, this global
integration was opposed by a relative topological segregation of
limbic, visual and motor cortices (Supplementary Fig. 2). This
increase in the synchronization of the frontoparietal cortices fol-
lowing an increase in sensory-limbic coordination and LC activity
may reflect arousal-enhanced processing of sensory stimuli3!:32,
Furthermore, regional integration occurred earlier in the right vs.
the left hemisphere (p < 0.001; Fig. 1e), which is consistent with the
known anatomical bias of the LC system3334, Together, these
findings provide robust evidence for the hypothesis that the balance
between ascending noradrenergic and cholinergic tone facilitates a
transition towards topological integration across the frontoparietal
network of the brain!®.

Neuromodulation of the energy landscape. The results of our
initial analysis demonstrate that coordinated distributed BOLD
activity in the cortex aligns with changes in small groups of
neuromodulatory cells BOLD activity in the brainstem and
forebrain, which in turn are proposed to constrain brain
dynamics onto a low-dimensional energy landscape (Fig. 2a). The
effects of noradrenaline and acetylcholine can also be easily
viewed through this lens: by integrating the brain, noradrenaline

should flatten the energy landscape (Fig. 2a, red) facilitating
otherwise unlikely brain-state transitions, whereas the segregative
nature of acetylcholine should act to deepen energy valleys
(Fig. 2a, green) decreasing the likelihood of a brain-state transi-
tion. In previous work, we have shown a correspondence between
low-dimensional brain-state dynamics across multiple cognitive
tasks and the heterogenous expression of metabotropic neuro-
modulatory receptors!’. This implies that neuromodulators act
similar to catalysts in chemical reactions, which lower (or raise)
the activation energy (E,) required to transform chemicals from
one steady-state (or energy well) to another (Fig. 2b). In the
context of the interconnected, heterarchical networks that com-
prise the cerebral cortex, this would have the effect of flattening
(or deepening) the energy landscape, promoting variable (or
rigid) brain states>® (Fig. 2a).

To elucidate the role of phasic activity from the neuromodu-
latory system in modifying the energy landscape, we first
estimated the energy of BOLD signal transitions across the
cerebral cortex. Importantly, the term ‘energy’ here is used in
reference to its definition in statistical physics and hence does not
represent the biological use of the term, which instead stands for
the metabolic energy used by the brain to maintain or change
neural activity. Specifically, we define the energy landscape, E, as
the natural logarithm of the inverse probability of observing a
given BOLD mean-squared displacement (MSD) at a given time-

lag ¢, P(MSD, t), calculated as E = In (W)’ where MSD,, =

<

[xl,nxz,n e, X

2
Xp e — X, > is the MSD of BOLD signal, x, =
T

.| across r voxels and ¢t is the number of time-
lags of size TR from a reference time point ,20. The probability of
a BOLD signal transition, P(MSD, t), was estimated from the
sampled MSD,, , calculated using a Gaussian kernel density
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NATURE COMMUNICATIONS | (2021)12:6016 | https://doi.org/10.1038/s41467-021-26268-x | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a Energy Barrier
State 1 l State 2
b /
= = / N Lﬂ% 77777
7777777777 5
Reaction path Reaction path Reaction path
C
60 =
< z
1740 m
20
0 oo 10
15 15
TR N\SO Iy }4\50
d
Q =
) ) £
MSD MSD MSD

Fig. 2 LC and BNM mediated shifts in the brain-state energy landscape. a An example energy landscape, which defines the energy required to move
between different brain states: by increasing multiplicative gain, the LC should flatten the energy landscape (red); by increasing response gain, the BNM
should accentuate the energy wells (green). b The topography of the energy landscape can be conceptualized as similar to the activation energy (Ea) that
must be overcome in order to convert one chemical to another. ¢ Empirical BOLD energy landscape as a function of mean-squared displacement (MSD)
and TR of the baseline activity (Ea, black) and after phasic bursts in LC (E ¢, red) and BNM (Egym, green). d Empirical activation energy as a function of
MSD averaged across lags t = [10 : 15] TR during base baseline activity (Ea, Left) and following phasic bursts in LC (E¢, red) and BNM (Egnm, green).
Relative to the baseline energy landscape, phasic bursts in LC lead to a flattening or reduction of the energy landscape, whereas peaks in BNM lead to an

accentuation of the well by raising the energy landscape.

(see ‘Methods’). Our analysis is consistent with the statistical
mechanics interpretation that the energy of a given state, E,, and

Eq .
its probability are related P, = Le™ 7, where Z is the normal-
ization function and T is a scaling factor equivalent to

temperature in thermodynamics, where we set T =1 and
Z=1,thus, P, =¢ % - E =In (%) 20 In this framework, a

o
highly probable relative change in BOLD (as quantified by the
MSD) corresponds to a relatively low energy transition (i.e. low
E,), whereas an infrequently visited state will require the most
energy (i.e. high E,).

By treating energy as inversely proportional to the probability
of brain state occurrence, our approach resembles other studies
that have been applied to spiking dynamics of neuronal
populations?0-2, BOLD fMRI2223, MEG?* and natural scene3°.
These studies binarized continuous signals to reduce the brain-
state space (to 2" states), however, this approach requires artificial
thresholding, which can be problematic in continuously recorded
data. In contrast, our approach reduces the dimensionality by
analysing the likelihood of a change in BOLD activity (i.e. the
MSD), and thus retains the continuous nature of the underlying
signal without the need for thresholding. Furthermore, this
approach overcomes a major limitation inherent to previous
energy landscape studies that require a large sample size to
sufficiently sample the brain-state space.

With this in mind, we turned our attention to the relationship
between the ascending arousal system dynamics and the
MSD energy landscape. To test the hypothesis that the

neuromodulatory system alters the topography of the energy
landscape, we calculated BOLD MSD energetics following phasic
bursts of both LC relative to BNM (7;_gym)> Erc and BNM
relative to LC (Tgp_rc)> Epnyp 1-€- £y Was the onset of a phasic
burst, and we contrasted these with brain evolutions outside of
phasic bursts in LC and BNM, termed the baseline energy
landscape E,. We identified phasic bursts as peaks in the second
derivative of the arousal BOLD signals 7;_pyy and Tgyy_ic that
lead to a sustained increase in BOLD activity for each individual
(see ‘Methods’) and using these criteria, we identified 148 11.c pnm
time points and 130 TpnyM.1c time points.

The energy landscapes for these three states are defined by the
energy for a given mean change in BOLD activity (i.e. MSD) at a
given temporal displacement (i.e. TR). Figure 2c demonstrates the
baseline energy landscape (Fig. 2¢, black), and the change to the
energy landscape following phasic bursts in the LC (Fig. 2c, red)
or BNM (Fig. 2¢, green). We found the largest change occurs
around 10-15 TR (~6-9s) following a phasic burst that typically
corresponds to a peak in the LC or BNM BOLD signal. At this
~6-9 s temporal delay, we see direct evidence that a phasic burst
of LC flattened the energy landscape (decreased the energy
relative to baseline Fig. 2c¢, red inset), thus making previously
unlikely state trajectories far more probable (Fig. 2d, red),
whereas a phasic burst of BNM activity (increased energy relative
to baseline Fig. 2¢, green inset) caused the energy landscape to be
elevated, thus promoting local trajectories, and making large state
deviations unlikely (Fig. 2d, green). These patterns are analogous
to modulating a physical landscape in which towns sit within
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valleys separated by impassable mountains—when BNM is high,
the towns remain isolated, whereas when LC is high, transitions
between towns can be easily realized.

We next asked whether LC and BNM combined synergistically
to alter the energy landscape. To achieve this, we isolated
simultaneous phasic peaks in both LC and BNM (7; ¢, gny)- We
found that the LC + BNM energy landscape differed from either
independent LC or BNM activation, shifting the brain state into
divergent regimes than could be explained by the HRF. By
comparing the MSD energy topography for a given TR slice we
found that the landscape switched from an anti- to de-correlation
with the HRF (Supplementary Fig. 3a). In other words, the
cooperative behaviour between the noradrenergic and cholinergic
systems allowed the brain to reach unique BOLD MSDs that
neither could facilitate individually. To examine how simulta-
neous LC+ BNM activity altered the energy landscape, we
compared the energy relative to the two individual landscapes. As
demonstrated in Supplementary Fig. S3b, the energy landscape
following phasic bursts of LC + BNM differed in magnitude from
that expected from a linear superposition of the LC and BNM
energy landscape—i.e. LC+BNM =% (LC)+ (BNM). Further-
more, to explore the dominance of either LC or BNM in this
signal, we minimized the relationship LC+BNM = aLC+
BBNM (conditional upon « and f3 being positive constants) and
found that &« = 0.16 and = 0.84 gave the best match to the
LC+BNM energy landscape. That is, the BNM dynamics
dominates the simultaneous LC + BNM energy landscape, which
is consistent with the unidirectional synaptic projections from
the LC that synapse upon the BNM on their way through to the
cortex!?, and suggests that phasic LC +BNM bursts may be
initiated by the LC in order to elicit a cascade of BNM activity.

Conscious awareness of shifts in BOLD state. Interpreting the
relationship between neuroimaging data and conscious awareness
is notoriously challenging. For instance, it is currently not pos-
sible to directly determine the contents of self-directed thought
without intervening, and thus altering, the contents of
consciousness3’. Although we cannot determine the contents of
consciousness directly, we can use task designs to modulate the
state of consciousness. To this end, we leveraged data from a
group of 14 expert meditators who were asked to meditate during
an fMRI scanning session8, and to press a button when they
noticed that their focus had drifted from their breath (Fig. 3a). At
this point, there is a mismatch between expectation and conscious
awareness, which is an internal state that has been previously
linked to the activation of the noradrenergic system, both in
theoretical®*#0 and computational*! work. Based on these stu-
dies, we predicted that the switch in internal conscious awareness
would be facilitated by increases in LC-mediated integration and
subsequent reconfiguration of low-dimensional brain states.
Analysing time-resolved network data with a finite impulse
response model, we observed a peak in LC activity (Fig. 3b), TR-
to-TR BOLD MSD (Fig. 3c) and elevated network-level integra-
tion (Fig. 3d) surrounding the change in conscious awareness
(all pperm < 0.05; 95% CI of null distribution calculated from
5000 permutation tests). These results confirm that the LC
mediates energy landscape reconfigurations and that these
changes modulate internal states of conscious awareness.

Discussion

Our results provide evidence for arousal-mediated macroscopic
network and energy landscape reconfiguration which track with
moment-to-moment alterations in conscious awareness. By
tracking fluctuations in BOLD signal within the noradrenergic LC
and the cholinergic BNM, we were able to demonstrate
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Fig. 3 Awareness of intrinsic state changes. a Participants performing
breath-awareness meditation (focus; blue) were trained to respond with a
button press (orange) when they became aware (purple) that they had
become distracted (i.e. their attention had wandered from their breath) and
to then re-focus their attention (blue) on their breath. b We observed a
peak in 7 c_gym (red; LC relative to BNM BOLD activity) ~4 s before the
button press, which then returned to low levels in the 2-4 s following the
button press. € The mean-squared displacement (MSD; dark orange) of
TR-to-TR BOLD signal was increased above null values around the peak in
T c_gnm @S well as following the re-establishment of attentional focus

(in (b, ¢) grey shading depicts 95% Cl of block-resampled null distribution).
d We observed a peak in mean participation coefficient (PC) ~4s (2 TRs)
prior to the button press during the task. a-d Grey shading depicts mean-
centred 97.5th and 2.5th percentile of block-resampled null distribution
5000 permutations, i.e. outside grey shading indicates a value different
than null (p <0.05); and (d) red shading represents mean + SEM across
(n =400 parcels). Source data are provided as a Source Data file.

fundamental ways in which the low-dimensional, dynamic and
topological signature of cortical dynamics are related to changes
within the ascending arousal system. Furthermore, we demon-
strated a link between these dynamic reconfigurations and
alterations in conscious awareness in a cohort of experienced
meditators. In this way, our results provide a systems-level per-
spective on the distributed dynamics of the human brain.

There is growing evidence that macro-scale neural dynamics in
the brain are well described by relatively low-dimensional
models!7-1842-44 " however, the biological constraints that
impose these features on the brain remain poorly understood.
Due to the low number of cells in the arousal system and their
broad projections to the rest of the brain, we theorized that
neuromodulatory regions are well-placed to shape and constrain
the vast number of neurons in the cerebral cortex into low-
dimensional dynamical manifolds. Our results support this pre-
diction by showing that patterns of activity in key regions within
the brainstem and forebrain relate to fundamental alterations in a
dynamically evolving energy landscape. In other words, neural
state space trajectories are a powerful framework that extends

| (2021)12:6016 | https://doi.org/10.1038/s41467-021-26268-x | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

beyond that of mere analogy, and the ascending arousal system is
well-placed to mediate deformations in the energy landscape.

Much in the same way that there are many different reference
frames for navigation—e.g. egocentric (ie. straight, left, right
directions), which is independent of the environment; and allo-
centric (i.e. following compass directions and visual cues), which
is dependent on the environment—we can interrogate energy
landscapes using different vantage points on BOLD dynamics.
Our displacement framework is consistent with an egocentric (or
first-person) frame of reference, wherein MSD is used to track
BOLD trajectories from an initial state which maps out the
topology of the energy landscape (i.e. a BOLD MSD implies a
BOLD trajectory). Nonetheless, the method does not distinguish
between two different neural trajectories that possess the same
MSD. In comparison, other methods have evaluated the energy
landscape for a given pre-defined state estimated from thre-
sholded BOLD time series?>?3 a framework consistent with an
allocentric (or third-person) reference frame, ie. state-activity
dependent. The allocentric framework has the advantage of cal-
culating energy for a given state, however, it also requires sub-
stantial exploration of the state-space—which is typically
unfeasible—or the need to resort to severe coarse-graining (such
as the binarization of BOLD activity) which further diminishes
interpretability. Furthermore, the allocentric view does not pro-
vide insights into the transitions between each energy state,
whereas this information is inherent to the egocentric reference.
Along these lines, we found that the egocentric reference frame
clearly demonstrated the flattening and deepening of the energy
landscape, providing indirect evidence that the ascending arousal
system is well set-up to control brain-state dynamics ‘egocen-
trically’. Nevertheless, given improvements in recording length
and new techniques to probe the brains dynamical landscape, we
expect that the field will ultimately discover even more optimal
mappings between neurobiology and low-dimensional brain-state
dynamics.

The results of our state-space analysis have important impli-
cations for the biological mechanisms underlying cognition. For
instance, the concept of LC-mediated energy landscape flattening
is reminiscent of the al receptor-mediated notion of a network
reset®. By increasing response gain (Fig. 1a) through the mod-
ulation of second-messenger cascades?, noradrenaline released by
the LC would augment inter-regional coordination?®. Impor-
tantly, this capacity could confer adaptive benefits across a
spectrum, potentially facilitating the formation of flexible coali-
tions in precise cognitive contexts*>, while also forcing a broader
landscape flattening (i.e. a reset) in the context of large, unex-
pected changes?%39. Similarly, the idea that phasic cholinergic
bursts accentuate energy wells is consistent with the idea that
the cholinergic system instantiates divisive normalization within
the cerebral cortex!%. Numerous cognitive neuroscience studies
have shown that heightened acetylcholine levels correspond to
improvements in attentional precision®. By accentuating energy
wells, acetylcholine from the BNM could ensure that the brain
remains within a particular state and is hence not diluted by other
(potentially distracting) brain states. Determining the specific
rules that govern the links between the neuromodulation of the
energy landscape and cognitive function6~48 is of paramount
importance, particularly given the highly integrated and degen-
erate nature of the ascending arousal system?.

Our results also provide a systems-level perspective on an
emerging corpus of work that details the microscopic circuit level
mechanisms responsible for conscious phenomena®’. In parti-
cular, a number of recent studies have highlighted the intersection
between the axonal projections of the ascending arousal system
and pyramidal cell dendrites in the supragranular regions of the
cerebral cortex as a key site for mediating conscious awareness.

For instance, optogenetic blockage of the connections between the
cell bodies and dendrites of thick-tufted layer V pyramidal cells in
the sensory cortex causally modulated conscious arousal in
mice®!. Other works have shown that both the noradrenergic®?
and cholinergic®? systems alter this mechanism, albeit in distinct
ways: noradrenaline would promote burst firing due to the a2a
receptor-mediated closure of Th HCN leak-channels®?, whereas
the cholinergic system instead prolongs the time-scale of firing via
M1 cholinergic receptor activation on pyramidal cell dendrites®3.
In this way, coordinated activity in the ascending arousal
system can mediate alterations in microcircuit processing that
ultimately manifest as alterations in macroscopic brain network
dynamics.

The vascular nature of the T2* fMRI signal is such that it is
impossible to rule out the role of haemodynamics in the results
we obtained in our analysis. Indeed, there is evidence that nor-
adrenaline causes a targeted hyperaemia through the augmenta-
tion of G-protein-coupled receptors on vascular smooth muscle
cells>»>>. However, it is also clear that the haemodynamics and
massed neural action in the cerebral cortex are inextricably
linked®¢->7. In addition, there is evidence that stimulation of the
LC leads to the high-frequency, low-amplitude electro-
physiological activity patterns characteristic of the awake state!0.
Together, these results argue that the LC mediates a combination
of haemodynamic and neural responses that facilitate integrative
neural network interactions and subsequently mediate alterations
in conscious awareness.

In this manuscript, we have argued that the ascending arousal
system provides crucial constraints over normal brain function,
however, there are numerous examples wherein pathology within
the ascending arousal system leads to systemic impairments in
cognition. In addition to disorders of consciousness®8, dementia
syndromes are also crucially related to dysfunction within the
ascending arousal system. For instance, Alzheimer’s disease has
been linked to tau pathology within the BNM??, however, indi-
viduals with Alzheimer’s disease also often have pathological
involvement of the LC as well®®. Similarly, individuals with
Parkinson’s disease often have extra-dopaminergic pathology in
the LC%, as well as in the cholinergic tegmentum®!. Given the
pathological processes at play in these disorders, we expect that
other neuromodulatory systems will also be impaired, and in turn
affect the macroscopic dynamics of the system in ways that
remain to be elucidated.

In conclusion, we leveraged a high-resolution 7 T resting-state
fMRI dataset to test the hypothesis that activity within the
ascending arousal system shapes and constrains patterns of
systems-level network reconfiguration. Our results support spe-
cific predictions from a recent hypothetical framework!®, and
further delineate how the autonomic nervous system shapes and
constrains ongoing, low-dimensional brain-state dynamics in the
central nervous system in a manner that supports changes in
conscious awareness.

Methods

7T resting-state fMRI. These data were originally described in Hearne et al.
(2017) where full experimental details can be found®2, we selectively analysed the
first resting-state recordings obtained from this dataset. Briefly, we outline the data
collection. Sixty-five healthy, right-handed adult participants (mean, 23.35 years;
s.d., 3.6 years; range 18-33 years; 28 females) were recruited, of whom 59 were
included in the final analysis (four participants were excluded due to MR scanning
issues, one participant was excluded due to an unforeseen brain structure
abnormality, and one was excluded due to inconsistent BOLD dynamics following
global-signal regression). Participants provided informed written consent to par-
ticipate in the study. The research was approved by The University of Queensland
Human Research Ethics Committee. 10 min of whole-brain 7 T resting-state fMRI
echo planar images were acquired using a multiband sequence (acceleration fac-
tor = 5; 2 mm?3 voxels; 586 ms TR; 23 ms TE; 40° flip angle; 208 mm FOV;
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55 slices). Structural images were also collected to assist functional data pre-
processing (MP2RAGE sequence: 0.75 mm? voxels; 4300 ms TR; 3.44 ms TE;
256 slices).

Imaging data were pre-processed using an adapted version of MATLAB
(MathWorks R2020a). DICOM images were first converted to NIfTI format and
realigned. T1 images were reoriented, skull-stripped (FSL BET) and co-registered
to the NIfTT functional images using statistical parametric mapping functions.
Segmentation and the DARTEL algorithm were used to improve the estimation of
non-neural signal in subject space and the spatial normalization. From each grey-
matter voxel, the following signals were regressed: linear trends, signals from the
six head-motion parameters (three translation, three rotation) and their temporal
derivatives, white matter and CSF (estimated from single-subject masks of white
matter and CSF). The aCompCor method®? was used to regress out residual signal
unrelated to neural activity (i.e. five principal components derived from noise
regions-of-interest in which the time series data were unlikely to be modulated by
neural activity). Participants with head displacement >3 mm in >5% of volumes
were excluded. A temporal band pass filter (0.01 <f<0.15 Hz) was applied to the
data.

Brain parcellation. Following pre-processing, the mean time series was extracted
from 400 pre-defined cortical parcels using the Schaefer atlas®. Probabilistic
anatomical atlases were used to define the location of the noradrenergic LC and
the cholinergic BNM (Ch4 cell group)®®. The mean signal intensity from each
region was extracted and then used for subsequent analyses. To ensure that the
BOLD data were reflective of neuronal signals, we statistically compared LC and
BNM time series with a number of potential nuisance signals from: (i) the cere-
brospinal fluid; (ii) the cortical white matter; (iii) mean frame-wise displacement;
and (iv) a 2 mm3 sphere in the fourth ventricle (centred at MNI coordinates: 0 —45
—30)%7. All signals were unrelated to LC and BNM activity (|r | < 0.05 in each case),
however, given the spatial proximity of the LC to the fourth ventricle, we opted to
use a linear regression to residualize the signal from the fourth ventricle. To ensure
that BOLD signals from nearby grey-matter structures were not influencing the LC
time series, we extracted the mean activity of the LC mask after shifting the mask
anteriorly such that it overlapped with an area of the pons that harbours the nuclei
(i.e. +8 mm in the Y direction). In the same manner in which we previously
regressed the dynamics of the fourth ventricle, we regressed the activity of this non-
LC pontine region, and then re-analysed our data. Each of the results was statis-
tically identical following this approach, providing confidence that the original
conclusions were not biased by a lack of regional specificity. However, as the LC is
surrounded by various other arousal controlling nuclei, the signal likely contains
BOLD activity of adjacent nuclei. We further expected this issue to be more sig-
nificant with the reduced spatial resolution in the 3 T recording, nevertheless, the
similarity in the findings between the 3 T and the 7 T analysis provides confidence
of our claims.

Phasic increases in neuromodulatory BOLD signal. To identify phasic increases
in neuromodulatory BOLD signal, we calculated the second derivative (i.e. the
acceleration) of the LC and BNM time series, and then identified points in time
that fulfilled three criteria: (1) value greater than or equal to 2 s.d. above the mean
acceleration; (2) value of the original time series, i.e. LC or BNM, was greater than
or equal to 2 s.d. above the mean of the time series within the following 10 TRs (i.e.
5.85); and (3) the time point was not present within the first or last 20 TRs of an
individual subjects’ trial (so as to avoid potential boundary effects). Using these
criteria, we identified 148 7y pnm time points (mean 2.5 per individual with a
range between [0 5]), 130 Tgnm.1c time points (mean 2.2 per individual with a
range between [0 7]) and 316 7y pny time points (mean 5.4 per individual with a
range between [2 10]) across all 59 subjects. To ensure that the choice of 2 s.d.
threshold was reflective of the underlying dynamics, we altered this threshold
between 0.5 and 2.5 s.d. and found robustly similar patterns. For subsequent
analyses, we identified time points in the 21 TR window surrounding these peaks,
and then used these to conduct statistical comparisons of the low-dimensional,
complex network signature of brain network dynamics as a function of phasic
ascending arousal system activity. Each of these patterns was confirmed using a lag-
based cross-correlation analysis, which demonstrated similar phenomena to those
that we present in the manuscript.

To monitor the propagation of cortical signals with respect to Ti.c_snm» Tenm-LC
and 7rc, pnm, We extracted the time-to-peak of the cross-correlation between these
signals and each of the 400 cortical parcels within the 10 TR (i.e. 5.8 s) windows
following each identified phasic peak. These patterns were mapped onto the cortex
(Fig. 1b) for visualization and clearly demonstrated an anterior-to-posterior
direction for the wave. We then used the volumetric MNI coordinates of the
Schaefer parcellation scheme to calculate the average velocity of the travelling wave
(~0.13ms™1).

In order to obtain an appropriate null model against which to compare our
data, we identified 5000 random time points within the concatenated dataset that
did not substantially overlap with the already identified 71 gxm> Tenm-rc and Tic
1 BxuM time series, and used these to populate a null distribution®. Outcome
measures were deemed significant if they were more extreme than the 95th (or 5th)
percentile of the null distribution. Crucially, this ensured that our data could not be

explained by the characteristic spatial and temporal autocorrelation present in
BOLD time series data.

Time-resolved functional connectivity. To estimate functional connectivity
between the 400 regions-of-interest, we used the multiplication of temporal deri-
vatives (MTD) technique. Briefly, MTD is computed by calculating the point-wise
product of temporal derivative of pair-wise time series. The resultant score is then
averaged over a temporal window, w (a window length of 20 TRs was used in this
study, though results were consistent for w = 10-50 TRs).

Modularity maximization. The Louvain modularity algorithm from the Brain
Connectivity Toolbox (BCT)% was used on the neural network edge weights to
estimate community structure. The Louvain algorithm iteratively maximizes the
modularity statistic, Q, for different community assignments until the maximum
possible score of Q has been obtained:

1 1
Qr = F%:(W;r - e;)aM,M] - ﬁ%(wu ¢ )8M,M]7
where v is the total weight of the network (sum of all negative and positive con-
nections), w;; is the weighted and signed connection between regions i and j, e;; is
the strength of a connection divided by the total weight of the network, and Gy is
set to 1 when regions are in the same community and 0 otherwise. ‘4+’ and =’
superscripts denote all positive and negative connections, respectively. The mod-
ularity of a given network is therefore a quantification of the extent to which the
network may be subdivided into communities with stronger within-module than
between-module connections.

For each epoch, we assessed the community assignment for each region 500
times and a consensus partition was identified using a fine-tuning algorithm from
the Brain Connectivity Toolbox (BCT; http://www.brain-connectivity-toolbox.net/
). We calculated all graph theoretical measures on un-thresholded, weighted and
signed connectivity matrices. The stability of the y parameter was estimated by
iteratively calculating the modularity across a range of y values (0.5-2.5; mean
Pearson’s r = 0.859 £ 0.01) on the time-averaged connectivity matrix for each
subject—across iterations and subjects, a y value of 1.0 was found to be the least
variable, and hence was used for the resultant topological analyses.

Participation coefficient. The participation coefficient, PC, quantifies the extent to
which a region connects across all modules (i.e. between-module strength) and has
previously been used to successfully characterize hubs within brain networks. The
PC for each region was calculated within each temporal window as,

2
pPC=1- 3 (K—T>

s=1 \ K1
where k;;r is the strength of the positive connections of region i to regions in
module s at time T, and k;r is the sum of strengths of all positive connections of
region i at time T. Negative connections were discarded prior to calculation. The
participation coefficient of a region is therefore close to 1 if its connections are
uniformly distributed among all the modules and 0 if all its links are within its own
module.

Brain-state displacement and the energy landscape. To quantify the change in
BOLD activity following phasic bursts of neuromodulation we calculated the BOLD
MSD. The MSD is a measure of the deviation in BOLD activity, x, =

[%) %54, ... , %] for r parcels, with respect to the activity at the phasic onset, t,.
The MSD is calculated as the average change of each voxel

2>
)
r

where <>, is the mean across r parcels, and it is calculated for different t,, where ¢,
are the onset of a subcortical phasic burst, across t TRs. We are interested in the
probability, P(MSD, t) that we will observe a given displacement in BOLD at a

given time-lag t. We estimated the probability distribution function from n MSD,
samplings—e.g. the identified n phasic bursts of subcortical structures (as above)—

MSD,
. ), where

MSD,, = <’xfo+t %,

n
using a Gaussian kernel density estimation P(MSD, t) = ilg K ( T

K(u) = ﬁ;e’%"z and we display the results for ¢ between 1 and 15 TR and MSD
between 0 and 50. As is typical in statistical mechanics the energy of a given state,

E,, and its probability are related P(0) = %e’b'f", where Z is the normalization
function and T is a scaling factor equivalent to temperature in thermodynamics?’.
In our analysis X,P,=1—Z =1 by construction and we can set T = 1 for the
observed data. Thus, the energy of each BOLD MSD at a given time-lag ¢, E, is then
equal to the natural logarithm of the inverse probability, P(MSD, t), of its occur-
rence

Eeln(——
- “(P(MSD, r))‘
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Meditation dataset. These data were originally described in Hasenkamp et al.
(2012) where full experimental details can be found33. Briefly, we outline the data
collection. Fourteen healthy right-handed non-smoking meditation practitioners
(11 female; age 28-66 years) underwent Siemens 3 T MRI scanning (T1: TR =
2600 ms, TE = 3.9 ms, TI = 900 ms, FOV = 24 cm, 256 x 256 matrix, voxel
dimensions = 1 x 1 x 1 mm3; T2*: weighted gradient-echo pulse sequence, TR =
1500 ms, TE = 30 ms, flip angle = 90°, FOV = 192 cm, 64 x 64 matrix, voxel
dimensions = 3 x 3 x 4 mm?). All participants signed a consent form approved by
the Institutional Review Board at Emory University and the Atlanta Veterans
Affairs Research and Development Committee as an indication of informed con-
sent. Participants were asked to meditate for 20 min in the MRI scanner by
maintaining focused attention on the breath and keeping the eyes closed. They
were instructed to press a button whenever they realized their mind had wandered
away from the breath, and then return their focus to the breath. The epoch of time
immediately prior to the button press was thus the moment in time in which each
individual recognized that their focus had deviated from their breath. This infor-
mation was used to construct a finite impulses response model that mapped the five
TRs prior-to and following each button press. We then modelled LC > BNM
activity, low-dimensional dynamics and network topology around this epoch to
construct a model of state-space reconfiguration as a function of intrinsic conscious
awareness. Non-parametric, block-resampling null distributions were utilized for
statistical testing (p < 0.05).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The resting-state BOLD cortical activity, subcortical LC and BNM activity, network
statistics, and LC and BNM masks in MNI space have been deposited in a Zenodo
database (https://doi.org/10.5281/zenodo.5315132). The source raw resting-state BOLD
data that support the findings of this study were obtained from (Hearne et al., 2017)62
and they are available from (http://data.qld.edu.au/public/Q1361/). The source raw
meditation dataset was obtained from (Hasenkamp et al., 2012)33, access can be obtained
from the authors upon reasonable request. Source data are provided with this paper.

Code availability
All the code required to conduct the analysis can be found on GitHub at (github.com/
Bmunn/BST; https://doi.org/10.5281/zenodo.5315765).

Received: 17 March 2021; Accepted: 16 September 2021;
Published online: 14 October 2021

References

1. Sporns, O. Network attributes for segregation and integration in the human
brain. Curr. Opin. Neurobiol. 23, 162-171 (2013).

2. Shine, J. M. The thalamus integrates the macrosystems of the brain to facilitate
complex, adaptive brain network dynamics. Prog. Neurobiol. 199, 101951
(2021).

3. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat.
Rev. Neurosci. 13, 336-349 (2012).

4. Shine, J. M. et al. Computational models link cellular mechanisms of
neuromodulation to large-scale neural dynamics. Nat. Neurosci. 24, 765-776
(2021).

5.  Brown, E. N, Purdon, P. L. & Van Dort, C. J. General anesthesia and altered
states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci. 34,
601-628 (2011).

6. Salinas, E. & Sejnowski, T. J. Book review: gain modulation in the central
nervous system: where behavior, neurophysiology, and computation meet.
Neuroscientist 7, 430-440 (2001).

7. Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition.
Nat. Rev. Neurosci. 10, 211-223 (2009).

8. Hasselmo, M. E. & Sarter, M. Modes and models of forebrain cholinergic
neuromodulation of cognition. Neuropsychopharmacology 36, 52-73 (2011).

9. Samuels, E. R. & Szabadi, E. Functional neuroanatomy of the noradrenergic
locus coeruleus: its roles in the regulation of arousal and autonomic function
part II: physiological and pharmacological manipulations and pathological
alterations of locus coeruleus activity in humans. Curr. Neuropharmacol. 6,
254-285 (2008).

10. Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus
coeruleus neurons. Nat. Neurosci. 13, 1526-1533 (2010).

11. Lin, S.-C., Brown, R. E., Hussain Shuler, M. G., Petersen, C. C. H. & Kepecs, A.
Optogenetic dissection of the basal forebrain neuromodulatory control of
cortical activation, plasticity, and cognition. J. Neurosci. 35, 13896-13903
(2015).

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Zaborszky, L. et al. Neurons in the basal forebrain project to the cortex in a
complex topographic organization that reflects corticocortical connectivity
patterns: an experimental study based on retrograde tracing and 3D
reconstruction. Cereb. Cortex 25, 118-137 (2015).

Servan-Schreiber, D., Printz, H. & Cohen, J. A network model of
catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249,
892-895 (1990).

Schmitz, T. W. & Duncan, J. Normalization and the cholinergic microcircuit: a
unified basis for attention. Trends Cogn. Sci. 22, 422-437 (2018).

Shine, J. M. Neuromodulatory influences on integration and segregation in the
brain. Trends Cogn. Sci. 23, 572-583 (2019).

Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale
neural recordings. Nat. Neurosci. 17, 1500-1509 (2014).

Shine, J. M. et al. Human cognition involves the dynamic integration of neural
activity and neuromodulatory systems. Nat. Neurosci. 22, 289-296 (2019).
Gallego, J. A., Perich, M. G., Chowdhury, R. H,, Solla, S. A. & Miller, L. E.
Long-term stability of cortical population dynamics underlying consistent
behavior. Nat. Neurosci. 23, 260-270 (2020).

Miller, P. Dynamical systems, attractors, and neural circuits. FI000Res 5, 992
(2016).

Tkacik, G. et al. Thermodynamics and signatures of criticality in a network of
neurons. Proc. Natl Acad. Sci. USA 112, 11508-11513 (2015).

Bialek, W. Perspectives on theory at the interface of physics and biology. Rep.
Prog. Phys. 81, 012601 (2018).

Watanabe, T. et al. A pairwise maximum entropy model accurately describes
resting-state human brain networks. Nat. Commun. 4, 1370 (2013).

Ezaki, T., Watanabe, T., Ohzeki, M. & Masuda, N. Energy landscape analysis
of neuroimaging data. Philos. Trans. R. Soc. A 375, 20160287 (2017).
Krzeminski, D. et al. Energy landscape of resting magnetoencephalography
reveals fronto-parietal network impairments in epilepsy. Netw. Neurosci. 4,
374-396 (2020).

Mesulam, M. M. Cholinergic circuitry of the human nucleus basalis and its
fate in Alzheimer’s disease. . Comp. Neurol. 521, 4124-4144 (2013).
Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu. Rev.
Neurosci. 28, 403-450 (2005).

Muller, L., Chavane, F., Reynolds, J. & Sejnowski, T. J. Cortical travelling
waves: mechanisms and computational principles. Nat. Rev. Neurosci. 19,
255-268 (2018).

Shine, J. M. et al. The dynamics of functional brain networks: integrated
network states during cognitive task performance. Neuron 92, 544-554 (2016).
Shine, J. M., Aburn, M. J., Breakspear, M. & Poldrack, R. A. The modulation of
neural gain facilitates a transition between functional segregation and
integration in the brain. eLife 7, €31130 (2018).

Thomas Yeo, B. T. et al. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125-1165
(2011).

Mather, M. & Sutherland, M. R. Arousal-biased competition in perception and
memory. Perspect. Psychol. Sci. 6, 114-133 (2011).

Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites
local hotspots of neuronal excitation: how arousal amplifies selectivity in
perception and memory. Behav. Brain Sci. 39, €200 (2016).

Robinson, R. Differential behavioral and biochemical effects of right

and left hemispheric cerebral infarction in the rat. Science 205, 707-710 (1979).
Tona, K.-D. et al. In vivo visualization of the locus coeruleus in humans:
quantifying the test-retest reliability. Brain Struct. Funct. 222, 4203-4217
(2017).

Kanamaru, T., Fujii, H. & Aihara, K. Deformation of attractor landscape via
cholinergic presynaptic modulations: a computational study using a phase
neuron model. PLoS ONE 8, 53854 (2013).

Munn, B. & Gong, P. Critical dynamics of natural time-varying images. Phys.
Rev. Lett. 121, 058101 (2018).

Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M. & Valera, E. M.
Dynamic brain network correlates of spontaneous fluctuations in attention.
Cereb. Cortex 27, 1831-1840 (2016).

Hasenkamp, W., Wilson-Mendenhall, C. D., Duncan, E. & Barsalou, L. W. Mind
wandering and attention during focused meditation: a fine-grained temporal
analysis of fluctuating cognitive states. NeuroImage 59, 750-760 (2012).

Sara, S. ]. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates
cognition through arousal. Neuron 76, 130-141 (2012).

Jahn, C. L, Varazzani, C,, Sallet, J., Walton, M. E. & Bouret, S. Noradrenergic
but not dopaminergic neurons signal task state changes and predict
reengagement after a failure. Cereb. Cortex 30, 4979-4994 (2020).

Sales, A. C,, Friston, K. J., Jones, M. W., Pickering, A. E. & Moran, R. J. Locus
coeruleus tracking of prediction errors optimises cognitive flexibility: an active
inference model. PLoS Computational Biol. 15, €1006267 (2019).

Gotts, S. J., Gilmore, A. W. & Martin, A. Brain networks, dimensionality, and
global signal averaging in resting-state fMRI: hierarchical network structure

8 | (2021)12:6016 | https://doi.org/10.1038/s41467-021-26268-x | www.nature.com/naturecommunications


https://doi.org/10.5281/zenodo.5315132
http://data.qld.edu.au/public/Q1361/
https://doi.org/10.5281/zenodo.5315765
www.nature.com/naturecommunications

ARTICLE

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

results in low-dimensional spatiotemporal dynamics. NeuroImage 205, 116289
(2020).

Shine, J. M. et al. The low-dimensional neural architecture of cognitive
complexity is related to activity in medial thalamic nuclei. Neuron 104,
849-855 (2019). e3.

Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503, 78-84
(2013).

Miiller, E. J., Munn, B. R. & Shine, J. M. Diffuse neural coupling mediates
complex network dynamics through the formation of quasi-critical brain
states. Nat. Commun. 11, 6337 (2020).

de Gee, J. W. et al. Pupil-linked phasic arousal predicts a reduction of choice
bias across species and decision domains. eLife 9, 54014 (2020).

Pfeffer, T. et al. Catecholamines alter the intrinsic variability of cortical
population activity and perception. PLoS Biol. 16, €2003453 (2018).
Kosciessa, J. Q., Lindenberger, U. & Garrett, D. D. Thalamocortical excitability
adjustments guide human perception under uncertainty. Nat. Commun. 12,
2430 (2021).

Brezina, V. Beyond the wiring diagram: signalling through complex
neuromodulator networks. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 365,
2363-2374 (2010).

Aru, J., Suzuki, M. & Larkum, M. E. Cellular mechanisms of conscious
processing. Trends Cogn. Sci. 24, 814-825 (2020).

Suzuki, M. & Larkum, M. E. General anesthesia decouples cortical pyramidal
neurons. Cell 180, 666-676.e13 (2020) .

Labarrera, C. et al. Adrenergic modulation regulates the dendritic excitability
of layer 5 pyramidal neurons in vivo. Cell Rep. 23, 1034-1044 (2018).
Williams, S. R. & Fletcher, L. N. A dendritic substrate for the cholinergic
control of neocortical output neurons. Neuron 101, 486-499.e49 (2019) .
Bekar, L. K., Wei, H. S. & Nedergaard, M. The locus coeruleus-norepinephrine
network optimizes coupling of cerebral blood volume with oxygen demand. J.
Cereb. Blood Flow Metab. 32, 2135-2145 (2012).

Lecrux, C. & Hamel, E. Neuronal networks and mediators of cortical
neurovascular coupling responses in normal and altered brain states. Philos.
Trans. R. Soc. B 371, 20150350 (2016).

Moore, C. I. & Cao, R. The hemo-neural hypothesis: on the role of blood flow
in information processing. J. Neurophysiol. 99, 2035-2047 (2008).

Chow, B. W. et al. Caveolae in CNS arterioles mediate neurovascular coupling.
Nature 579, 106-110 (2020).

Snider, S. B. et al. Disruption of the ascending arousal network in acute
traumatic disorders of consciousness. Neurology 93, e1281-e1287 (2019).
Robertson, I. H. A noradrenergic theory of cognitive reserve: implications for
Alzheimer’s disease. Neurobiol. Aging 34, 298-308 (2013).

Rommelfanger, K. S. & Weinshenker, D. Norepinephrine: the redheaded
stepchild of Parkinson’s disease. Biochemical Pharmacol. 74, 177-190 (2007).
Bohnen, N. I. & Albin, R. L. The cholinergic system and Parkinson disease.
Behavioural Brain Res. 221, 564-573 (2011).

Hearne, L. J., Cocchi, L., Zalesky, A. & Mattingley, J. B. Reconfiguration of
brain network architectures between resting-state and complexity-dependent
cognitive reasoning. J. Neurosci. 37, 8399-8411 (2017).

Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise
correction method (CompCor) for BOLD and perfusion based fMRI.
Neuroimage. 37, 90-101 (2007).

Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from
intrinsic functional connectivity MRIL. Cerebral Cortex. 28, 3095-3114 (2018).

65. Keren, N. I, Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo
mapping of the human locus coeruleus. NeuroImage 47, 1261-1267 (2009).

66. Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic
cytoarchitectonic maps and functional imaging data. Neurolmage 25,
1325-1335 (2005).

67. Li, R. et al. A pulse of transient fMRI increases in subcortical arousal systems
during transitions in attention. Neurolmage 232, 117873 (2021).

68. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for
functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15,
1-25 (2002).

69. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:
Uses and interpretations. NeuroImage. 52, 1059-1069 (2010).

Author contributions

J.S. conceived, funded, directed the project and curated the data. B.M., E.M. and J.S.
conducted the analysis. B.M. and J.S. wrote the original draft. B.M., EM., G.W. and J.S.
reviewed and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26268-x.

Correspondence and requests for materials should be addressed to Brandon R. Munn or
James M. Shine.

Peer review information Nature Communications thanks Mara Mather and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

| (2021)12:6016 | https://doi.org/10.1038/s41467-021-26268-x | www.nature.com/naturecommunications 9


https://doi.org/10.1038/s41467-021-26268-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states
	Results
	Time-varying network topology
	Neuromodulation of the energy landscape
	Conscious awareness of shifts in BOLD state

	Discussion
	Methods
	7T resting-state fMRI
	Brain parcellation
	Phasic increases in neuromodulatory BOLD signal
	Time-resolved functional connectivity
	Modularity maximization
	Participation coefficient
	Brain-state displacement and the energy landscape
	Meditation dataset

	Reporting summary
	Data availability
	Code availability
	References
	Author contributions
	Competing interests
	Additional information




