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Rapid incidence estimation from SARS-CoV-2
genomes reveals decreased case detection
in Europe during summer 2020
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By October 2021, 230 million SARS-CoV-2 diagnoses have been reported. Yet, a considerable
proportion of cases remains undetected. Here, we propose GInPipe, a method that rapidly
reconstructs SARS-CoV-2 incidence profiles solely from publicly available, time-stamped viral
genomes. We validate GInPipe against simulated outbreaks and elaborate phylodynamic
analyses. Using available sequence data, we reconstruct incidence histories for Denmark,
Scotland, Switzerland, and Victoria (Australia) and demonstrate, how to use the method to
investigate the effects of changing testing policies on case ascertainment. Specifically, we find
that under-reporting was highest during summer 2020 in Europe, coinciding with more liberal
testing policies at times of low testing capacities. Due to the increased use of real-time
sequencing, it is envisaged that GInPipe can complement established surveillance tools to
monitor the SARS-CoV-2 pandemic. In post-pandemic times, when diagnostic efforts are
decreasing, GInPipe may facilitate the detection of hidden infection dynamics.
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s of August 2021, the global SARS-CoV-2 pandemic is still

ongoing in most parts of the world, with 205 million

reported cases worldwide. Novel vaccines of high efficacy
have been developed within a year of the outbreak!2. At the time
of writing, ~30% of the worlds population had already received at
least one vaccination and 15.8% is fully vaccinated. However, the
distribution of vaccines is uneven and achieving global herd
immunity may pose an extremely difficult, long-term task%.
At the same time, novel variants of concern (VOC) have emerged
in high prevalence regions>®, which may be able to reinfect
individuals”-8 and escape vaccine-elicited immune responses®-11.
For example, Manaus, Brazil, witnessed a massive second wave of
infections!2, despite the fact that ~80% had already experienced an
infection at the onset of the second wave®.

Because of the evolutionary versatility of SARS-CoV-2 and
difficulties in global vaccine distribution, some experts expect that
the virus may not be eliminated globally!3. Even without adaptation
to vaccines in the future, it has been postulated that SARS-CoV-2
may resurge!4!> and surveillance may have to be maintained into
the mid 2020s to monitor virus spread and evolution!4,

Currently, the gold standard of SARS-CoV-2 surveillance is
diagnostic testing via polymerase chain reaction (PCR) or antigen-
based rapid diagnostic testing (RDT). Diagnostic test results
currently define infection case reports, which are used to survey
epidemiological dynamics and to define thresholds for travel bans
and non-pharmaceutical measures. Inevitably, case reporting data
are affected by test coverage, which changes when testing policies
are adapted. While RDT enables point-of-care diagnosis and is less
costly than PCR testing!®17, gathering and reporting of test results
still requires a sophisticated infrastructure, which is difficult to
establish and maintain in many developing countries!$. Indepen-
dent and complimentary sources of information, such as social
media reports!?20 or waste water analysis?1->2 have been used early
on to complement our knowledge of the pandemic dynamics.
In addition, many regions of the world sequence SARS-CoV-2
genomes to track virus evolution and the emergence of VOC. The
gathered viral sequences are regularly provided to public databases,
such as GISAID?324, The genetic data readily holds information
about the pandemic trajectory. In this work, we take advantage
of the fact that the speed at which SARS-CoV-2 evolves on
the population level contains information about the number of
individuals who are actively infected.

In the vast majority of cases, SARS-CoV-2 is transmitted within a
very short period, only days after infection?>2°. The consequence is
a well-defined duration of intra-patient evolutionary time before
transmission. Thus, the number of actively infected individuals
is correlated to the rate of divergence of the viral population,
implicating an evolutionary signal.

In this article, we introduce the computational pipeline
GInPipe, which uses time-stamped sequencing data alone,
extracts the evolutionary signal and reconstructs SARS-CoV-2
incidence histories. The approach is inspired by recent work by
Khatri and Burt?’, who derived a simple function for the esti-
mation of the current effective population size. Herein, due to the
short window of transmission, we anticipate that the effective
population size may strongly correlate with the incidence of
SARS-CoV-2. We adapt the function derived in ref. 27 and embed
it into an automatic computational pipeline (GInPipe) that
reconstructs the time course of an incidence correlate ¢ merely
from SARS-CoV-2 genetic data. GInPipe is validated threefold
and performs robustly: (i) against in silico generated outbreak
data, (ii) against phylodynamic analyses and (iii) in comparison
with case reporting data. We applied the method to SARS-CoV-2
sequencing data from Denmark, Scotland, Switzerland, and the
Australian state Victoria to reconstruct their respective incidence
histories. Lastly, we utilize the inferred epidemic trajectories to

compute changes in the probability that an infected individual is
reported and highlight how this probability is affected by changes
in testing policies.

Results

Incidence reconstruction. An outline of GInPipe for SARS-CoV-2
incidence reconstruction is shown in Fig. la-c. After compiling
a set of time-stamped, full-length SARS-CoV-2 genomes, the
sequences are assigned to consecutive subsets according to their
sampling dates (temporal bins) (Fig. 1a). For each temporal bin b,
we compute the number of sequences different from a reference
(mutant sequences m,), as well as the number of unique sequences
(haplotypes h;). These two inputs are used to infer the incidence
correlate ¢, (Fig. 1b). The ¢, point estimates are smoothed to derive
a reconstructed incidence history along the time axis (Fig. 1c). The
reconstructed incidence correlates can then be used as a basis to
estimate the effective reproduction number R,, as well as the relative
case detection rate as outlined below.

Method validation: in silico experiment. To confirm that
GInPipe is able to reconstruct incidence histories, we performed
an in silico experiment. We considered a population of N(¢)
infected individuals at time ¢ that stochastically generate N(¢+ 1)
infected individuals in the next time step ¢+ 1. Each individual is
associated with a virus sequence, which can mutate randomly.
Individuals can be removed (the associated sequence is removed),
or they transmit their virus (the associated virus is copied over).
We record the number of infected individuals per generation, as
well as all sequences of the currently circulating viruses. We then
use the simulated viral sequences to infer ¢() and reconstruct the
incidence history, as presented in Fig. 1d, e.

In Fig. 1d, we compare one trajectory of simulated population
sizes with the reconstructed incidence histories. The simulated
outbreak (red line, right axis) consists of two waves of increasing
magnitude. GInPipe robustly reconstructs these dynamics (blue
lines and dots, left axis), although the incidence correlates ¢(f) is
on a different scale, implying a linear correlation to the number of
infected individuals. To assess this correlation, we performed
10 stochastic simulations and compared the ¢(¢) point estimates
with the corresponding number of infected individuals (Fig. 1e).
We observed a strong (Pearson correlation coefficient of r = 0.98)
and highly significant (p < 10719) linear relationship between the
number of infected individuals N(¢) and the method’s incidence
correlate ¢(t).

GInPipe also allows to infer the effective reproduction number
R, from the incidence correlates ¢(t) (details in the “Methods”
section). To further assess the accuracy of GInPipe, we compare
the R? values inferred with the smoothed ¢ estimates versus R™
values calculated from the simulated pandemic Ny... Figure 1f
shows the identity plot for log(R!™¢) vs. log (Rf), with the
respective proportion of qualitatively agreeing or disagreeing
predictions in the four quadrants: The top right and bottom left
quadrant represents the true positive (TP) and true negative (TN)
estimates, and the top left and bottom right quadrants show the
false positive (FP) and false negative (FN) estimates respectively.
The qualitative accuracy of GInPipe based on the R, values was
calculated as s e Yielding a value of 0.92. In terms of
quantitative agreement of the R, estimates, the coefficient of
determination was R? = 0.77.

While these simulations represent idealized scenarios, in
Supplementary Note 1 we thoroughly evaluated the robustness
of GInPipe to incomplete, and sparse data sets, unbalanced and
temporally changing sampling rates, to the introduction of
unrelated sequence variants, its ability to reconstruct non-smooth
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Fig. 1 Reconstruction of incidence histories using the proposed method. a-c Schematic of the incidence reconstruction method. a The sequences are
chronologically ordered by collection date. The line shows the cumulative sum of sequences over time. The sequences are allocated into temporal bins,
spanning either the same time frame Ad, (yellow and purple bins) or containing the same amount of sequences (green bins). b For each bin, the number of
distinct variants hy,, as well as the total amount of mutant sequences m, are used to infer the incidence correlate ¢,. € The point estimates for all bins
¢p (dots) are smoothed with a convolution filter. For uncertainty estimation, the point estimates are sub-sampled and interpolated and 95% confidence
intervals highlighted. d-f Reconstruction of a simulated outbreak with GInPipe. d ¢ estimates resemble the underlying population dynamics over time. The
blue line shows the smoothed median of the sub-sampled ¢ estimates (dots) for a simulated outbreak. The red line indicates true incidence per generation.
e Dotplot showing the true outbreak size from the simulation Ny versus the ¢, point estimates for 10 stochastic simulations. The red line depicts the
linear fit. f The reconstructed incidence correlates ¢ allow the determination of the effective reproductions rate R, as described in the Methods section. The
dotplot shows Retrue (inferred from the true population size Ni.,e) versus Rf (constructed with correlate ¢) on log scale for the 10 stochastic simulations.
The red line shows the linear fit. The proportion of points in each quadrant is shown in the respective partition.

pandemic dynamics, as well as its sensitivity to changes in the
pathogen mutation rate and selective pressure.

Our analyses showed, that the method can still reliably
reconstruct incidence histories over time when data are missing,
or when the sampling rate changes over time. In scenarios of
extreme under-sampling, the ¢ point estimates have the tendency
to yield lower values. However, through the smoothing step the
reconstructed incidence trajectories still follow the overall popula-
tion dynamics (Supplementary Note 1, section SN.1.7). If the
sampling changes the evolutionary signal, for example by sampling
sequences based on their similarity (and hence lowering the signal),
the incidence correlates tend to decrease (Supplementary Note 1,
section SN.1.9). If the sampling strategy does not change over the
course of the pandemic, GInPipe can still reconstruct the overall
population dynamic. However, with altering sampling strategies
that perturb the evolutionary signal, difficulties with incidence
reconstruction may arise. Therefore, as with, e.g., phylodynamic
methods, a consistent strategy of deducing representative samples
is believed to ensure GInPipe’s performance. We found that
selective pressure has no effect on the incidence reconstruction
with GInPipe (Supplementary Note 1, section SN.1.14).

If mutation rates become too low, which may be the case for
other respiratory infections, and hence not enough signal is given

in the data, GInPipe becomes less accurate, but the incidence can
still be reconstructed at the cost of time-resolution (Supplemen-
tary Note 1, section SN.1.15).

Finally, we evaluated whether introductions of foreign
sequences affect the reconstruction of incidence histories. Even
for extreme and unrealistic cases, a stable reconstruction of the
underlying dynamic is possible. Yet, a tendency of overestimation
can be observed if the introduced sequences constitute more than
10% of the data set and if they do not continue to contribute to
the pandemic after their introduction (Supplementary Note 1,
section SN.1.12).

Method validation: phylodynamics. Phylodynamic methods
combine phylogeny reconstruction with epidemic models. For
example, the piecewise constant birth-death sampling process
(BDSKY)?8 implemented in BEAST229, allows the reconstruction of
the effective reproduction numbers R.(7) for given time periods .

We conducted phylodynamic analyses of SARS-CoV-2
sequence data from Denmark, Scotland, Switzerland, and the
Australian state Victoria. In analyzing the data we assumed that
REEAST(7) was piecewise constant in between major changes in
SARS-CoV-2 non-pharmaceutical interventions (intervals stated
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Fig. 2 Effective reproduction number R, estimates using the proposed method (¢) and phylodynamics (BEAST2). a-d Piecewise constant median

RBEAST(7) estimates (green solid lines) were calculated using the BDSKY model for the indicated intervals, as described in the “Methods” section. Daily
estimates Rf(t) (blue dots) were directly calculated from the incidence correlates ¢ using the Wallinga-Teunis method3C. The median of these values for
the indicated intervals Rf(r) is shown as solid blue lines. The 95% confidence interval is specified by the shaded areas. Justifications of the intervals are

found in Supplementary Note 2.

in Supplementary Note 2). We then used BEAST2 to estimate
REEAST(7) alongside the tree reconstructions.

In parallel, we estimated corresponding effective reproduction
numbers R¢(t) by applying the Wallinga-Teunis method®® to
incidence correlates ¢ derived by GInPipe. For both methods, we
used publicly available full length SARS-CoV-2 sequencing data
from GISAID?324 (Supplementary Note 4).

Results of both methods are presented in Fig. 2. Overall, both
methods show congruent trends for the analyzed countries, when
comparing the piecewise constant RP*4ST(7) from phylodynamic
analysis with the median daily R%(t) for the same interval.
Noteworthy, GInPipe allows for a much finer time-resolution
(daily R, estimates) compared to the piecewise constant R,
estimates on pre-defined intervals, obtained from the phylody-
namic analysis.

For Denmark, the first interval spans the decline in the
number of infections after the first wave (end of April to
mid June). Consequently, we observe R,(7) <1 using both
methods. For the next intervals, the median or piece-wise
constant R,(7) is predicted to be around, or slightly larger than
one. However, GInPipe reconstructs a number of peaks in the
daily R?(¢) estimates, most pronounced in August, coinciding
with the summer holidays in Europe. In the interval from
November to mid December the estimates deviate slightly, with

a larger median estimate from BEAST2, however, both interval
estimates are predicted to be R,(f)>1 and the confidence
intervals overlap entirely.

The GInPipe R,(7) estimates for Scotland are within 20% of the
corresponding BEAST?2 estimates, where GInPipe again allows for
a much finer time resolution. Once again, we see a peak in the
summer (August-September 2020), coinciding with the summer
holidays in Europe. For the last interval (from December 2020)
both methods show a median R.(f) > 1, again with a slightly
higher median BEAST?2 estimate, coinciding with the second
wave of infections.

For Switzerland, the estimates disagree slightly, particularly in the
first interval (mid March to mid May), which spans both sides of
the peak number of infections during the first wave. Although both
methods predict a median R,(7) <1, the absolute value differs in
magnitude between the two methods, with BEAST2 estimating a
much lower value. The lower estimate from the BEAST2-analysis in
the first interval may be explained by the approximation of
transmission clusters, which results in the reconstruction of a
relatively high number of transmission events many of which may
have occurred outside Switzerland (Supplementary Note 2,
Fig. SN.29 therein, tree B.1). In the daily estimates, we see a
transition from R¢(f) >1 to R®(t) < 1, which may explain why the
median prediction with GInPipe is close to one for the entire
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interval. The estimates are qualitatively different for the second
interval (mid May-mid June), where GInPipe estimates R‘j(r) <1,
while BEAST?2 estimates R¥FAST(7) & 1. Again, GInPipe estimates a
peak in summer (mid June to mid August R.(7)>1). While
BEAST2 predicts the onset of transmission in the second wave to
already start in mid August (R.(7) > 1), GInPipe estimates the first
major rise in infections at the end of September.

For Victoria we observe an R?(#) >1 until mid March in the
daily estimates. Overall, R, is < 1 for the first interval between mid
March and May, versus R, > 1 between June and August. Again,
we see various peaks around June and July in the daily R,
estimates with the proposed method. For the final interval, both
methods slightly disagree, with R¥¥AST < 1 and R%(7) > 1, though
the daily R¥(#) are decreasing towards the end of the final interval.

In addition to the phylodynamic inference of REEAST, we also
implemented phylodynamic incidence reconstruction using
Epilnf for Scotland3!. Incidence trajectories from Epilnf, GInPipe
and reported cases are shown in Supplementary Fig. 1. GInPipe
estimates the timing of the first (April 2020) and second wave
(November 2020) in congruence with the reported cases, while
Epilnf estimates the first wave to occur mid May and may
underestimate the magnitude of the second wave. In addition,
Epilnf estimates a peak in August that is not represented in the
reporting data, nor in GInPipe’s estimates. With regards to the
third wave (January 2021), both Epilnf and GInPipe disagree with
the rapid decline seen in the reported cases from January 2021.

In terms of computational time, the entire GInPipe analysis
pipeline runs in 25min on the full Denmark data set
(n=40.575 sequences) and in 7 min on the Victoria data set
(n=10.710 sequences) on a single notebook (2.3 Ghz, 2 cores).
Furthermore, GInPipe does not require to pre-assign any
intervals, to exclude particular strains, construct a phylogenetic
tree, or cluster sequences based on their phylogenetic relation-
ship. The BEAST2 analysis alone required about 15 h on an Intel
Xeon E5-2687W (3.1 Ghz, 2 x 12 cores) on a sub-sampled data set
(n = 2500 sequences) with additional computation time needed to
construct a multiple sequence alignment and approximate
transmission clusters. Despite recent advances to improve the
application of phylogenetic methods to large genomic data sets>?
(https://beast.community/thorney_beast), these methods remain
computationally expensive and advanced knowledge is required
to apply them properly to bigger data sets.

Reconstructed incidence histories. We used GInPipe to recon-
struct complete incidence histories for Denmark, Scotland,
Switzerland, and Victoria (Australia) from publicly available full-
length SARS-CoV-2 sequencing data provided through
GISAID?3:24 (Supplementary Note 4). In Fig. 3, we compare the
reconstructed incidence histories (blue lines and dots, left axis) to
the 7-day rolling average of officially reported new cases (red line,
right axis). Overall, the reconstructed incidence estimates reflect
the different pandemic waves deduced from the reporting data,
although there are quantitative differences between the recon-
structed and reported incidence trajectories over time. In parti-
cular, during the first wave in Scotland, and Victoria (Fig. 3b, d)
our method estimates higher incidences than reported, whereas
the curves align at later points for the second and third waves. It
is worth mentioning that testing capacities were particularly low
in Scotland in April (during the first wave), suggesting extensive
under-reporting in the initial phase of the pandemic. This is also
supported by test positive rates of almost 40% during April 2020
in Scotland (Supplementary Fig. 2). In Victoria, sufficient testing
capacities were not available until May, but test positive rates
were already declining from April to May (Supplementary Fig. 2).

This indicates that the first wave may have been under-reported
in magnitude, but had vanished by May.

Interestingly, the proposed incidence reconstruction method
predicts small summer waves in August in the three European
countries (Fig. 3a—c) that are not visible in the reporting data. In
the incidence reconstruction method these summer waves are
immediately followed by the second SARS-CoV-2 wave. For the
second wave, the profiles of the reconstructed incidence histories
match the profiles of the reported cases, particularly in Denmark,
Scotland, and Victoria (Fig. 3a, b, d). For Scotland, our method
predicts a more long-lasting third wave with rising incidence rates
until February 2021 and a moderate decline with several smaller
peaks until May, whereas the reporting data indicate a peak in
January 2021 with a subsequent fast regression. The argument,
that ongoing vaccination in Great Britain could explain the
immediate decline of reported infected cases, can be objected with
the fact, that by March 2021 only about 2% of the Scottish
population were fully vaccinated. Moreover, phylodynamic
incidence reconstruction using Epilnf3! (Supplementary Fig. 1)
also suggests a more long-lasting third wave in Scotland.

For Switzerland, we predict a larger wave around
January-February 2021 (third wave) that is not reflected in the
reporting data. Towards the end of the prediction horizon, from
March 2021 onwards, the reported cases and the incidence
estimation both indicate a rise in numbers (fourth wave).

In addition to the countries analyzed above, we further
reconstruct incidence trajectories for Japan, Chile, India, and South
Africa for the entire time span from the onset of the pandemic until
mid 2021, see Supplementary Fig. 3. They demonstrate GInPipe’s
ability to reconstruct incidence histories with very limited
sequencing data. Particularly for Chile, India, and South Africa,
the amount of accessible data are considerably sparser than for the
countries analyzed in Fig. 3. All four pandemic waves for Japan and
the two major waves for South Africa were reconstructed. For India,
and to some extent Chile, the reconstructions indicate sustained
high-level spread from early 2020 until February 2021, when the
pandemic started to expand massively.

Relative case detection rate. We investigated whether the pro-
posed incidence reconstruction method may be used to learn
about the proportion of infected cases that are actually tested,
detected and reported, P,(tested|infected).

The proportion of SARS-CoV-2 infected who are actually
reported can be calculated using Bayes’ formula (see the “Methods”
section). In order to perform the calculation, the proportion of
actively infected individuals in the population P(infected) needs to
be known. We have shown that the incidence correlates ¢ from our
method are proportional to the number of infected individuals,
- ¢, = Negr (Figs. 1d-e, 3), and hence to the probability of being
infected Py(infected). Consequently, we may use the reconstructed
incidence profiles, together with the test sensitivity and specificity,
the respective information about the proportion of positive tests, as
well as the testing capacities for each country or region to calculate
changes in the case detection rate, scaled by unknown factor c.

In Fig. 4, we show the log, scaled detection probabilities for
Denmark, Scotland, Switzerland, and Victoria (Australia). The log
scaling allows us to easily gauge the relative change in (under-)
detection of the infected population over time (e.g., twofold,
fourfold increase or decrease in case detection rate). The dashed
vertical lines in the graphics indicate major changes in testing
policies in the respective countries. Individual parameters used in
the inference procedure, P(tested), P(inf]tested), and c¢- P(in-
fected) are shown in Supplementary Fig. 2.

For Denmark, we observe an initial period of massive SARS-
CoV-2 under-detection in the beginning of March 2020, Fig. 4a
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Fig. 3 Incidence reconstruction based on sequencing data. The graphic depicts the genome-based incidence reconstruction in blue using the proposed
method (left axis) vs. the 7 days rolling average of newly reported cases in red (right axis). Blue dots depict ¢, point estimates of the incidence correlate,
where the size of the dot is related to the number of sequences used to infer ¢;. The solid and dashed blue lines denote the median smoothed trajectories
and their 5th and 95th percentiles. The black markers on the x-axis depict the collected sequences at the given dates. a Denmark (n = 40.575 sequences)
b Scotland (n=30.258 sequences), ¢ Switzerland (n = 25.779 sequences), d Victoria (n =10.710 sequences).

(upper panel), which coincides with very low testing capacities at
the beginning of the pandemic (Fig. 4a, lower panel). From mid
March, case detection stabilizes at a sixfold higher level,
compared to the first week of March. The second interval begins
around mid May with an important policy change, allowing every
citizen to get tested without medical referral. Interestingly,
compared to the fairly stable case detection levels from mid
March to mid May, this policy change leads to a 2-3 fold drop in
case detection in the summer months from July to September. Of
note, while everybody is granted the possibility to test for SARS-
CoV-2, testing capacities remained fairly unchanged (Fig. 4a,
lower panel). According to our calculations, the largest propor-
tion of infections remained undetected in July. From end of
August, testing capacities were steadily increased in Denmark
(Fig. 4a, lower panel), particularly in Copenhagen and at the
airports, followed by prioritized testing. From September on, this
leads to a nearly eightfold increase of the case detection rate, with
a peak in December. From end of December the detection rate
drops more than fourold, despite continuous testing.

For Scotland (Fig. 4b), the earliest test data are available only
from the end of March. Therefore, the data captures only the
second part of the first wave, compare Fig. 3b. In the beginning of

6

May, testing capacities were more than doubled (Fig. 3b, lower
panel) and outbreak investigation intensified. This led to a doubling
of the relative case detection rate from May, compared to the first
phase. On 18 May, SARS-CoV-2 testing was opened for everyone
with symptoms. However, only in July testing capacities were
increased. This may have led to a drop in case detection from mid
May to July, after which case detection increased and remained
during August at roughly the levels achieved in May. After 25
August, testing capacities and accessibility of testing steadily
increased. Accordingly, case detection increased about sixfold until
winter 20/21. From 25 November, testing capacities were further
expanded, especially in the health sector, including hospital patients,
health and social care staff, with fairly stable case detection rates.
Further increase of testing capacities in the end of December
allowed to double the probability to detect infected individuals.
From the beginning of the year 2021, the Scottish government
pushed community testing in areas with high SARS-CoV-2
prevalence. At the same time, the proportion of positive tests start
to decline (Supplementary Fig. 2), and consequently the case
detection rate collapses until April by ninefold.

Similar to Denmark, Switzerland shows an initial period of
massive SARS-CoV-2 under-detection in the beginning of March
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Fig. 4 Relative case detection rate. Black line in upper graphics: Estimated and scaled probability of detecting SARS-CoV-2 infected individuals c - P(tested
| inf). Blue line in the lower graphics: Number of conducted tests per calendar week. Dashed vertical lines indicate major changes in the testing strategies in
the respective location. The sources for testing data and strategies are given in Supplementary Note 3. a Denmark. Policy changes: 18 May 20: testing for
everyone; 9 September 20: increasing testing available, b Scotland. Policy changes: 1 May 20: expanded testing strategy including enhanced outbreak
investigation; 18 May 20: testing for everyone with symptoms; 22 July 20: including young children for testing; 25 August 20: increasing capacity and
accessibility of testing; 25 November 20: expansion of testing in health care; 15 December 20: increase of testing capacity; 1 January 21: community testing
in areas with high coronavirus prevalence. ¢ Switzerland. Policy changes: 22 April 20: testing for all persons with symptoms; 18 May 20: priority testing; 2
November 20: rapid antigen tests are included in the testing strategy; 27 February 21: recommended preventative and repeated testing as part of
precautionary measures. d Victoria (Australia). Policy changes: 14 April 20: anyone having symptoms can be tested; 30 April 20: start of 2 weeks testing
blitz; 11 May 20: increased surveillance with testing of sewerage; 1 July 20: expanded testing blitzes in outbreak regions; 30 December 21: urging to be

tested after re-emergence of positive cases.

2020 (Fig. 4c, upper panel), which coincides with very low testing
capacities at the beginning of the pandemic (Fig. 4c, lower panel).
When testing capacities increase by mid March, case detection
rates grow 8-fold. However, from the beginning of April, we
observe a drop in the probability to detect infections that lasts
until mid May (overall 10-fold drop). This trend coincides with a
drop of positivity rates (Supplementary Fig. 2), as well as the
extension of testing criteria on 22nd April: From this date,
anybody with symptoms were allowed to get tested, despite the
fact that the availability of tests was not increased (Fig. 4c, lower
panel). From 18 May, tests were partly prioritized for hospitalized
and vulnerable individuals. At the same time, testing capacities
steadily increased and incidences dropped. As a net effect, the
probability of detecting infected people increases steadily to a
maximum at the end of October with a relative difference of
nearly 20-fold compared to the low point in mid May. On 2
November, Switzerland begins to supply antigen-based RDT for
self-testing as part of their COVID containment strategy.
Interestingly, our model predicts that this led to a sharp decline
in case detection, again corresponding with the decline in
positivity rates (Supplementary Fig. 2). From 21 February 2021,
further precautionary actions were taken, and the government
recommended repeated testing. This is associated with a stable,

but relatively low detection rate for infected people until the end
of April 2021.

For the Australian state Victoria, the earliest data were available
from end of March 2020 (Fig. 4d), capturing the second part of the
first SARS-CoV-2 wave. Detection probabilities in the first interval,
until 14th April were changed proportionally to the test capacities
during that interval (Fig. 4d, upper and lower panel). On 14 April
2020, the testing criteria were expanded, allowing anyone with
COVID-like symptoms to be tested. Unlike the situation in
Switzerland, where we observed a downward trend in case
detection after expanding the testing criteria (Fig. 4c), the detection
probability in Victoria remains stable until the end of April. In
contrast to Switzerland, testing capacities were increased when
testing criteria were expanded. On 30 April, the government
initiated a two-week testing blitz, a large, coordinated testing
campaign to locate viral spread. The testing blitz was accompanied
by mass sewerage testing and matched with a massive increase of
testing capacities, which led, according to our simulations, to a
fourfold increase in the probability to detect infected individuals.
At the end of the testing blitz, testing capacities steadily decreased
and the proportion of detected infections decreased drastically (by
roughly ninefold). At the beginning of June, testing capacities rose
again, matched by a rise in the proportion of detected cases. From
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1 July onwards, several testing blitzes were conducted in outbreak
regions, which seemed to have stabilized case detection rates
during the second wave of infections. After the second wave (end
of August- September, Fig. 3d), case detection rates drop. From
October 2020 onwards, our predictions become highly unreliable,
as the incidence estimates credibility interval includes zero
(compare Fig. 3d), which concludes that the case detection rate
cannot be determined anymore.

In general, we make two striking observations: Firstly, and
quite intuitively, whenever more tests were conducted, the
proportion of detected SARS-CoV-2 cases increases. Secondly,
and unexpectedly, whenever testing criteria were relaxed, this led
to a drop in the probability of case detection. We see this drop in
mid May in Denmark and Scotland and in mid April in
Switzerland. Importantly, the expansions of testing criteria were
not-, or insufficiently matched by increased testing capacities.
Quite surprisingly, our simulations for Switzerland suggested a
drop in case detection when antigen-based RDT self-testing
became part of the national diagnostic strategies.

Discussion

SARS-CoV-2 continues to spread around the world, making
epidemiological and molecular surveillance indispensable for the
evaluation and guidance of public health interventions.

National and international sequencing efforts are underway
that closely monitor the dynamics and evolution of the virus. In
the global fight against SARS-CoV-2, many reconstructed
sequences have been made broadly available through public
databases, such as GISAID?324 and the COVID data portal. In
this work, we introduce GInPipe, a pipeline that utilizes this data
to reconstruct SARS-CoV-2 incidence histories.

Viral infections are often characterized by a transmission
bottleneck33, where only a very small number of viruses initiate the
infection and subsequently replicate within the host. A sufficient
number of viruses (viral load) is required for further transmission.
Hence, the temporal window of infectiousness begins with the
intra-host viral population reaching a sufficiently large abundance
and ends with the virus becoming eliminated by the immune sys-
tem (or drugs). In SARS-CoV-2, this window only spans a few days
and consequently the virus is almost always transmitted within days
after infection, in contrast to HIV, HBV or HCV2>2%, If neutral or
favourable mutations occur during this time, they may become
abundant enough to be passed on to other hosts*3. The con-
sequence is a well-defined duration of intra-patient evolutionary
time in which the virus can randomly mutate and become trans-
mitted subsequently. In SARS-CoV-2, this intra-patient evolu-
tionary time appears to be short and the analysis of outbreak
clusters indicates that the virus genomes from linked cases were
separated by either none, or very few mutations34-3¢. The brevity of
evolutionary time before transmission may thus result in relatively
homogeneous evolutionary changes between consecutive cases,
which would imply strong correlations between evolutionary
changes and the number of infections. This evolutionary signal
allows GInPipe to reconstruct SARS-CoV-2 incidence histories
solely from time-stamped viral genomes.

This presumption may also hold for other respiratory viruses,
depending on the rate at which they evolve. In Supplementary
Note 1, section SN.1.15, we analyzed whether GInPipe is sensitive
to changes in the evolutionary rate. We found that, as long as the
evolutionary rate is sufficiently high to produce a measurable
evolutionary signal, GInPipe can reliably reconstruct incidence
histories.

However, we would expect the method to work less well for
sexually transmitted or blood-borne diseases caused by HIV,
HBYV, or HCV, where the virus can continuously evolve for weeks

or years before being transmitted, causing a very heterogeneous
signal that may fail to link viral evolution to the number of
infections. For example, for a chronic infection like HIV, the
consensus sequence in an individual changes over time, even
without any onward infections taking place. Therefore, particu-
larly for chronic viral infections, population-level viral evolution
is likely both affected by the number of infected individuals, and
the generation time of the infection (the average time to pass on
the infection)®’.

In the past, numerous approaches have been published, with
the aim to estimate the effective population size from genetic
properties (reviewed in refs. 3839). A variety of methods utilize
the information of temporal changes in allele frequency (reviewed
in ref. 38), while others build on population genetic theory and
phylodynamic reconstruction*®-42, GInPipe is inspired by the
recent works of Khatri and Burt?’, which has foundations in
population genetic theory. Khatri and Burt derived a method to
infer the current effective population size with soft selected
sweeps from fixated mutations of different origins. They derived a
simple function of the mean number of origins and the current
allele frequency.

In contrast to ref. 27, we are interested in the history of the
effective population size. Therefore, we seek to assess the effective
population size per time instance, using time-stamped sequences
that are assigned to bins of temporally adjacent sequences. For
each bin, we investigate the current population. We utilize the
number of haplotypes as an approximation for the mutational
input. Akin to the equation in Khatri and Burt?’, the raw evo-
lutionary signal is put in relation to the number of mutants in
the data set, which facilitates the usage of the method with
incomplete data. Essentially, GInPipe considers snap-shots of
inter-patient evolution to estimate a mutational input parameter
¢(2). The latter is proportional to the effective population size,
which correlates with the incidence. From the set of time-
dependent incidence correlates ¢, the entire incidence history
¢(t) can be reconstructed.

We assessed the suitability of GInPipe using in silico simulated
outbreaks, in comparison with phylodynamics and by comparing
to reported case statistics.

Using simulated data, the method robustly reconstructed
incidence histories (Fig. 1). It also performed well with incom-
plete data, and when the sampling rate changed over time
(Supplementary Note 1, section SN.1.7-8). Selection within a
realistic range had no influence on GInPipe’s ability to recon-
struct incidence histories (Supplementary Note 1, section
SN.1.14). However, we found that GInPipe may become less
accurate when too few viral sequences are available. In situations,
where the evolutionary signal is diminished, such as biased
sampling of sequences by their similarity, the incidence correlates
¢ decreases. This can become a problem, if the sampling strategy
changes over time, for example from outbreak investigations to
more representative sampling strategies. Likewise, if the pan-
demic was purely driven by a few super-spreaders, the method
may not work, because the viruses transmitted from the super-
spreader may be clonal, and hence the evolutionary signal may
vanish. In essence, if the sampling (and thus the evolutionary
signal) is severely distorted, the method will be affected. However,
this limitation with regards to biased sampling applies to all
methods available (serology, wastewater analysis, phylodynamics,
diagnostics). Interestingly, when foreign sequence variants were
introduced in the simulations (Supplementary Note 1, section
SN.1.12) and subsequently transmitted onward, the performance
of the method was not affected. In the extreme case, when we
modelled large frequencies (>10%) of introductions, which were
not transmitted onward in the community, GInPipe slightly
overestimated incidences.
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Based on these analyses, we currently view the proposed
method as empirical confirmation that for SARS-CoV-2 an evo-
lutionary signal exists, from which the incidence trajectory can be
deduced. In the future, we intend to thoroughly advance the
theoretical foundation for a precise quantification of a sufficient
evolutionary signal. We also plan to make the pipeline more
robust by developing filters that recognize abrupt, sampling
related, changes in the evolutionary signal that could affect the
accuracy of GInPipe. The latter could be achieved by investigating
the trade offs between inference of a signal and the temporal
resolution of the trajectory.

We also compared the method with epidemiological estimates
from phylodynamic reconstruction using BDSKY?3 in BEAST22°,
shown in Fig. 2. Bayesian phylodynamic methods use Monte
Carlo Markov Chain (MCMC) or similar techniques to allow for
a Bayesian estimation of phylogenetic relatedness of genomes, by
both estimating evolutionary parameters, as well as parameters
governing an underlying epidemiological model*3#4. The MCMC
sampling procedure makes phylodynamic inference computa-
tionally demanding and often requires to down-sample data sets.

When the epidemiological model entails time-varying para-
meters, changes in the effective reproduction numbers R.(7) can
be computed. However, to enable their estimation (practical
parameter identifiability), parameters of the underlying epide-
miological model are typically considered to be piecewise con-
stant or to change smoothly. In Fig. 2, we show the phylodynamic
estimates of the effective reproduction numbers R¥45T(7). Cor-
responding reproductive numbers R?(7) were computed with
GInPipe by applying the method of Wallinga-Teunis®? to the
estimated incidence correlates ¢(f). We compared the medians
over the temporal windows used in the phylodynamic analysis.
Overall, this methodological comparison yielded highly con-
gruent predictions, with the exception of Switzerland in the first-
(mid March-May 2020) and final intervals (mid September
2020-January 2021). The ETH Zurich provides a visualization for
the daily R, estimates, based on reporting data (https://ibz-
shiny.ethz.ch/covid-19-re-international/). The ETH data, simi-
larly to our daily R? estimates with GInPipe, shows a peak,
followed by a decline in the daily R, for the first interval. This
could explain why the median R? is only slightly smaller than 1 in
this first interval, unlike the BEAST?2 estimate, which is =0.6. For
the final intervals (mid September 2020-January 2021) Rf esti-
mates fluctuate around- or slightly above R.(f) =1, in line with
the predictions of the ETH, and slightly below the BEAST2
estimate that resulted in a median R, around 1.2. For the sake of
this comparison, a relatively crude transmission cluster detection
method was employed for the phylodynamic analyses, which may
have caused a slight bias in the estimated effective reproduction
numbers.

Overall, it appears that both methods yield similar results with
respect to inferring the pandemic trajectories in the majority of
cases. The power of GInPipe lies in the swift reconstruction of
incidence histories with a fine temporal resolution, without
requiring phylodynamic inference, construction of a multiple
sequence alignment, down-sampling, clustering by, e.g., lineages,
or masking of problematic sites in the virus genomes. Moreover,
GInPipe performs robustly, even in case of large proportions of
introduced variants, which would also include lab-specific errors
(Supplementary Note 1). However, R, estimation is obviously
only a side-product of phylodynamic inference, which has many
more applications such as the identification and analysis of
transmission clusters#>46, which GInPipe is not suited for. Hence,
the two approaches could complement one another.

To simplify the use of GInPipe, we provide an automatic
workflow that can be directly applied to data downloads from
GISAID or the COVID Data Portal. The execution time appears

to scale linearly with the number of sequences to be analyzed
(=1500 sequences per minute on a 2.3 Ghz computer with 2
cores), Supplementary Fig. 4.

When we applied GInPipe to available GISAID data from
Denmark, Scotland, Switzerland, Victoria/Australia (Fig. 3), as
well as Japan, Chile, India and South Africa (Supplementary
Fig. 3), the reconstructed incidence histories appear reasonable
when compared with the daily numbers of new reported infec-
tions. A remarkable exception is India. For India, the recon-
structions indicate a rapid increase in November and high-level
ongoing spread from December 2021 until the reported onset of
the second wave in early 2021. This time span could coincide with
the time point at which the delta variant may have emerged,
which is believed to have caused the second massive wave in
SARS-CoV-2 infections in India. For Chile, GInPipe estimates
fairly stable (high) incidences between July 2020 and February
2021. However, with regards to incidence reconstructions in
Chile, sequence sampling between June 2020 and April 2021 is
extremely scarce. Accordingly, the uncertainty in GInPipe’s
reconstructions is large (as indicated by the dashed lines in
Supplementary Fig. 3).

For Denmark, reconstructed incidence histories match the
reporting data quite well. Of the analyzed countries, Denmark
conducted the largest number of SARS-CoV-2 tests per capita
(see also P(tested) in Supplementary Fig. 2). This could imply that
the pandemic was relatively well tracked, as also suggested by
relatively small changes in the diagnostic rate (Fig. 4). Moreover,
a large fraction of the diagnosed cases were sequenced, providing
a comprehensive genomic profile of the virus population.

For the first wave in Scotland and Victoria, we determined a
much higher incidence than reported. Notably, the number of
SARS-CoV-2 tests per capita was very low in Scotland, as well
as in Victoria until May 2020 (P(tested) in Supplementary
Fig. 2). Thus, a large proportion of infected individuals may not
have been diagnosed during this time. In Victoria and Scotland,
testing capacities were increased in May, i.e., after the peak of
the first wave.

Another striking difference of our predictions in comparison to
the reported cases is that GInPipe indicates a rise of infections in
August 2020 in all European countries. Notably, this increase in
infections coincides with the introduction and community spread of
B.1.177 (20E EU1) in most Western European countries as sug-
gested by phylodynamic analyses*”48, Our results, when compared
with the reported cases, therefore imply an under-reporting of cases
during the onset of community transmission of B.1.177.

Quantifying case detection is usually not feasible without
knowing, or approximating the proportion of infected indivi-
duals (compare Eq. (2)). In order to do so, others have used
mathematical models to predict the proportion of infected
individuals>#® and with this, to estimate the level of under-
reporting of SARS-CoV-2. However, these mathematical
models cannot be fitted to the reported cases under the pre-
sumption of an unknown trajectory of under-reporting. It,
therefore, remains extremely difficult to parameterize suitable
models for the task of assessing under-reporting, in particular
for non-monotonic pandemic trajectories.

Random testing may inform the number of incident, as well
as asymptomatic infections®’. Yet, usually only snap-shots of the
incidence may be derived, which are insufficient to parameterize
the aforementioned models. Moreover, it is not clear, whether
the samples in the random testing scheme were representative.
Sero-prevalence studies remain the gold-standard to estimate
the cumulative number of infections>4%, as well as cumulative
under-detection. Nevertheless, these studies only provide very
coarse time resolution (if any) and require large sample sizes for
robust analysis.
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A methodologically related approach uses a semi-Bayesian
approach to assess under-detection in the US°!. To enable esti-
mation, the probability of case detection is constrained by the
assumption of particular prior distributions.

With regards to the aforementioned approaches, our method
to quantify case detecting profiles has the advantage that no
complex mathematical modelling is needed, and no constraints
are necessary. Instead, we use information about the conducted
tests and the test positive rate, in combination with the incidence
correlate ¢. This makes the proposed approach simple, inter-
pretable and independent of additional assumptions.

Using this method, we observed that broad testing with little,
or no suspicion of SARS-CoV-2 infection coincides with apparent
under-reporting of infections from the second quarter of 2020.
This coincides with a drastic decrease in the proportion of
positive test results. From the latter, it is possible to compute the
conditional probability that a tested person is actually infected
(P(inf | tested), Supplementary Fig. 2). A drop in P(inf | tested)
coinciding with a steady amount of tests can negatively affect the
probability to detect infected individuals P(tested | inf), which
may have happened in the European summer of 2020. In other
words, the scarce testing resources available during that time, may
not have been employed in the most effective way. This suggests
that it may be advisable to focus on testing symptomatic indivi-
duals when testing capacity is low.

Nevertheless, the apparent under-reporting was overcome
relatively quickly by either increasing testing capacities (Den-
mark, Scotland, Victoria) or re-focusing capacities or both
(Switzerland), Fig. 4. Interestingly, our method predicts a decline
in case detection in Switzerland after the broad introduction of
antigen self-testing in November 2020. A potential explanation
for this observation is that only a fraction of positive antigen self-
tests is confirmed by PCR and hence enters the Swiss reporting
system. At the time of writing, the final interpretation of this
observation is still unclear and will require further analysis.

In summary, we have developed a method that allows to
reconstruct incidence histories solely based on time-stamped
genetic sequences of SARS-CoV-2. We implemented the method
in a fully automated workflow that can be applied to publicly
available data. Moreover, this method can be used to assess the
impact of testing strategies on case reporting. Finally, we envision
that the method will be particularly useful to estimate the extent
of the SARS-CoV-2 pandemic in regions where diagnostic sur-
veillance is insufficient for monitoring, but may still yield a few
samples for sequencing. In some of these regions pandemic
control may be impossible or cause more harm than benefit>? and
hence these regions may constitute reservoirs for the emergence
of novel SARS-CoV-2 variants. Gaining insight in the pandemic
dynamics in these regions through alternative methods, such as
GInPipe, could yield valuable information that helps to direct
global SARS-CoV-2 control efforts.

Methods

Data and data pre-processing. Sequences and meta data for Denmark, Scotland,
Switzerland, and Victoria (Australia) were downloaded from the GISAID EpiCoV
database. Sequences, where only the year of collection was provided were omitted.
If year and month are specified, the 15th day of the month was added to the
meta data.

The retained sequences were individually mapped to the reference (NCBI
Wuhan Reference Sequence: NC_045512.2) with minimap2 version 2.17 (r941),
allowing up to 10% of mismatches®. From the mapping files (SAM), we deduced
the nucleotide substitutions for each sequence. The current version of the pipeline
ignores indels. If ambiguous codes contain the reference base, they are replaced by
the reference (e.g. ‘R’ would be replaced by ‘A’, if ‘A’ is the reference base). If an
ambiguous code does not contain the reference, one of the bases defining the
ambiguous code is randomly chosen. In our analysis, point mutations appearing
less than three times in the whole data set were filtered out, as they may occur due
to sequencing errors®%. However, this is a user-defined filter in GInPipe. Changing

this filter has a scaling effect on the incidence correlate (changing the slope of the
linear correlation).

Construction of temporal sequence bins. SARS-CoV-2 sequences were sorted
chronologically by collection date and assigned to temporal bins b in a redundant
manner. We subdivided the sequence set into bins of

®  equal size (proportions of 2, 5, 7% of all samples)
®  spanning an equal amount of days (10, 15, and 20, and one calendar week).

In general, the binning strategy should be chosen such that the bins contain
enough mutational information (sequences), while allowing sufficient temporal
resolution (such that, e.g., peaks and valleys within the population dynamic can still
be captured).

In this application, bins that contain a proportion of sequences should span at
least 3 days and maximally 21 days, and bins that span a predefined time period
should contain at least 15 sequences. The date assigned to a bin is the mean
collection date of the comprised sequences.

The redundant binning (re-sampling) allows to evaluate cases where there is
insufficient data along the time line (Fig. 1a), and makes the proposed method
statistically more robust to outliers, Supplementary Note 1.

Incidence correlate ¢,,. The proposed method is inspired by the work of Khatri
and Burt?’, who derived a simple relation between the mean number of inde-
pendent origins of soft selective sweeps in a population sample 7, the current
number of an allele m and mutational input, i.e., the scaled (haploid) effective
population size 8= 2N, y, with y denoting the mutation rate:

7(t) = 0 log (1+7).

Unlike Khatri and Burt, who aim at estimating the recent effective population
size utilizing the recurrent mutations which have been fixated in the population, we
seek to reconstruct the history of incidences of a population over time. We adapted
the equation accordingly, also under the presumption that the de novo occurrence
of mutations is driven by random chance events, whose likelihood may increase
with the number of infected individuals>>>°. Seeking to estimate the incidence
correlates ¢ = ¢ - N.g; with the incidence being equivalent to the effective population
size Negp, scaled by a constant factor ¢, we parameterize the equation as follows: For
each temporal bin b we estimate incidence correlates ¢, at time f;,. From the
sequences comprised in bin b, i.e. dated within a certain time frame Ad,, (Fig. 1a), we
infer the number of haplotypes hj;, and the total number of mutant sequences m;, in
the bin (Fig. 1b). The mutations are determined with respect to a given reference
sequence. In the original equation, we replace the mean number of origins 7 with
the number of distinct variants (haplotypes) h;. In each temporal bin, however,
haplotypes and mutants are accumulated over the time span Adj. To correct for
biases that result from this accumulation, especially for large time spans, we

normalize the inputs ;, and m;, using a logistic function w;, = (log(\/Ad,) + 1)_].
The parameter ¢, is derived by numerically solving

¢ = argmin hy - w, — ¢, log <1+%>. )
b b

Reconstructing the incidence history. Incidence point estimates ¢, are assigned
to the mean collection date ¢, of the sequences contained in the bin. We applied a
moving average filter with window size 7 days to derive a continuous, smoothed
trajectory (Fig. 1c). For uncertainty estimation, we sub-sampled ¢ trajectories 1000
times, by randomly leaving out 50% of the point estimates and reconstructed the
trajectory by smoothing and linear interpolation between the remaining point
estimates.

Effective reproduction number R.. Based on the reconstructed incidence his-
tories, the effective reproduction number R.(t) was computed using the established
method by Wallinga and Teunis® (R package RO version 1.2.67). Daily estimates
of ¢ were assigned a pseudocount of one and rounded to the nearest integer. For
the generation time distribution g(7) of SARS-CoV-2, we chose the Gamma dis-
tribution with a mean of 5 days and a standard deviation of 1 day%8>°.

Simulation study. To evaluate the proposed incidence reconstruction method, we
generated test data by stochastically simulating the evolutionary dynamics of a viral
outbreak using a Poisson process formalism. We started with N(t,) = 50 copies of a
random sequence of nucleotide length L = 1000, that evolved in 120 discrete time
steps, depending on a population dynamic. A succeeding generation was modelled
to consist of N(t + 1) ~ Poiss(N(t) . p(t)) sequences (=effective population size),
where we chose a sinusoidal rate p(t) = %2“) + 1.02. Thus, N(t + 1) sequences
from the actual generation were randomly chosen with replacement and copied
over to the next generation. We then introduced rpy¢ ~ Poiss (i - N(t + 1) - L)
random mutations into these sequences with per site mutation rate 4 = 0.0001.
For each generation, a fasta file with all sequences was stored and used as input
for the incidence reconstruction pipeline. We ran 10 stochastic simulations with
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the settings stated above to compared the ground truth effective population sizes
N(#) from our simulations with the corresponding inferred incidence trajectories ¢.

In Supplementary Note 1, we evaluated scenarios where only a fraction of the
sequences were sampled (10-90%) and, to rule out sampling biases, we sub-
sampled equal amounts of sequences at each time point, independent of N(f). In
addition, we assessed the effects of similarity-biased sampling, as well as time-
dependent sub-sampling. In further evaluations, we examined GInPipe’s
performance with simulations in continuous time, non-smooth dynamics with
sudden changes of population size, under selective pressure, and with a range of
mutation rates. Moreover, we assessed whether our predictions were affected by the
introduction of unrelated sequence variants into the population.

Phylodynamic analyses. Phylodynamic analyses were performed on subsampled
sets of the data described above using a birth-death-sampling process as imple-
mented in the BDSKY?28 model (version 1.4.6) in BEAST22? (version 2.6.3) with
BEAGLE 3.1.2. Here the precise collection day of sequence samples with only
information on year and month was inferred during the analysis and not a priori
set to the 15th. The full data sets were first grouped by Pango lineage (Pangolin
version 2.3.8)9061 and then subsampled by randomly selecting a specific percentage
of sequences per week to speed up the analyses (Victoria: 10% for lineage D.2, 50%
for other lineages; Switzerland: 50% for all lineages; Scotland: 20% for all lineages;
Denmark: 5% for all lineages). In Victoria, lineage D.2 constitutes more than 80%
of all sequences in the original data set. Hence, we used a smaller percentage of D.2
lineages, to retain sufficient non-D.2 lineages after subsampling. In addition,
sequences were excluded if they belonged to a lineage with less than two repre-
sentatives in the analyzed set and to ensure separation of consecutive epidemic
waves lineages with periods longer than 75 days without any sample were split into
separate clusters. Retained sequences were aligned to the reference genome
(Genbank-ID MN908947.392) in MAFFT®3 (version 7.453) using the -keeplength
option and problematic sites were masked by replacing them with N in the
alignment®4.

For each remaining approximate cluster a separate phylogeny was
reconstructed. A strict clock model with a fixed rate of 8 x 10~* substitutions per
site per year and an HKY substitution model were used. In the embedded
transmission model, transmission (1), recovery (4) and sampling () rates were
assumed to be piecewise constant with changes allowed either when intervention
measures changed, or in a uniform manner (Supplementary Note 2). The
reproductive number R.(f) = A(t)/(u(t) + y(t)) was drawn from a log-normal
distribution R,(t) ~ log N (0,4), the rate to become non-infectious
8(t) = u(t) + y(t) from a narrow normal distribution with &(¢) ~ N(27.11,1)
which is changed to A/ (48.8, 1) after first control measures are implemented in the
respective area. The sampling proportion s(¢) = y(t)/(y(t) + u(t)) was a priori
assumed to arise from a uniform distribution with a lower limit of zero and the
upper limit determined by the ratio of analyzed sequences over diagnosed cases
s~ U(0,q;/d;) where d; is the number of diagnoses and g; the number of
sequences included in the analysis in interval i. To account for the lineage-specific
subsampling, a separate sampling proportion for lineage D.2, sp,, was modelled in
the analysis of the Victoria data. A uniform distribution with an upper limit
corresponding to the subsampling percentage was thus used as prior distribution of
the D.2 specific-, as well as general sampling proportion s, i.e., s, ~ U(0,0.1) and
s, ~ U(0,0.5). Setup files for all four analyses can be found as Supplementary Files.

MCMC chains were run until all parameters converged, which took about 300
million steps for analyses of data from Denmark, Scotland and Switzerland.
Because of the large D.2 cluster consisting of more than 900 sequences, about 750
million steps were needed for convergence using data from Victoria. On an Intel
Xeon CPU E5-2687W (3.1 Ghz; 2 x 12 cores), this corresponded to about 15h to
run one analysis for at least 300 million MCMC steps (about 3min/Msample). Log
files were assessed using Tracer® (version 1.7.1) and are included as
Supplementary Files. TreeAnnotator (version 2.6.0) was used to summarize the
posterior sample of phylogenetic trees to a maximum clade credibility tree using
median node heights. Lineage through time plots of all summary trees were
calculated using the R package ape® (version 5.4-1) and are shown in
Supplementary Note 2.

To reconstruct daily incidences for Scotland as shown in Supplementary Fig. 1,
epidemic trajectories over time for each approximate cluster were simulated using
the particle filtering approach Epilnf3! (version 7.5.2) using the rates inferred
during the BDSKY runs with 1000 particles. The full area-specific incidence was
then calculated as the sum of all cluster-specific incidences and scaled to represent
daily incidence estimates.

Relative case detection rate. We used GInPipe to infer changes in SARS-CoV-2
case detection. Let us denote by Py(tested|infected) the proportion of infected
individuals that are actually diagnosed with the virus in week . According to Bayes’
theorem we have

P,(infected|tested) - P,(tested)

P,(tested|infected) = B, (infected)
t

@

where Pj(infected|tested) denotes the proportion of tested individuals that are
infected, P (tested) the proportion of individuals that are tested and P,(infected)

the proportion currently infected in week t. We calculate P,(infected|tested) =
Tp0s —(1—spec)
Sens—(1—spec)
clinical sensitivity sens = 0.7 and specificity spec =0.999 of the diagnostic tests®”.
For calculating the probability of being tested P(tested), we considered linear-,
Poisson-, and Binomial models, all of which yielded identical results. For all
illustrations herein, we used the latter, yielding P,(tested) = 1 — (1 — 1/pop)
with pop denoting the population size in the respective regions or country and 7,
denoting the number of tests conducted in the respective week.
The probability of currently being infected P(infected) ~ N

0]
However, since we know that N.g is linearly correlated with the incidence estimate
[

¢, we have P(infected) ~ c - pop Putting everything together we can estimate the

from the positivity rate 7, of the conducted tests, corrected for the

n
>

is unknown.

relative case detection rate:

7,0s — (1 — spec
P,(tested|infected) - ¢ = POP Tpos ( pec)

1\"™
e T - (1-—]) ).
¢, sens— (1 — spec) ( ( pop) >
Sources for the weekly number of performed tests, as well as test positive rates are
stated in Supplementary Note 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

SARS-CoV-2 sequences were downloaded from the GISAID EpiCoV database?324
(www.gisaid.org; accession codes in Supplementary Note 4). The Wuhan Reference
Sequence was downloaded from NCBI, accession number NC_045512.2%8. Source data
are provided with this paper.

Code availability

All methods were implemented in Python version 3.9 and R version 4.0. A fully
automated workflow has been generated using Snakemake version 6.6.1% and is available
from hittps://github.com/KleistLab/GInPipe”°.
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