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INTRODUCTION

Immune checkpoint therapy, specifically antibodies that tar-
get PD- 1 or its ligands, blocks the interaction between the 
inhibitory receptor PD- 1 expressed on T cells and its ligands 
PDL1 and PDL2 [1, 2]. It is well established that PDL2 
binds to PD- 1 with a higher affinity than does PDL1 [1, 3, 
4]. Expression differences between these two ligands are also 
known, with PDL1 expression being expressed more ubiq-
uitously than PDL2 [3, 5– 7]. Though the expression of both 
ligands is upregulated under inflammatory conditions, the 

differences in pattern of expression, with PDL2 restricted to 
antigen presenting cells, support differential functional sce-
narios or signalling for the two ligands.

High expression of PD- 1  ligands on tumour cells rep-
resents a hijacking of the immune checkpoint system that 
dampens T cell- mediated tumour clearance. Despite the suc-
cess of PD- 1 targeting checkpoint inhibitors in near 30% of 
patients with an array of tumour types, many patients do not 
respond to the treatment [8]. Within those patients that do 
not respond, clinical evidence is mounting, suggesting that 
a significant portion experiences an acceleration of disease 
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Summary
Ligation of the inhibitory receptor PD- 1 on T cells results in the inhibition of numerous 
cellular functions. Despite the overtly inhibitory outcome of PD- 1 signalling, there are ad-
ditionally a collection of functions that are activated. We have observed that CD4+ T cells 
stimulated through the T- cell receptor and PD- 1 primarily do not proliferate; however, 
there is a population of cells that proliferates more than T- cell receptor stimulation alone. 
These highly proliferating cells could potentially be associated with PD- 1- blockade un-
responsiveness in patients. In this study, we have performed RNA sequencing and found 
that following PD- 1  ligation proliferating and non- proliferating T cells have distinct 
transcriptional signatures. Remarkably, the proliferating cells showed an enrichment of 
genes associated with an activated state despite PD- 1 signalling. Additionally, circulat-
ing follicular helper T cells were significantly more prevalent in the non- proliferating 
population, demonstrated by enrichment of the associated genes CXCR5, CCR7, TCF7, 
BCL6 and PRDM1 and validated at the protein level. Translationally, we also show that 
there are more follicular helper T cells in patients that respond favourably to PD- 1 block-
ade. Overall, the presence of transcriptionally and functionally distinct T cell populations 
responsive to PD- 1 ligation may provide insights into the clinical differences observed 
following therapeutic PD- 1 blockade.
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following treatment. This observation of accelerated disease 
has been termed hyperprogressive disease and is estimated 
to occur in up to 10% of patients treated with PD- 1 targeting 
therapy [9– 17].

The immune checkpoint field has progressed to identify-
ing numerous factors predictive of responsiveness to PD- 1 
blockade. The contribution of the T- cell compartment can 
be better understood by identifying differences in PD- 1 sig-
nalling [18]. There is an increased understanding that PD- 1 
is not universally inhibitory to all T- cell function. Similar 
to CTLA- 4 [19– 22], PD- 1  may activate individual T- cell 
functions or even distinct T- cell subsets [23]. More recently, 
using a phosphoproteomic approach, we showed that not all 
the pathways downstream of PD- 1 are inhibitory, and some 
unique cellular functions are clearly stimulated by this ‘inhib-
itory’ receptor [2]. Moreover, the expression level of PD- 1 is 
differential among the different T- cell subsets, and this may 
correlate with potency of PD- 1 signalling [24].

A majority of previous efforts have focused on CD8+ T 
cell- mediated cytotoxicity as the key to understanding immune 
checkpoint responsiveness. While cytotoxic CD8+ T cells are 
of critical importance to mounting an effective anti- tumour 
immune response [25, 26]. the contribution of other T cell sub-
sets, including CD4+ subsets, cannot be overlooked. In fact, 
CD4+ T cells expressing cytolytic effector proteins were found 
to be clonally expanded in tumours and could kill autologous 
tumours in vitro [26– 30]. The gene signature of these cytotoxic 
CD4+ T cells was associated with response to anti- PD- 1 [26]. 
Of particular interest, these T cells were found in proliferating 
and non- proliferating states within the tumour [26].

In order to better understand the complete effects of 
PD- 1 signalling on T- cell function, and the possible hetero-
geneity among T cells, we sorted T cells based on function 
into proliferating and non- proliferating populations. RNA 
sequencing on these two populations reveals a distinct tran-
scriptional profile in T cells that are functionally stimulated, 
specifically enhanced proliferation, following PD- 1 ligation.

MATERIALS AND METHODS

Isolation of CD4+ human T cells and T- cell 
proliferation assay

Mononuclear cells were isolated from whole blood from 
healthy donors by Lymphoprep density gradient (Stemcell 
Technologies). CD4+ cells were then purified by CD4 micro-
beads (Miltenyi) and allowed to rest in enriched media (RPMI 
1640, 10% heat inactivated fetal bovine serum, 1% penicillin– 
streptomycin, 1X non- essential amino acids, 1mM sodium 
pyruvate and IL- 2 40 IU/mL) for 72 hours. For plate bound stim-
ulation, 48- well plates (Corning) were coated with either 5 µg/
mL anti- CD3 (UCHT1, Biolegend) and 5 µg/mL human serum 

albumin, 5 µg/mL anti- CD3 and 5 µg/mL PDL1 (Biolegend), or 
5 µg/mL anti- CD3 and 5 µg/mL PDL2 (Biolegend) for 16 hours 
at 4 degrees. Prior to stimulation, 5 x 105 cells per condition 
were stained with 1 µM carboxyfluorescein succinimidyl ester 
(CFSE; Biolegend) for 20 minutes at 37℃ protected from light. 
The CFSE was neutralized with warm media, and the stained 
cells were washed in PBS, and resuspended in enriched media 
without IL- 2 and containing 1  µg/mL anti- CD28 (CD28·2, 
Biolegend) then added to the appropriate stimulation wells. 
Where indicated, 100 ng/mL rhIL- 15 (Biolegend) was added to 
the cells. Cells were incubated with stimulation for 5 days at 37℃ 
with 5% CO2. On day 5, cells were either sorted based on CFSE 
intensity, stained for protein expression and analysed by flow 
cytometry. Each of these end- points is detailed below.

RNA sequencing and bulk data analysis

For RNA sequencing following proliferation, CD4+ cells 
were isolated and stimulated as described above. On day 5 
of the proliferation assay, cells were collected and sorted 
(BD Influx) by CFSE fluorescent intensity into proliferating 
and non- proliferating populations (gating strategy in Figure 
S1). Sorted cells were captured directly into RNA isolation 
buffer and flash- frozen. Total RNA was isolated from sorted 
cells using RNeasy Mini Prep (Qiagen). Library preparation 
(Illumina ultra- low input RNA protocol) and sequencing 
were performed by Genewiz with mRNA enrichment, mRNA 
fragmentation, random priming, first-  and second- strand 
cDNA synthesis, end repair, 5’ phosphorylation, dA- tailing, 
adaptor ligation, PCR enrichment and paired- end sequenc-
ing using Illumina HiSeq 3000, PE 2x150. The RNA- Seq 
data were analysed using Basepair software (https://www.
basep airte ch.com) with a pipeline that included the follow-
ing steps: reads were aligned to the transcriptome derived 
from UCSC genome assembly (((hg19))) using STAR [31] 
with default parameters. Read counts for each transcript were 
measured using featureCounts [32]. Differentially expressed 
genes were determined using DESeq2 [33], and a cut- off of 
0·02 on adjusted P- value (corrected for multiple hypotheses 
testing) was used for creating lists and heatmaps. Significant 
DEGs are included in heatmaps used to depict normalized 
read counts for each gene (row). GSEA was performed on 
normalized gene expression counts, using gene permuta-
tions for calculating P- value. Molecular Signatures Database 
(MSigDB) was used to source gene sets for functional char-
acterization of select DEG [34– 40].

For subset analysis, the following gene set lists were 
used: Th1 cells CD3, CD4, CD94, CXCR3, CCR5, TBX21, 
STAT1, STAT4, IFNG, IL12R, IFNGR, IL2, LTA; Th2 cells 
CD3, CD4, CCR3, CCR4, CXCR4, GATA3, STAT6, IL4R, 
IL33R, IL17RB, CRTH2, DEC2, MAF, IL4, IL5, IL13, 
IL10, IRF4; Th17 cells CD3, CD4, CD161, CCR4, CCR6, 

https://www.basepairtech.com
https://www.basepairtech.com
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RORC, STAT3, IL17A, IL23R, IL1R, RORA, IL17F, IL21, 
IL22, CCL20, BATF, NFKBIZ, IRF4, AHR, IL26; Th9 cells 
CD3, CD4, CCR6, TCRA/B, IRF4, GATA3, STAT6, SPI1, 
IL9, IL10; Th22 cells CD3, CD4, CCR4, CCR6, CCR10, 
AHR, BNC2, FOXO4, STAT3, IL22; iTreg cells CD3, 
CD4, CD25, IL7R, FOXP3, STAT5, SMAD2; Treg cells 
CD3, CD4, CD25, CTLA4, GITR, HELIOS, FOXP3; Tfh 
cells CD3, CD4, CD69, CXCR5, CCR7, STAT3, BCL6, 
IL6, IL7R, TCF7, LEF1, ICOS, IL12, STAT4, NSG2, ID3, 
P2RX7, CD83, PACSIN1, RGS10, POU6F1, SYNPO, 
TOX2, SH2B3, IL6RA, IL6ST, BCL2, NT5E, EGR2, 
CCND3, SLAMF6, CD200, CXCL10, PDCD1, CD40L, 
OX40, IL21, IL23, TGFB, IL21R, SH2D1A, IL2RA, 
IL2, PRDM1, HAVCR2, TMEM163, RAI14, CDKN1A, 
BACH2, CAPN3, TCF12.

Flow cytometry and sorting

For protein expression analysis following proliferation, CD4+ 
cells were isolated and stimulated as described above. On day 
5 of the proliferation assay, cells were collected and stained 
with the following antibodies for surface protein expres-
sion: CD3 APC- Cy7 (HIT3a, Biolegend), CD4 AlexaFluor 
700 (RPA- T4, Biolegend), CCR7 PE Dazzle 594 (G043H7, 
Biolegend) and CXCR5 Brilliant Violet 605 (J252D4, 
Biolegend). Following surface staining, cells were fixed and 
permeabilized with the True- Nuclear Transcription Factor 
Buffer Set (Biolegend) then stained with the following anti-
bodies for transcription factor protein expression: TCF1 PE 
(7F11A10, Biolegend) and Blimp1 AlexaFluor 647 (646702, 
R&D Systems). Alternatively, on day 5 of the proliferation 
assay, cells were collected and stained with the following anti-
bodies for surface protein expression: CD3 APC- Cy7 (HIT3a, 
Biolegend), CD4 AlexaFluor 700 (RPA- T4, Biolegend), CD38 
PECy7 (HB- 7, Biolegend), CD162/SELPG PE Dazzle 594 
(KPL- 1, Biolegend), CD109 PE (W7C5, Biolegend), CD58/
LFA- 3 APC (TS2/9, Biolegend), CCR2 BV510 (K036C2, 
Biolegend), CD86 BV758 (IT2·2, Biolegend), CD274/PDL1 
BV650 (29E.2A3, Biolegend), PD- 1 BV711 (EH12.2H7, 
Biolegend) and CD49D/ITGA4 BV605 (9F10, Biolegend). 
Flow cytometry acquisition was done using the BD Fortessa 
and the BD LSRii with BD FACSDiva and data were analysed 
by FlowJo 10.1r7 and GraphPad Prism 8.

For restimulation experiments, CD4+ cells were isolated 
and stimulated as described above. On day 5 of the prolif-
eration assay, cells were collected and sorted (BD Influx) 
by CFSE fluorescent intensity into proliferating and non- 
proliferating populations as was described for RNA isolation. 
In this case, sorted cells were allowed to rest for 72 hours 
in enriched media. After 72 hours, cells were CFSE stained 
and stimulated with plate bound antibodies and ligands as 
described in the proliferation assay. On day 5 of the second 

proliferation assay, cells were collected and stained for sur-
face protein and transcription factor expression as described.

Luminex

Primary human CD4+ T cells were isolated from peripheral 
blood and stimulated by anti- CD3 and anti- CD28 with or 
without PDL2. Supernatants were collected after 48 hours, 
and the levels of secreted cytokines were assayed by the 
Luminex 20 plex assay.

Single- cell RNA data analysis

We analysed a publicly available data set GSE12 0575 [41] 
using Bio Turing Browser according to the author's pipeline. 
Tfh were defined based on the expression of the following 
markers: CD3, CD4, CD69, TCF7, ICOS, IL6ST, CCR7, 
LEF1, IL7R, CD200, TOX2, SH2D1A and CCND3 [42]. 
Responder (28 samples from 14 patients) and non- responder 
(32 samples from 16 patients) groups were treated with anti- 
PD- 1 antibody (Pembrolizumab), with matched pre-  and 
post- treatment samples. Each of the tumour samples was 
characterized based on radiologic assessments into progres-
sion/non- responder or regression/responder. Tfh populations 
were cross validated with the other publicity available data 
sets (GSE14 4469 and GSE14 4735).

Ethics

The study was approved by the Institutional Review Board 
at Columbia University Medical Center, and all donors pro-
vided informed consent.

Statistical analysis

Graphs depict mean ±SEM. Statistical analyses for graphs 
were performed using non- paired Student's t- test using 
GraphPad Prism 8.

RESULTS

Proliferating T cells following T- cell receptor 
(TCR), CD28 and PDL1/L2 stimulation have a 
distinct transcriptional profile

Peripherally circulating primary human CD4+ T cells pro-
liferate in response to stimulation with anti- CD3 and anti-
 CD28 antibodies, as demonstrated by a reduction in CFSE 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120575
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144469
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144735
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fluorescence with each doubling (Figure 1a). PD- 1  liga-
tion by either PDL1 or PDL2 results in an overall inhibi-
tion of proliferation, as demonstrated by an increase in cells 
that have undergone one or fewer doublings (Figure 1a,b; 
Figure S1). Focusing on those cells that proliferate follow-
ing PD- 1 ligation reveals a population that underwent more 
than 5 doublings in response to PDL1 or PDL2, an additional 
doubling compared to anti- CD3 and anti- CD28 alone. This is 
demonstrated by the lower CFSE level in proliferating cells 
stimulated with PDL1 or PDL2 (Figure 1a (5+ doubling), c). 
With the goal of identifying differences between the prolif-
erating cells with 5+ doublings and non- proliferating (0– 1 
doubling) cells, we sorted the two populations following 
stimulation with anti- CD3 and anti- CD28 antibodies in com-
bination with either PDL1 or PDL2 (gating strategy shown in 
Figure S2) and performed bulk RNA sequencing (Table S1– 
S3). These two populations are referred to as proliferating 
and non- proliferating, and the combined stimulations with 
anti- CD3, anti- CD28 and either PDL1 or PDL2 are referred 
to as PDL1 or PDL2 stimulation for additional analysis.

We analysed differential gene expression between pro-
liferating and non- proliferating cells from two individuals. 
Principal component analysis (PCA) based on the differen-
tially expressed genes (DEG) reveals that the transcriptional 
profile of proliferating cells clustered together, distinct from 
that of non- proliferating cells for all donors analysed (Figure 
1d). Through this analysis, we identified 625 (PDL1) and 
1505 (PDL2) significant DEG with an adjusted P value ≤0·02 
and log2 fold change ≤ −1 or ≥1 (Figure 1e,f,g,h). These 
analyses revealed that the proliferating and non- proliferating 
cell populations exhibit unique transcriptional profiles.

We next sought to identify differences in DEG between 
PDL1 and PDL2 stimulation. While there was overlap be-
tween the two ligands in genes that were lower in prolif-
erating cells (344 common DEG), there were also unique 
genes identified (60 (PDL1); 535 (PDL2)) (Figure 1i). 
Similar analysis of genes that were higher in proliferating 
cells again shows overlap (175 common DEG) and unique 

genes (46 (PDL1); 451 (PDL2)) (Figure 1i). No DEG was 
altered in opposite directions by PDL1 and PDL2 (Figure 
1i). Differential gene expression analysis between non- 
proliferating cells stimulated by PDL1, and those by PDL2 
identified only 6 significant DEG (Figure 1j). The compar-
ison between proliferating cells stimulated by PDL1, and 
those by PDL2 identified even fewer genes (Figure 1k). 
The expression levels of PD- 1 and PDL2 were not signifi-
cantly different in proliferating and non- proliferating cells, 
while the expression of PDL1 (CD274) was higher in non- 
proliferating cells (Figure S3). Taken together, these initial 
comparisons suggest a distinct transcriptional profile in 
the proliferating population in response to PD- 1 signalling. 
Additionally, there is a high degree of transcriptional simi-
larity in proliferating cells or in non- proliferating cells stim-
ulated with PDL1 as compared to PDL2.

Proliferating T cells exhibit an activated 
transcriptional signature

To understand the mechanism for the distinct gene expres-
sion profile of the proliferating population, we searched 
within the significant DEG list for enrichment of functional 
gene sets. The analysis showed conserved upregulation of 
pathways associated with T- cell activation (cell activation, 
cell adhesion molecules (CAMs) and positive regulators of 
adhesion) and downregulation of pathways associated with 
T cell functional inhibition (negative regulators of activation, 
negative regulators of cell cycle) in the proliferating popu-
lation (Figure 2a,b; Figure S4a,b). Therefore, CD4+ T cells 
that are highly proliferative following PDL1 or PDL2 stimu-
lation exhibit a transcriptional profile that is not limited to 
proliferative genes, but also associated with genes related to 
other stimulatory functions such as cell activation and en-
hanced adhesion. Collectively, this clearly demonstrates that 
PD- 1 ligation has not induced an overall inhibitory state in 
these T cells.

F I G U R E  1  Proliferating T cells following anti- CD3, anti- CD28 and PDL1/L2 stimulation have a different transcriptional signature compared 
to anti- CD3 and anti- CD28. (ai). Flow cytometry of CFSE stained CD4+ human T cells stimulated with soluble anti- CD28 and plate bound 
anti- CD3 with or without PDL1 and PDL2. (b) The percentage of cells with 0– 1 doublings is shown. (c) The median fluorescent intensity (MFI) 
of cells that underwent two or more doublings is shown. Data shown in A are representative of 15 independent donors and experiments. (d) 
Principle component analysis (PCA) of transcriptional profiles of proliferating and non- proliferating cells stimulated with anti- CD3, anti- CD28, 
and PDL1 or PDL2. (e) Heatmap of significant DEG based on the same threshold criteria; proliferating and non- proliferating cells stimulated 
with anti- CD3, anti- CD28 and PDL1. (f) Heatmap of significant DEG based on the same threshold criteria; proliferating and non- proliferating 
cells stimulated with anti- CD3, anti- CD28 and PDL2. (g) Volcano plot displaying differentially expressed genes (DEG) between proliferating and 
non- proliferating cells stimulated with anti- CD3, anti- CD28 and PDL1. Thresholds are set at adjusted P- value 0·02 and log2 fold change ±1, and 
significant DEG are in blue. (h) Volcano plot displaying DEG between proliferating and non- proliferating cells stimulated with anti- CD3, anti- 
CD28 and PDL2. Thresholds are set at adjusted P- value 0·02 and log2 fold change ±1, and significant DEG are in blue. (i) Comparisons of PDL1 
and PDL2 significant DEG based on the same threshold criteria. DEG are either decreased (‘lower’) or increased (‘higher’) in proliferating cells. 
(j- k) Volcano plot displaying DEG between non- proliferating (j) or proliferating (k) cells stimulated with anti- CD3, anti- CD28 and either PDL1 
or PDL2. Thresholds are set at adjusted P- value 0·02 and log2 fold change ±1, and significant DEG are in red with the significant gene names 
indicated. Bars represent mean ±SEM; * P ≤ 0·05 [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Differences in cytokine inhibition by PD- 1 are 
associated with functional heterogeneity

To identify changes in cytokine secretion following stimu-
lation, we focused on PDL2 because all of the genes iden-
tified to be significantly differentially regulated between 
the PDL1- stimulated populations were also included in the 
PDL2 gene lists. An additional reason for the focus on PDL2 
with respect to cytokine secretion is the more robust response 
to PDL2  stimulation that we and others have observed [1, 
2]. relative to PDL1. Stimulation of primary human CD4+ T 
cells with anti- CD3 and anti- CD28 antibodies or in combina-
tion with PDL2 followed by cytokine quantification reveals 
that PD- 1  signalling has individualized effects on differ-
ent cytokines (Table S4). While IL- 2  secretion is inhibited 
by PD- 1 signalling (Figure 3a), IL- 15, a cytokine that both 
structurally and functionally is similar to IL- 2, is unaffected 
(Figure 3a). Expression of IL- 2 was not significantly differ-
ent between proliferating and non- proliferating cells stimu-
lated with PDL1 or PDL2, while others were differentially 
expressed in non- proliferating cells (Figure 3b; Figure S5a). 
Specifically, IL- 15 was enriched in the non- proliferating 
population. Population- based assays to measure cytokine se-
cretion cannot detect differences in response to stimulation 
on a cell- by- cell basis, but rather measure the net changes. 
For this reason, the secretion data taken together with the dif-
ferential expression analysis suggest that proliferating and 
non- proliferating cells may differentially regulate cytokine 
expression in response to PD- 1 ligation.

To identify a role for IL- 15 in driving CD4+ T cell pro-
liferation, we incorporated recombinant human IL- 15 into 
the stimulation. We found that the inclusion of IL- 15 did not 
change CD4+ proliferation in the context of anti- CD3 and 
anti- CD28 with or without PDL1/2; however, we observed 
a minor decrease in CFSE MFI within the total proliferating 
cells treated only with IL- 15 (Figure S5b).

Tfh cell- associated genes are enriched in non- 
proliferating compared to proliferating T cells

T cells, specifically CD4+ T cells, differentiate into dif-
ferent subsets including T helper (Th) 1, Th2, Th9, Th17, 
Th22, regulatory T cells (Treg) and follicular helper T cells 
(Tfh). To determine whether any of these subsets were en-
riched in the proliferating population, we looked for genes 
associated with these individual subsets within the DEG. 
We did not observe any association between prolifera-
tion status and genes associated with the Th1, Th2, Th9, 

Th17, Th22 or Treg subsets (Figure 4a– b). However, the 
genes associated with Tfh cells were significantly higher 
in the non- proliferating population (Figure 4c– f; Figure 
S6a,b). Importantly, the transcription factors TCF7 and 
BCL6, which are important for Tfh differentiation [43], 
were strongly enriched in the non- proliferating cells. 
Additionally, the transcription factor PRDM1, which is in-
hibitory to Tfh differentiation, was present at a decreased 
level in the non- proliferating cells.

To link these differences in RNA expression of TCF7, 
CCR7, CXCR5 and PRDM1 with protein expression and pro-
liferation status, we performed another CFSE proliferation 
assay and compared the expression of these proteins with 
CFSE fluorescence. We found that non- proliferating cells ex-
pressed more TCF1, CCR7 and CXCR5 and less BLIMP1 at 
the protein level (Figure 5a). Utilizing the surface expression 
of these proteins to identify the Tfh cell population, we show 
that Tfh cells are absent from the proliferating population 
(Figure 5b,c). Together, this supports the enriched presence 
of Tfh cells in the non- proliferating population following 
stimulation with either PDL1 or PDL2.

Patients that respond favourably to PD- 1 
blockade have more Tfh cells

Since Tfh cells were enriched among the non- proliferating 
cells, we hypothesized that in these cells the PD- 1 pathway is, 
at least primarily, inhibitory, and accordingly that these cells 
will be susceptible to PD- 1 blockade in vivo. To test this, 
we analysed a publicly available single- cell RNA sequencing 
data set (GSE12 0575) of melanoma patients pre-  and post- 
treatment with pembrolizumab, a PD- 1- targeting antibody. 
Subset analysis suggested that Tfh were 6% of mononuclear 
cells (Figure 6a). Of the Tfh identified, 64% were isolated 
from patients that responded favourably to the treatment, 
while 36% of the cells were from patients that failed to re-
spond to the same intervention (Figure 6b). Additionally, in 
comparing pre-  and post- treatment samples by patient, re-
sponders tended to have more Tfh cells pre- treatment (Figure 
6c). This suggests that the Tfh might predict response to 
PD- 1 blockade in vivo.

DISCUSSION

We have observed distinct functional instances in which 
PD- 1  ligation leads to inconsistency in inhibition. We 
propose that the differences in these observations can be 

F I G U R E  2  T cells that proliferate following PDL1/L2 stimulation have an activated transcriptional signature. (a- b) Heatmap displaying 
significant DEG between proliferating and non- proliferating cells stimulated with anti- CD3, anti- CD28, and PDL1 or PDL2 that are within the 
indicated gene sets. Thresholds are set at adjusted P- value 0·02 and log2 fold change ±1 [Colour figure can be viewed at wileyonlinelibrary.com]
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attributed to heterogeneity within the stimulated popula-
tion wherein a subpopulation of cells may be inhibited 
while another is not. Whole population- based methods of 
detection will not appreciate these differences. By sorting 
CD4+ T cells first by function before transcriptome analy-
sis, we are able to associate PD- 1 function with genetic 
signatures, and potentially identify T- cell subsets that 
respond differentially to PD- 1  ligation. We demonstrate 

that the functional phenotype of enhanced proliferation 
is present in cells co- stimulated with PDL1 or PDL2. 
Furthermore, though there were few genes differentially 
regulated between PDL1 and PDL2 proliferating or 
non- proliferating the list of DEGs following PDL2 co- 
stimulation was larger than that following PDL1. In this 
way, the PDL1 gene signature can be considered a subset 
of the PDL2 gene signature. Of course, it must be noted 

F I G U R E  3  Differences in cytokine inhibition by PD- 1 are associated with functional heterogeneity. (a) Secreted levels of IL- 2 and IL- 15 from 
primary human CD4+ T cells stimulated with anti- CD3 and anti- CD28 with or without PDL2 quantified by Luminex. (b) Heatmaps displaying 
DEG between proliferating and non- proliferating cells stimulated with anti- CD3, anti- CD28, and PDL1 or PDL2. Thresholds are set at log2 fold 
change ±1, and significant DEG with adjusted P- value 0·02 are indicated by * [Colour figure can be viewed at wileyonlinelibrary.com]
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that following this functional sort with single cell RNA 
sequencing would lend further power to this study and is a 
promising path forward.

We report here that PD- 1  ligation leads to activation of 
some T- cell functions. Through the quantification of secreted 
cytokines following stimulation of the T- cell receptor and 
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PD- 1  ligation, we demonstrate that the levels of numerous 
cytokines are decreased, while others remain elevated. In the 
case of IL- 15, we show that IL- 15 transcripts are more abun-
dant in the non- proliferating cells than proliferating cells. At 
the protein level, through Luminex, we show that there is no 
overall difference in secreted levels of IL- 15 when PDL2 is 
added to anti- CD3  stimulation. Combined, these data may 
suggest that the differential in expression from the prolifer-
ating and non- proliferating cells in the anti- CD3 and PDL2- 
combined stimulation yields no net change in IL- 15 secretion. 
We have previously reported that stimulation of the T cell re-
ceptor and PD- 1 ligation leads to increased phosphorylation 
of a number of serine and threonine sites [2]. This finding 
gives evidence for signalling downstream of PD- 1 that may 
be SHP- 2 independent. Further, some of these phospho- sites 
are associated with activation of downstream functions, while 
others are associated with inhibition of downstream functions.

The surprising observation of a population of CD4+ T cells 
with enhanced proliferation following PD- 1 ligation compared 
to T- cell receptor stimulation alone has important implica-
tions because of the essential role proliferation plays in T- cell 

function in the context of the immune response to tumours. 
Understanding the differences between the proliferating and 
non- proliferating populations holds promise for identifying 
PD- 1 signalling mediators that may enhance current therapeu-
tic targeting strategies. As a field, we now better appreciate 
the contribution of CD4+ T cells in mounting an effective 
anti- tumour immune response. Tumour- infiltrating CD4+ T 
cells are heterogeneous in subset distribution and function, 
and the gene signature of these subsets can be correlated with 
response to anti- PD- 1 [26]. Differential signalling in subsets 
is exemplified by CTLA- 4, which is an inhibitory molecule in 
most T cell subsets though plays an essential activating role in 
Treg function [44, 45]. Additionally, understanding that pop-
ulations of CD4+ T cells respond to PD- 1 ligation differently 
has implications beyond proliferation. Even the characteriza-
tion of PD- 1 expression as a marker of T- cell exhaustion is 
complex due to the fact that PD- 1 blockade could restore func-
tion in some ‘exhausted’ T cells [46]. It has been convenient to 
classify PD- 1 as an inhibitor of T- cell function; however, the 
true signalling events underlying the functional consequences 
of PD- 1 ligation are proving to be far more nuanced. Better 

F I G U R E  5  Tfh cell- associated proteins are enriched within the proliferating population. (a) Flow cytometry data with events first gated on 
CD3+ events followed by CD4+ events followed by CFSE expression level. Proliferating cells were gated as the top 5% of proliferating cells 
based on CFSE fluorescent intensity. Shown is the per cent of CD4+ cells positive for each of the indicated proteins that were proliferating or 
non- proliferating. Note TCF1 protein is encoded for by TCF7, and Blimp1 protein is encoded for by PRDM1. (b) Flow cytometry data with events 
again gated on CD3+ events followed by CD4+ events then CCR7+CXCR5+TCF1+Blimp1− to identify the Tfh cells. CFSE fluorescence is shown 
to compare proliferation of the total CD4+ population to the Tfh population. (c) The percent of cells from the identified Tfh population that were 
proliferating (top 5%) or non- proliferating. *P ≤ 0·05, **P ≤ 0·01 [Colour figure can be viewed at wileyonlinelibrary.com]
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understanding the relationship between PD- 1 and IL- 15 reg-
ulation has important implications for tumour immunology. 
The intratumoural levels of IL- 15 have been previously shown 
to play an essential role in tumour regression [47], although 
it has also been shown that IL- 15  may cause upregulation 
of surface PD- 1 [48, 49]. These two findings appear to be at 
odds, but may suggest a potential feedback or T- cell inhibition 
mechanism. It also provides a potential explanation for why 
PD- 1  ligation does not inhibit IL- 15 expression. IL- 15  has 
been previously shown to promote CD8+ T- cell proliferation 
[50, 51], and in this study, we demonstrate that IL- 15 stimula-
tion alone increased baseline proliferation of CD4+ T cells. A 

more in- depth study is required to better understand the con-
tribution of IL- 15 stimulation to TCR- mediated CD4+ T- cell 
proliferation. Additionally, we report that transcript levels of 
IL- 15 are enriched within the populations of T cells that were 
non- proliferating following anti- CD3, anti- CD28, and either 
PDL1 or PDL2. Tfh cells were also enriched within the non- 
proliferating population, leaving open the possibility of a link 
between the two.

Single- cell RNA sequencing (scRNAseq) of tumours 
from patients with hyperprogressive disease following im-
mune checkpoint inhibitors (ICI) uncovered a predictive 
gene expression signature [52]. That study focused primarily 

F I G U R E  6  Patients that respond favourably to PD- 1 blockade have more Tfh cells. (a) tSNE (t- distributed stochastic neighbour embedding) 
plot of CD45+ cells of melanoma tumours from patients treated with pembrolizumab retrieved from data set GSE12 0575. Different colours 
represent 9 clusters (cell types) defined by Bio Turing Browser. Position of Tfh cells from the tSNE plot is shown in purple. (b) tSNE plots of Tfh 
cells corresponding to responders (red; left) and non- responders (blue; right), respectively. Bar representing the percentage of Tfh cells among 
responders vs. non- responders is shown. (c) Bar graph representing Tfh cell counts as per cent of total cell counts, with pre-  and post- treatment 
values indicated as grey and green, respectively. R = responder, NR = non- responder. % values are shown beneath the bar graph in the heatmap 
[Colour figure can be viewed at wileyonlinelibrary.com]
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on the signature within the tumour cells. Our data presented 
here provide complementary insight into the T cell transcrip-
tional signatures that may correlate with responsiveness to 
anti- PD- 1. We show additional support for the importance 
of Tfh cells in immune checkpoint function and overall im-
mune function. We have found an enrichment of the Tfh sig-
nature in the non- proliferating population, and an enrichment 
of Tfh cells in tumours of patients that responded to PD- 1 
blockade. Notably, Tfh cells do not proliferate following TCR 
stimulation, however do secrete many cytokines. Within the 
tumour, a new expression profile has been used to identify 
Tfh- like cells that are CD4+FOXP3−PD- 1HI and accumulate 
in tumours as a function of tumour burden, and functionally, 
the presence of these cells correlates with tumour regression 
in response to combined anti- PD- 1 and anti- CTLA- 4 [53]. Of 
particular interest, response to CTLA- 4 blockade was found 
to be enhanced in Tfh- deficient mice [53]. The presence of 
Tfh within breast and colorectal tumours was associated with 
positive prognosis, where Tfh gene signatures correlated 
with increased overall survival [54, 55]. The correlation of 
Tfh with improved disease- free survival was influenced by 
the intratumoural localization of the Tfh cells along with the 
co- localized cell types [55].

The intratumoural Tfh population may also be a highly 
proliferative population following ICI, and this may cor-
relate with positive outcome. A study that performed 
scRNAseq on mouse models of triple negative breast cancer 
with or without ICI noted that the dominant CD4+ effec-
tor memory subset within responsive tumours is Tfh and 
that B- cell activation in this context is dependent on this 
T- cell population [56]. Additionally, this study reported that 
CD4+ cells from responsive tumours have high expression 
of proliferation genes [56]. This proliferating population of 
T cells is not directly analogous to the proliferating popula-
tion studied here due to the fact that the cells in their study 
were exposed to PD- 1 and CTLA- 4 inhibitors. In fact, the 
T cells proliferating after treatment with ICI functionally 
are more closely modelled by the non- proliferating popula-
tion in this study, where instead of ICI, PD- 1 ligands were 
used. This raises the question of how the proliferating and 
non- proliferating populations identified in this study would 
respond to treatment with ICI.

The Tfh subset plays an important role in ICI response 
in disease states other than cancer as well. Effective treat-
ment with CTLA- 4- Ig to block CD28 costimulation has 
been shown to decrease circulating Tfh cell frequency in 
patients with multiple sclerosis [57], Sjogren's syndrome 
[58], rheumatoid arthritis [59] and type 1 diabetes [45, 60]. 
Responsiveness to CTLA- 4- Ig in type 1 diabetes patients was 
correlated with a lower baseline frequency of a population of 
Tfh cells [45]. An increase in Tfh cells following anti- PD- 1 
therapy has been correlated with an increased presence of 
thyroid autoantibodies and the development of Hashimoto's 

disease [61]. A proposed mechanism for the increase in Tfh 
cells following therapy is increased proliferation of this pop-
ulation with PD- 1 inhibition [61].

One remaining question coming out of this study is 
whether the proliferating population remains committed to 
this fate or if the cells are in a dynamic state capable of be-
coming inhibited by PD- 1 ligation in a subsequent challenge. 
To aim to address this, we stimulated cells from three indi-
viduals, sorted based on CFSE fluorescence for proliferating 
and non- proliferating cells and then re- stimulated the cells to 
again observe proliferation. While we did observe differences 
of proliferative capacity in the two populations of cells upon 
re- stimulation, the individual variability was far too great to 
draw conclusions (Figure S7).
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