Skip to main content
. 2021 Oct 14;27(38):6399–6414. doi: 10.3748/wjg.v27.i38.6399

Table 3.

Summary of studies focused on artificial intelligence applications for automatic polyp detection, classification, and segmentation

Study
Screening test
Imaging modality
Data type
AI-based algorithm
Contribution
Acc
Sen
Spe
Wimmer et al[46] Colonoscopy WL, NBI Images k-nearest neighbours Polyp classification: non-neoplastic, neoplastic 80% - -
Tajbakhsh et al[22] Colonoscopy WL Images Decision trees; Random forest Automatic polyp detection - 88% -
Hu et al[21] CT Colonography Greyscale Images Random forest Polyp classification: non-neoplastic, neoplastic - - -
Zhang et al[50] Colonoscopy WL, NBI Images CNN: Caffenet Polyp detection and classification: benign from malignant 86% 88% -
Shin et al[23] Colonoscopy WL Images Support vector machine Whole image classification: polyps from non-polyps 96% 96% 96%
Sánchez-González et al[32] Colonoscopy WL Images Random forest; CNN: Bayesnet Polyp segmentation 97% 76% 99%
Tan et al[52] CT Colonography Greyscale Images Customized CNN Polyp classification: adenoma from adenocarcinoma 87% 90% 71%
Fonolla et al[51] Colonoscopy WL, NBI, LCI Images CNN: EfficientNet Polyp classification: benign from pre-malignant 95% 96% 93%
Hwang et al[46] Colonoscopy WL Images Customized CNN Polyp detection and segmentation - - -
Park et al[53] Colonoscopy WL Images Customized CNN Whole image classification: normal, adenoma and adenocarcinoma 94% ~94% -
Viscaino et al[54] Colonoscopy Greyscale Images Support vector machine; Decision treesk-nearest neighbours; Random forest Whole image classification: polyp and non-polyp 97% 98% 96%

WL: White light; NBI: Narrow-band imaging; LCI: Linked colour imaging; Acc: Accuracy; Sen: Sensitivity; Spe: Specificity.