Skip to main content
. 2021 Apr 20;121(19):12016–12034. doi: 10.1021/acs.chemrev.0c01244

Table 2. Overview of Three-Dimensional Gas Chromatography Separation Systemsa.

application 1D (type, dimensions L (m) × i.d. (μm), film thickness, df (μm)) mode 1 2D (type, dimensions L (m) × i.d. (μm), film thickness, df (μm)) mode 2 3D (type, dimensions L (m) × i.d. (μm), film thickness, df (μm)) detection peak capacity remarks ref
petroleum
mixture of dodecane, tridecane, and tetra-decane nonpolar (dimethylpolysiloxane, 0.2 m × 100 μm i.d., df 3.5 μm) × TM medium-polar (14% cyanopropyl-phenyl-methyl polysiloxane, 3 m × 100 μm i.d., df 0.2 μm) × TM medium-polar (50% phenyl-polysilphenylene-siloxane, 0.5 m × 100 μm i.d., df 0.1 μm) FID first 3D-GC system developed (33)
mixture of hydrocarbons nonpolar (5% phenyl-methyl polysiloxane, 25 m × 530 μm i.d., df 5 μm) × DV medium-polar (trifluoropropyl-methyl polysiloxane, 5 m × 250 μm i.d., df 1 μm) × DV polar (poly-(ethylene glycol), 0.55 m/1 m × 100 μm i.d., df 0.1 μm) FID 3500 usage of PARAFAC algorithm (17)
diesel sample nonpolar (5% phenyl-methyl polysiloxane, 30 m × 250 μm i.d., df 5 μm) × DV highly polar (1,9-di(3-vinyl imidazolium) nonane bis [(trifluoromethyl) sulfonyl]imidate, 4 m × 100 μm i.d., df 0.08 μm) × DV polar (poly-(ethylene glycol), 1 m × 100 μm i.d, df 0.1 μm) FID     (18)
volatile organic compounds (VOCs) medium-polar (5% diphenyl, 95% dimethylpolysiloxane, 0.8 m × 250 μm i.d.) × PV nonpolar (dimethyl polysiloxane, 1 m × 250 μm i.d.) × PV polar (dimethyl polysiloxane, 1 m × 250 μm i.d.) vapor detector   (34)
115-component test mixture and spiked diesel medium-polar (5% phenyl-methyl polysiloxane, 30 m × 250 μm i.d., df0.50 μm) × (HT)-DV polar (poly(ethylene glycol), 3.5 m × 180 μm i.d., df0.18 μm) × TM medium-polar (trifluoropropyl-methyl polysiloxane, 1 m × 100 μm i.d., df0.1 μm) ToF-MS 5000–9600   (35)
115-component test mixture and spiked diesel medium-polar ((5% phenyl)-methyl polysiloxane, 30 m × 250 μm i.d., df0.50 μm) × (HT)-DV polar (polyethylene glycol, 3.5 m × 180 μm i.d., df0.18 μm) × TM medium-polar (trifluoropropyl-methyl polysiloxane, 1 m × 100 μm i.d., df0.1 μm) ToF-MS improvement on PARAFAC algorithm (19)
E and Z isomers of oximes chiral (diethyl-tertbutylsilyl-β-cyclodextrin, 25 m × 250 μm i.d., df0.25 μm) CT highly polar (1,5-di (2,3-dimethyl imidazolium) pentanebis (trifluoro-methane sulfonyl) imide, 1.8 m × 100 μm i.d., df0.10 μm) DS nonpolar ((5% phenyl)-methyl polysiloxane, 30 m × 250 μm i.d., df0.25 μm) QToF-MS   (36)
115-component test mixture and spiked diesel medium-polar (50% phenyl/50% methylpolysiloxane, 20 m × 180 μm i.d., df 0.18 μm) × (HT)-DV nonpolar (poly(5% diphenyl/95% dimethyl siloxane, 6 m × 100 μm i.d., df0.10 μm) × PFV highly polar (polyethylene glycol, 1 m × 100 μm i.d., df0.10 μm) FID ∼10000 total analysis time of 11 min was achieved (20)
115-component test mixture medium-polar (5% phenyl/95% dimethylpolysiloxane, 40 m × 180 μm i.d., df0.40 μm) × (HT)-DV nonpolar (50% phenyl/50% dimethylpolysiloxane, 3 m × 100 μm i.d., df0.10 μm) × PV highly polar (polyethylene glycol, 0.5 m × 100 μm i.d., df0.10 μm) FID 30600 optimization of the 3D-GC system by manipulation the ratio of the phase volume (37)
mixture of hydrocarbons nonpolar (5% phenyl-methylpoly siloxane, 40 m × 180 μm i.d., df0.18 μm) × TM medium-polar (trifluoropropylmethyl polysiloxane, 2.5 m × 180 μm i.d., df0.18 μm) × PFV polar (polyethylene glycol, 1.0 m × 180 μm i.d., df0.18 μm) TOF-MS 35000 pulse flow valve modulation was performed in a negative mode (16)
natural products
algae-derived fuel oils polar (polyethylene glycol in sol–gel matrix, 30 m × 320 μm i.d., df0.5 μm) × CT medium-polar (5% phenylmethyl polysiloxane, 5 m × 150 μm i.d., df0.15 μm) DS medium-polar (50% phenyl/50% dimethyl polysiloxane, 20 m × 180 μm i.d., df0.18 μm) FID 3600   (38)
essential oil (Clausena lansium Skeels plant) nonpolar(poly(5% diphenyl/95% dimethylsiloxane), 30 m × 530 μm i.d., df5.0 μm) × DS polar (polyethyleneglycol 30 m × 530 μm i.d., df2.0 μm) × DS polar (1,12-di (tripropyl phosphonium) dodecane bis(trifluoromethanesulf-only) imide, 30 m × 530 μm i.d., df0.85 μm) 3 FIDs three GC-instruments coupled together (39)
essential oils (Agarwood) nonpolar ((5%-phenyl)-methyl polysiloxane, 30 m × 250 μm i.d., df0.25 μm) CT polar (polyethyleneglycol 30 m × 250 μm i.d., df0.25 μm) × DS polar (1,12-di (tripropyl phosphonium) dodecane bis(trifluoromethanesulf-onyl) imide, 1.4 m × 100 μm i.d., df0.08 μm) QToF-MS 5000   (40)
allergens nonpolar ((5%-phenyl)-methyl polysiloxane, 30 m × 250 μm i.d., df0.25 μm) × TD polar (1,12-Di (tripropyl-phosphonium) dodecane bis(trifluoromethanesulfonyl)imide trifluoro-methanesulfonate, 1 m × 100 μm i.d., df0.08 μm) × DF highly polar (polyethylene glycol, 3.0 m × 200 μm i.d., df0.10 μm) FID 9821 PARAFAC algorithm (16)
a

The couplings are × = comprehensive, – = heart-cut. The modulation types are PV = 3/6-port valves, TM = thermal modulation, (HT)-DV = (high-temperature)-diaphragm valves, CT = crygonic trapping, DS = dean switch, PFV = pulse-flow valve, TD = thermal desorption modulator, DF = differential-flow modulator, FID = flame-ionization detector, QTOF-MS = quadrupole-time-of-flight mass spectrometer.