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Abstract

Determining tissue biomechanical material properties from mechanical test data is frequently 

required in a variety of applications. However, the validity of the resulting constitutive model 

parameters is the subject of debate in the field. Parameter optimization in tissue mechanics often 

comes down to the “identifiability” or “uniqueness” of constitutive model parameters; however, 

despite advances in formulating complex constitutive relations and many classic and creative 

curve-fitting approaches, there is currently no accessible framework to study the identifiability 

of tissue material parameters. Our objective was to assess the identifiability of material 

parameters for established constitutive models of fiber-reinforced soft tissues, biomaterials, and 

tissue-engineered constructs and establish a generalizable procedure for other applications. To 

do so, we generated synthetic experimental data by simulating uniaxial tension and compression 

tests, commonly used in biomechanics. We then fit this data using a multi-start optimization 

technique based on the nonlinear least-squares method with multiple initial parameter guesses. 

We considered tendon and sclera as example tissues, using constitutive models that describe these 

fiber-reinforced tissues. We demonstrated that not all the model parameters of these constitutive 

models were identifiable from uniaxial mechanical tests, despite achieving virtually identical fits 

to the stress-stretch response. We further show that when the lateral strain was considered as an 

additional fitting criterion, more parameters are identifiable, but some remain unidentified. This 

work provides a practical approach for addressing parameter identifiability in tissue mechanics.
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1 Introduction

Knowledge of material properties is valuable to study complex physiomechanical tissue 

function, to monitor pathophysiological changes, and to characterize tissue-engineered 

constructs [1]–[5]. Despite the widespread use of parameter optimization when fitting 

experimental data, there are important limitations to this technique arising from the 

uniqueness (or lack thereof) of the fitted parameters. The lack of uniqueness is problematic 

because it hinders the ability to measure a tissue’s mechanical properties and limits the 

usefulness of the measured in finite element modeling and other applications. Therefore, 

a systematic and practical understanding of this limitation in parameter optimization is 

needed.

Several optimization approaches have been used in tissue mechanics, yet their success 

is a subject of debate. Nonlinear least-squares optimization (NLSQ) is perhaps the most 

commonly used approach. However, NLSQ methods are prone to local minima traps 

and depend strongly on the initial guesses used in the fitting algorithm; further, when 

fitting parameters of highly complex, nonlinear, and anisotropic tissues, uniqueness (or 

identifiability) is another hurdle [6]. These problems limit the value of the resulting fitted 

parameters. Global optimization algorithms, such as genetic algorithms, particle swarm, and 

simulated annealing, have been used in tissue mechanics to avoid local minima trap with 

variable success [5], [7], [8].

Parameter optimization in tissue mechanics is often a problem in the “identifiability” 

or “uniqueness” of constitutive model parameters [9], [10]. A general definition for 

identifiability is provided in the classic text by Walter and Pronzato [10]. Several studies 

have previously addressed the identifiability of tissue material parameters. For example, 

Hartmann and Gilbert used the determinant of the Hessian matrix to study identifiability of 

the two parameters (bulk and shear modulus) describing an elastic material using analytical 

and finite element solutions [11]; in another study, Akintunde and co-workers used rank 

deficiency of the Fisher information matrix to study uncertainty and identifiability in murine 

patellar tendon stress-strain responses [12]. Several other studies have also addressed aspects 

of characterization of material parameters by using both phenomenological [13], [14], 

and micromechanical [15] modeling approaches. However, despite advances in formulating 

complex constitutive relations and curve-fitting approaches, there is currently no accessible 

framework to assess the identifiability of tissue material parameters.

The objective of this study was to assess the identifiability of material parameters for 

established constitutive models used to describe the anisotropic and nonlinear response of 

fiber-reinforced soft tissues, biomaterials, and tissue engineered constructs and establish a 

generalizable procedure for other applications. We used a numerical approach and focused 

on several commonly-performed canonical experiments: uniaxial tension and unconfined 

compression. We used a Monte-Carlo-type multi-start optimization approach [16], [17] that 

Safa et al. Page 2

Acta Biomater. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Safa and co-workers recently implemented to study poroelasticity and inelasticity of tendon 

[18], [19]. This method enables exploration of the search space around the initial guess and 

reveals parameter sets that produce the same mechanical response. We show that while some 

parameters are identifiable, many are not, even though nearly perfect fits to the stress-stretch 

response can be achieved. We further show that when we impose a second fitting criterion, 

namely lateral strain, more parameters are identifiable, but some are still not.

2 Methods

2.1 Overview

An overview of the methods is shown in Figure 1. We first specified constitutive models 

for nonlinear isotropic and fiber-reinforced anisotropic materials (Section 2.2, Table 1). 

We numerically implemented these models using the kinematics of uniaxial tension and 

compression with traction-free lateral boundary conditions (Section 2.3). We next used 

representative baseline material parameters from sclera in compression and tendon in tension 

to simulate the baseline “experimental” tissue stress-stretch data for each constitutive model 

(Section 2.4, Table 1). We then used a multi-start least-squares optimization curve-fit to the 

baseline response with a wide search space and 600 random initial guesses per material 

parameter and assessed the quality of the fits compared to the baseline stress-stretch 

response (Section 2.5). Because we observed that several parameter sets could reproduce 

the stress-stretch response, we added a second assessment criterion based on the quality 

of the lateral strain prediction (Section 2.6). Finally, we assessed the identifiability of each 

material parameter for each constitutive model by comparing the fitted parameter values to 

the baseline parameter values (Section 2.7).

2.2 Constitutive Models

Constitutive models for nonlinear isotropic and fiber-reinforced anisotropic materials that 

are loaded in uniaxial tension or compression were taken from well-established models 

[20]–[25]. We specifically considered two isotropic material models: neo-Hookean in 

compression and Holmes-Mow in tension, based on typical usage. We added fibers to 

these isotropic materials to achieve transverse isotropy or orthotropy. The constitutive 

models, derived from the Helmholtz free energy, are provided in Appendix A. The material 

parameters are briefly described below.

2.2.1 Isotropic models—For the isotropic model in compression (IsoComp), we used 

a compressible neo-Hookean material description [24], with the subscript “NH” being used 

throughout to refer to the neo-Hookean constitutive material parameters. The neo-Hookean 

constitutive relation has two material parameters (Table 1): ENH is Young’s modulus and 

νNH is Poisson’s ratio.

For the isotropic model in tension (IsoTens), we used a Holmes-Mow material description 

[25], with the subscript ‘HM’ being used throughout to refer to the Holmes-Mow 

constitutive material parameters. This constitutive model has three material parameters 

(Table 1): EHM is Young’s modulus, νHM is Poisson’s ratio, and βHM is the nonlinearity 

parameter (βHM > 0).
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2.2.2 Transversely isotropic models—For the transversely isotropic model in 

compression (XIsoComp), we embedded a continuous fiber distribution [23] in a 

compressible neo-Hookean matrix. More specifically, the fibers were uniformly distributed 

in the plane perpendicular to the applied loading direction. The fiber constitutive relation 

was defined by the well-established toe-linear stress-stretch response [20]–[22], where the 

stress is nonlinear in the toe-region until reaching the transition stretch, λ0, after which it 

is linear with a fiber modulus Ef, where the subscript ‘f’ stands for fibers. There were five 

material parameters in the XIsoComp model (Table 1): ENH, νNH for the matrix (section 

2.2.1) and Ef, βf, and λ0 for the in-plane fibers, where βf (βf ≥ 2) is the fiber nonlinearity 

parameter.

For the transversely isotropic model in tension (XIsoTens), we embedded fibers in a 

Holmes-Mow matrix. The fibers had the same toe-linear response as in XIsoComp, and 

they were oriented parallel to the loading direction. As a result, there were six material 

parameters in the XIsoTens model: EHM, νHM, βHM for the matrix (section 2.2.1) and Ef, βf, 

λ0 for the fibers (Table 1).

2.2.3 Orthotropic model—For the orthotropic model in compression (OrthoComp) 

we used the same formulation as the XIsoComp model, except that the in-plane fiber 

distribution was assumed to be non-uniform, with the modal fiber orientation set to be along 

axis 2 (i.e., θp = 0). This resulted in an orthotropic symmetry in the material configuration, 

which is characteristic of peripapillary sclera [26], [27]. The OrthoComp model has seven 

material parameters: ENH, νNH for the matrix and Ef, βf, λ0 and kVM for the fibers, where 

kVM > 0 characterizes the in-plane alignment of fibers.

2.3 Kinematics and boundary conditions

The constitutive models were implemented numerically using the kinematics of uniaxial 

compression or tension with traction-free lateral boundary conditions, which correspond 

to the standard uniaxial mechanical test. We chose these kinematic conditions since they 

represent canonical experiments frequently used to determine material properties. Uniaxial 

deformation was described by specifying the deformation gradient tensor (F) to be

Fij =
λ1 0 0
0 λ2 0
0 0 λ3

1)

where the {λi} are the stretches in the directions of the basis vectors (ei; i = 1 … 3). 

Off-diagonal elements of F in uniaxial deformation and compression are zero, and the 

reference configuration corresponded to λi = 1 (zero strain). To model tension, λ1 was 

allowed to vary over the interval [1,1.2], while to model compression, the interval was λ1 

∈ [0.8, 1], where in both the deformation start from λ1 = 1. The values for λ2 and λ3 were 

calculated by imposing traction-free lateral boundary conditions, i.e.,

P22=P33=0 2)
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where P22 and P33 are components of the first Piola-Kirchhoff stress on lateral surfaces 

(Figure 2).

In order to calculate the stress-stretch response (for both the baseline response and during 

optimization), we discretized λ1 range into 20 steps over the specified ranges, and for each 

step we incremented (for tension) or decremented (for compression) λ1 starting at λ1 = 1. At 

each value of λ1, a nonlinear least squares optimization method was used to calculate values 

of λ2 and λ3 that force the “22” and “33” components of the trial stress tensor P to zero by 

requiring

f(λ2, λ3; λ1) = ζ(P22
2 + P33

2 ) = 0 3)

where ζ was a penalty factor (ζ = 106) which was chosen based on our pilot studies to 

improve of the optimization and had no effect on the final values of λ2 and λ3. Note that 

this use of optimization to calculate λ2 and λ3 is separate from the parameter optimization. 

Finally, we used the standard continuum mechanics formula (P = ∂Ψ/∂F) to calculate the 

Piola-Kirchhoff stress from the Helmholtz free energy expressions (Appendix A).

2.4 Baseline parameter values

Representative material parameters from sclera in compression and tendon in tension were 

used to create the baseline “experimental” tissue stress-stretch data for each constitutive 

model (Table 1). Specifically, the baseline parameter values were chosen to represent 

peripapillary sclera for the compression models (IsoComp, XIsoComp, and OrthoComp), 

and tendon for the tension models (IsoTens, and XIsoTens). The only dimensional 

parameters in the constitutive relations were the Young moduli (ENH, EHM, and Ef). We 

nondimensionalized the models’ stress-stretch responses by normalizing the stress by the 

baseline parameter’s matrix modulus value in each model (i.e., axial stress is reported as 

P11/ENH for the compression models and P11/EHM for the tension models). Further, we set 

the ratio of Ef/ENH to be 100 for the XIsoComp and OrthoComp models, and set Ef/EHM to 

be 200 for the XIsoTens model, according to experimental data on sclera [28] and tendon 

[29].

2.5 Multi-start optimization

Parameters were identified by multi-start nonlinear least-squares optimization (NLSQ) 

with a Monte-Carlo-type approach. We first numerically implemented the five constitutive 

models (IsoTens, IsoComp, XIsoTens, XIsoComp, OrthComp) in MATLAB, which takes 

axial deformation and constitutive model parameters as input, imposes the boundary 

conditions, and returns the Piola stress and deformation gradient tensors as the outputs. 

Using a fixed set of parameters for each model we calculated the mechanical response and 

designated this as the baseline response. We then separately performed a multi-start NLSQ 

optimization routine for each model in an attempt to duplicate this baseline stress response.

To fit the “experimental” axial stress (AS)-axial stretch data, we minimized an objective 

function, fAS, defined as
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fAS P11; p =
∑i = 1

n P11, i − P11, i + δi
2

n
(4)

where P11 is the axial component of the computed stress, P11, i is the corresponding 

component of the baseline (“experimental”) stress, p is the set of model parameters, n =20 

is the number of discretization steps over the range of λ1, and i is an index identifying the 

discretization step. In the above, δi is a Gaussian noise term (std(δ) = 1% of the maximum 

stress) added to the calculated baseline stress response to mimic experimental noise (e.g., 

device error). This noise level was chosen based on the expected noise from a commercial 

load cell, which is commonly 0.25% of the nominal rating of the load cell (see for example 

[30]) and the assumption that the load cell is operating at 50% of the nominal rating, plus 

added noise due to other sources (e.g., displacement accuracy and fixture compliance).

The multi-start optimization procedure used the interior-point algorithm (fmincon, 

MATLAB[31]) with a wide search space (Table 1) and 600 random initial guesses (grid 

size) per parameter. The stopping limit for the algorithm’s objective function was 10−6 of 

the normalized baseline matrix modulus. The initial guesses were generated using Latin 

hypercube sampling, which divides the sampling range into equal regions according to the 

grid size and generates a random sampling of the search space (lhsdesign, MATLAB). Our 

pilot studies indicated that this sampling method avoided clustering (nucleation) of random 

numbers in the sampled values that can potentially bias the optimization outcomes.

Any fit with an objective function value of less than 10 times the added noise was accepted 

as a solution (Criterion 1):

fAS ≤ 10std δi (5)

This quantitative criterion was chosen because it provides a consistent basis across the 

different models for assessing the quality of the fit, and because its upper limit (fAS = 10 

std(δi)) produces a reasonable fit quality (see supplementary Figure S1).

2.6 Including information about lateral strain (LS) predictions

It was immediately evident that the baseline stress-stretch response could be accurately 

reproduced by many parameter values (see Results), and thus we added a second assessment 

criterion. We chose this criterion based on the quality of the lateral strain (LS) prediction 

because we observed that lateral strain predictions were variable across the accepted set of 

stress-stretch fits. We defined a second objective function, fLS, as

fLS e22; p =
∑i = 1

n e22, i − e22, i
2

n
(6)

where e22 is the “22” component of the Lagrangian strain, and other notation is as in 

equation (4). Similar to the stress fitting criterion, we defined a second criterion for 

accepting a fit (Criterion 2):
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fLS ≤ 0.1max e22 (7)

We applied Criterion 2 to the fits that met Criterion 1 (Figure 1), and refer to both criteria 

together as Criteria 1&2. Note that fLS was not used to drive parameter optimization; instead 

it was used to compare the solutions obtained by parameter optimization based on fAS.

Note that the “22” and “33” components of the lateral strain were identical (e22 = e33) for 

most of the models, evaluation of fLS(e22; p) implies evaluation of fLS(e33; p). The exception 

was the OrthoComp model, since the anisotropy of the continuous fiber distribution caused 

the in-plane deformation to differ along the 2 and 3 axes. Therefore, for this case, we defined 

a slightly modified objective function for Criterion 2

fLS, OC = 1
2 fLS e22; p + fLS e33; p ≤ 0.11

2 max e22 + max e33 . (8)

2.7 Assessment of identifiability criterion

The identifiability of each material parameter for each constitutive model was assessed by 

comparing the optimized parameter values to the baseline parameter values. We defined γ to 

quantify the identifiability of each constitutive model parameter as

γ = median pfit − p0
p0

9)

where pfit is the fitted (optimized) parameter value and p0 is its corresponding baseline 

parameter value. A parameter was said to be identifiable if the corresponding γ was less 

than 5%. This threshold was chosen because a 5% deviation is commonly taken as an 

acceptable error in engineering applications; however, this threshold could be adjusted 

according to the application (see discussion below).

3 Results

3.1 Stress fitting results

All the acceptable fitted responses obtained by the optimization of the axial stress (Criterion 

1; Eq. 5) closely matched the baseline (“experimental”) stress response (Figure 2). The 

number of acceptable solutions found through optimization for the IsoComp model was 

600/600, i.e., all 600 random initial guesses resulted in fits that satisfied Criterion 1. The 

corresponding statistics for the IsoTens, XIsoComp, XIsoTens, and OrthoComp models 

were 252/600, 482/600, 577/600, and 481/600, respectively. However, these fitted responses 

resulted in non-unique parameter values, i.e., there were many solutions that acceptably 

reproduced the baseline uniaxial stress-stretch response.

3.2 Lateral strain predictions

To investigate the possibility of improving identifiability, we used the lateral strain 

prediction as a second criterion after optimizing to the axial stress response (Criteria 

1&2). Solutions meeting both criteria closely matched both the baseline axial stress-stretch 
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response (Criteria 1&2; Figure 2) and lateral strain response (Criteria 1&2; Figure 3), with 

multiple acceptable fits overlapping each other and the baseline response (Figures 2 and 

3). Importantly, by using both Criteria 1&2, the nonlinear baseline response in XIsoComp 

(Figure 3C) and the anisotropy in OrthoComp lateral strains (the difference between e22 and 

e33) were captured.

The numbers of solutions that met both Criteria 1 and 2 were smaller than the ones identified 

by only Criterion 1. For example, for the IsoComp model, 600/600 fits were acceptable 

when using only Criterion 1, while using both Criteria 1&2 reduced this to 56/600. For the 

IsoTens, XIsoComp, XIsoTens and OrthoComp models, the number of successful fits was 

35/600, 19/600, 110/600, and 27/600 solutions, respectively.

3.3 Identifiability of parameters

Because multiple solutions were generated with different sets of parameters that matched 

the axial stress and lateral strain (Figures 2 and 3), we assessed the identifiability of the 

material parameters by comparing the fitted parameter values to the baseline parameter 

values. It is convenient to present these comparisons using parallel coordinates plots [19], 

[32], in which each fitted parameter can be compared directly to its baseline parameter 

value in a single plot (Figure 4). Histograms describing the distribution of fitted parameter 

values are available in the supplementary figures (Figure S2–4). In addition, we quantified 

identifiability through the quantity γ (Table 2), reflecting the material parameter’s error with 

respect to the baseline parameter value (Eq. 9).

3.3.1 Isotropic models (IsoComp and IsoTens)—For the IsoComp model, when 

only considering the stress fits (Criterion 1), the matrix modulus (ENH) was consistently 

identified (γ < 0.05), yet the matrix Poisson’s ratio (νNH) was not (Table 2 and Figure 4A). 

When considering both stress fits and lateral strain predictions (Criteria 1&2) the deviation 

from baseline parameter values decreased and both parameters were consistently identified 

(γ < 0.05; Table 2 and Figure 4A).

For the IsoTens model, the modulus EHM was the only parameter that could be identified 

when solely matching the stress response (Criterion 1), and this parameter had the smallest 

deviation from its baseline parameter value among the parameters of the IsoTens model (γ 
< 0.05; Table 2 and Figure 4B). Interestingly, the Poisson’s ratio (νHM) and nonlinearity 

parameter (βHM) took almost any value in the search range, with the νHM distribution being 

skewed toward 0.5 and no meaningful concentration of values for βHM (Figure 4B). When 

applying Criteria 1&2, identifiability improved for all parameters; however, βHM could still 

not be identified (Table 2 and Figure 4B). The lack of identifiability in the nonlinearity 

parameter was a common behavior observed in many of the other models (see below).

3.3.2 Transversely isotropic models (XIsoComp and XIsoTens)—As expected, 

due to there being more parameters in the transversely isotropic models, the distribution 

of parameter values was larger and more complex than for the isotropic cases. In the 

XIsoComp model, only the fiber uncrimping stretch λ0 was identified when Criterion 1 

was used (Table 2 and Figure 4C). The matrix modulus, ENH, had a γ value 0.055, and 

despite it having a narrow distribution, it just failed to be classed as identifiable based on our 

Safa et al. Page 8

Acta Biomater. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifiability threshold of γ < 0.05. Identifiability was improved by applying both Criteria 

1&2, which maintained the identifiability of λ0 and caused ENH to become identifiable 

(Table 2 and Figure 4C). However, values of the fiber modulus (Ef) and nonlinearity 

parameter (βf) were essentially randomly distributed in the search space, and the model 

was not sensitive to changes in them (Figure 4C).

For the XIsoTens model, none of the matrix parameters were identifiable when considering 

only Criterion 1 (Table 2 and Figure 4D). However, the fiber parameters, namely fiber 

modulus (Ef) and uncrimping stretch (λ0), were identifiable and had a narrow distribution 

(γ < 0.05; Table 2 and Figure 4D). Again, the fiber nonlinearity parameter (βf) was not 

identifiable and had a median value of approximately twice its baseline parameter value 

(Table 2). When enforcing both Criteria 1&2, the identifiability of the matrix parameters 

was improved (Figure 4D); however, only νHM was identified (γ < 0.05; Table 2). The fiber 

parameters remained identifiable, and the addition of Criteria 1&2 had almost no effect on 

their values (Table 2 and Figure 4D).

3.3.3 Orthotropic model (OrthoComp)—When considering only Criterion 1, ENH 

was the only matrix parameter that was identified and the uncrimping stretch λ0 was the 

only fiber parameter that was identified (Table 2 and Figure 4E). Similar to XIsoComp, 

the identifiability of fiber parameters was poor, with the fiber modulus Ef and the fiber 

nonlinearity parameter βf not identifiable and having nearly uniform distributions over 

the search range (Figure 4E). The von Mises factor for the fiber distribution (kVM) was 

centered around 2.5 but did not meet the criterion for identifiability (Table 2 and Figure 

4E). Applying Criteria 1&2 improved the identifiability of ENH and λ0 as compared to 

Criterion 1 alone (decreased γ), and caused two additional parameters (νNH and kVM) to 

become identifiable (Table 2 and Figure 4E). However, fiber parameters Ef and βf remained 

unidentifiable, similar to the XIsoComp case.

3.4 Identification of Poisson’s ratio

The Poisson’s ratio of the matrix was able to be identified when using Criteria 1&2 for all 

the models except for XIsoComp (Table 2). Because Poisson’s ratio can be experimentally 

measured from lateral strain, it was of interest to further investigate the identification of 

Poisson’s ratio. We visualized the relationship between the value of the optimized (fitted) 

matrix Poisson’s ratio and the values of the objective functions fAS and fLS, for axial 

stress and lateral strain, respectively. In general, while fLS changed by almost two orders of 

magnitude due to a change in Poisson’s ratio, fAS was not particularly sensitive to Poisson’s 

ratio (Figure 5). In compression, fAS showed some dependence on Poisson’s ratio for the 

IsoComp, XIsoComp, and the OrthoComp models (Figure 5A, 5C, 5E). However, in tension 

fAS was completely insensitive to Poisson’s ratio for the IsoTens and XIsoTens models. 

In contrast, the curves of fLS versus νNH or νHM showed sharp minima at the respective 

baseline values (Figure 5A–E) in both compression and tension. We note that the minimum 

of the fLS vs. Poisson ratio plot was less pronounced for the XIsoComp and the OrthoComp 

models (Figure 5C and E).
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4 Discussion

We here investigated the identifiability of constitutive relationship parameters from uniaxial 

tension and compression mechanical testing of several types of materials: isotropic, 

transversely isotropic, and orthotropic. These material symmetries and the associated 

uniaxial testing are relevant to a wide range of applications in fibrous soft tissues, 

biomaterials, and tissue-engineered constructs. We used baseline material properties relevant 

for the sclera in compression and for tendon in tension and assessed model parameter 

identifiability based on a numerical metric (Eq. 9). This generalized approach is outlined in 

Supplemental Table S1 for other applications.

Our results showed that, when only the axial stress-stretch response was used in curve­

fitting, none of the constitutive models were fully identifiable, i.e., the same stress-stretch 

response could be generated by different sets of parameter values. We further showed that 

the identifiability of parameters was greatly improved if information about lateral strain was 

included in the parameter identification.

4.1 Identifiability of parameters in isotropic models using uniaxial testing

We considered two isotropic material models; although isotropy is atypical in physiological 

tissue, isotropic biomaterials, such as hydrogels, are widely used [33]. Our results indicated 

that even the parameters of the simplest nonlinear constitutive relations were not fully 

identifiable from a uniaxial test (Figure 4A and B). These results are consistent with studies 

on the identifiability of parameters in isotropic elastic materials [11], [14], [34]. However, 

note that the modulus was identified from the stress-stretch response in both isotropic 

models. Since only a measure of stiffness is sought in many studies, a uniaxial test could 

be sufficient for that purpose; however, other material parameters (ν and β) were not 

identifiable and are not reliable when determined by uniaxial testing. Since all these material 

parameters are needed for finite element analysis, fitting to only stress-stretch data is likely 

to be insufficient for subsequent use in finite element analysis.

4.2 Effect of aligned fiber reinforcement in tensile loading

In the transversely isotropic models in our study, the fiber properties were mostly 

identifiable, but the matrix parameters could not be identified from only the stress-stretch 

response. This was particularly noticeable in the transversely isotropic tension (XIsoTens) 

model (representing tendon, Figure 2D, Figure 4D, and Table 2). Even with the addition of 

lateral strain (Criterion 2), it was not possible to identify matrix modulus (Table 2). This is 

likely due to the large difference between the stiffness of fibers and matrix in tendon [35]. 

Other modes of loading such as lateral compression or osmotic loading have been used to 

remedy this problem [18], [29], [36]; however, it is likely that in those modes of loading 

(such as lateral compression), the identifiability of other parameters would be lost (e.g., fiber 

modulus). A careful a priori identifiability check is needed to design the loading mode and 

analyze the experimental results before relying on optimized material parameters.
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4.3 Effect of fiber distribution in compression loading

A distribution of fibers perpendicular to the compressive loading direction occurs in several 

tissues, including the sclera of the eye. When the samples are small, such as in rodent sclera, 

inverse finite element modeling can be used to determine material parameters, including 

the spatial distribution of fiber concentration factor, kVM [4]. Our results showed that, for 

such anisotropic models in compression (XIsoComp and OrthoComp), the identifiability 

of parameters is poor (Figure 4 and Table 2), particularly for the fiber modulus and 

nonlinearity. Surprisingly, the identifiability of the parameters in the orthotropic model 

(OrthoComp) was superior to that in its transversely isotropic counterpart (XIsoComp). This 

indicates that anisotropy can improve the identifiability of model parameters and highlights 

the complex interplay between tissue anisotropy and material parameter identifiability.

4.4 Improving identifiability of model parameters

It is expected that the addition of more experimental information in data fitting would 

improve the identifiability of parameters. Assessment of the number of identified parameters 

in each model allowed us to make comparisons between the cases that only used axial 

stress fits and the ones that also included the lateral strain predictions, which indicated 

an improvement in the identifiability of the parameters. There are several approaches to 

include additional experimental data in the fitting. For example, experimental measurement 

of parameters related to fiber orientation and distribution [27], [37] and fiber uncrimping 

[38], [39], micromechanical modeling [15], and multi-axial mechanical testing [34], [40], 

are potential approaches to improve parameter identifiability. In micromechanical models, 

for example, the parameters that influence the mechanical response are assumed, while our 

method provides empirical evidence for how those parameters can be determined. Therefore, 

this method can be used as an adjunct to micromechanical modeling.

In this study, we demonstrated that the inclusion of a criterion based on lateral strain when 

selecting acceptable fits improved parameter identifiability in all the models. However, 

the most effective approach is not clear and is likely problem-dependent. Examples of 

other methods include fitting an analytical expression for Poisson’s ratio to experimental 

lateral deformation [41], or using the direct measurement of Poisson’s ratio, which is 

appropriate for linear elastic materials and small deformations [11]. However, due to tissue 

nonlinearity, these methods are not always feasible. The most generalizable options are 

to either conduct a multi-objective optimization by fitting experimental stress and lateral 

strain responses (e.g., measured using digital image correlation [42]) simultaneously [43], or 

to assess the predictions of lateral strain following optimization on the axial stress-stretch 

response, as was done in this study. We should add that an identifiability analysis is most 

effective if done prior to experimental data collection. By doing so, such an analysis will 

provide a means to assess the match between the constitutive model and the intended 

experimental measurement, and suggest appropriate experimental designs to measure the 

material parameters using the proposed constitutive model [44].

4.5 Sensitivity of fit results to Poisson’s ratio

Our analysis of the relationships among matrix Poisson’s ratio and the values of the 

objective functions for axial stress fit (fAS) and lateral strain (fLS) revealed that, although 
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the stress fit could be practically insensitive to a change in Poisson’s ratio, the lateral strain, 

as expected, was highly sensitive to Poisson’s ratio and fLS showed a clear minimum near 

the baseline parameter value for each model (Figure 5). This indicates that, although several 

values for Poisson’s ratio can result in an acceptable stress-stretch response, only the fits 

with the matrix Poisson’s ratio closest to the baseline parameter value produce a good 

lateral strain prediction. Further, the lack of dependence of fAS on Poisson’s ratio indicates 

that even by using another optimization algorithm that seeks a possible global minimum, 

the problem of identifiability would persist. In other words, non-identifiability means 

that no algorithm will retrieve the parameter. In these cases that multiple local attractors 

(multiple local minima) exist, clustering analysis (e.g., using principal component analysis) 

and direct inspection of the cost-function residuals can be useful. These findings are also 

consistent with prior studies using separate orthotropic constitutive relations showing a lack 

of sensitivity of axial stress to a change in transverse Poisson’s ratio [45] and indicating the 

importance of considering the lateral deformations in identifying the mechanical material 

properties of anisotropic materials [42], [45].

It is worth noting that the identifiability analysis presented here is different than, 

but complementary to, sensitivity analysis. Sensitivity analysis determines the effect of 

uncertainty and variation in the input parameters on the model predictions [12], [40], 

[46]. Although the multi-start optimization method that we used for identifiability analysis 

shares some aspects with sensitivity analysis, their objectives are different. In multi-start 

optimization, the objective is to find the parameter sets that produce similar experimental 

observations, while in a sensitivity analysis, the objective is to study the effect of uncertainty 

of an input parameter on the outputs. Therefore, although beyond the scope of this study, a 

sensitivity analysis can be used in concert with an identifiability analysis to understand the 

effect of variation of each material parameter value in the simulated model responses.

4.6 Limitations

This study has some limitations. First, although multi-start optimization eliminated 

dependence of the curve-fitting results on the initial guess, a user-dependent range of 

parameters is still needed, which could potentially impact the results. However, selecting a 

wide search space, dense sampling of this space should, and using sub-space optimization, 

where some of the parameters are kept fixed, could minimize this effect and are possible 

strategies to better study identifiability of material parameters. Second, we assumed a 

relatively small noise amplitude in the baseline (“experimental”) stress response. Although 

this was reasonable for macroscale and tissue testing, in some micro- and meso-scale tests, 

larger noise levels might be expected, which would affect uncertainty and identifiability. 

Third, we selected criteria and thresholds for acceptable fits (objective functions fAS and fLS 

based on root-mean squared errors) and for identifiability (γ < 5%) which were reasonable 

for our application. Nonetheless, the threshold, criteria, and the normalization formula to 

calculate γ are selected by the user, and other values and normalization methods could 

be chosen. Alternative identifiability criteria such as the rank deficiency of the Fisher 

information matrix in Bayesian analysis, which can also take into consideration parameter 

distributions, are also prone to similar subjective choices of a threshold, where there is a 

need for the definition of a threshold of a “zero eigenvalue” [12]; however, the multi-start 
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optimization framework of this paper is simple to implement. Thus, it is highly practical and 

does not need any special advanced statistical methods such as used in Bayesian analysis, 

and in fact results in similar outcomes [12]. There are many other examples of identifiability 

criteria in different disciplines [9], [10], which are mostly application-driven. Selecting 

the best identifiability criteria and threshold is problem-dependent and should be adjusted 

depending on the application. For example, our analysis used the standard root mean square 

of errors as the cost function (Eq. 4); however, using different forms of the cost function, 

such as sub-space optimization, will change the identifiability of material parameters. If such 

alternative forms are used, identifiability should be checked separately using the approach 

described in this study [47], [48].

4.7 Summary and conclusions

We investigated the identifiability of material parameters for fiber-reinforced tissues by 

using nonlinear constitutive modeling and multi-start optimization. Our results indicated that 

multiple sets of parameters can produce the same stress-stretch responses and that, therefore, 

axial stress response alone is likely to be insufficient to identify tissue material properties. 

The addition of a selection criterion based on lateral strain significantly improved parameter 

identifiability; however, even then, some parameters remained unidentifiable. This study is 

novel in that it provides a systematic and generalizable approach to assess the identifiability 

of material parameters in a straightforward framework, and the approach is translatable 

to many studies of parameter identification. Due to the simplicity of implementing multi­

start optimization, it could easily be extended to study viscoelasticity and other inelastic 

behaviors and other experimental conditions (e.g., different loading modes). In conclusion, 

we recommend conducting an identifiability analysis as a necessary step for any material 

parameter data-fitting study and suggest multi-start optimization as an effective tool for 

conducting curve fitting to evaluate the mechanical parameters of tissue.
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Appendix A:: Constitutive relations

Isotropic models

For the isotropic model in compression (IsoComp) we used a compressible neo-Hookean 

material description with Helmholtz free energy defined as [24]

ΨNH I1, J = μNH
2 I1 − 3 − μNHlnJ + λNH

2 (lnJ)2 (1A)

where “NH” stands for neo-Hookean, I1 is the first invariant of the right Cauchy-Green 

strain tensor (C = FT · F; F is the deformation gradient tensor) and J (the Jacobian of 
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the deformation) is the square root of the third invariant of C. The invariants are of C are 

defined in the standard manner as

I1 = tr(C), I2 = 1
2 tr(C)2 − tr C2 , and I3

1/2 = J = det(C)
1
2 . (2A)

Further, in Eq. 1A λNH = ENHvNH / 1 + vNH 1 − 2vNH , and μNH = ENH / 2 1 − vNH
are the Lamé parameters of the matrix, ENH is the Young’s modulus, and νNH is Poisson’s 

ratio. The neo-Hookean constitutive relation has two independent material parameters (ENH 

and νNH; Table 1).

For the isotropic model in tension (IsoTens) we used a Holmes-Mow material description 

with Helmholtz free energy defined as [25]

ΨHM I1, I2, J = C0 exp Q I1, I2, J − 1 (3A)

where “HM” stands for Holmes-Mow, and C0 and Q are given by

C0 = λHM + 2μHM
4βHM

(4A.a)

Q = βHM
2μHM − λHM
λHM + 2μHM

I1 − 3 + βHMλHM
λHM + 2μHM

I2 − 3 + lnJ2
(4A.b)

Here, λHM and μHM are the standard Lamé parameters, βHM is the nonlinearity parameter 

(βHM > 0), and I1 and I2 are the first and second invariants of the right Cauchy-Green 

deformation tensor. For convenience, we show results in terms of Young’s modulus, 

EHM, and Poisson’s ratio, νHM instead of the Lamé parameters, which are related 

to EHM and νHM by the following relations: λHM = EHMvHM / 1 + vHM 1 − 2vHM , 

and μHM = EHM / 2 1 − vHM . This constitutive model has three independent material 

parameters: EHM, νHM, and βHM (Table 1).

Transversely isotropic models

For the transversely isotropic model in compression (XIsoComp), we embedded a 

continuous fiber distribution in a compressible neo-Hookean matrix (Eq. 1A) [23]. The 

fibers obeyed the following formulation

Pf, dist = ∫
0

π
g(θ)Pn In(θ) dθ 5A)

In this relation, Pf,dist is the first Piola-Kirchhoff stress of the in-plane fibers (2–3 plane; 

Table 1), Pn is the contribution of the fibers oriented with the unit vector n = cos(θ)e2 + 

sin(θ)e3
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Pn In = 2F ⋅ ∂Ψf
∂C = 2F ⋅ (∂Ψf

∂In
n ⊗ n) 6A)

and g(θ) is the modified von Mises distribution, previously used to describe the fiber 

distribution in scleral tissue [26], [27]

g(θ) = 1
πI0 kV M

exp[kV Mcos 2 θ − θp ] 7A)

In this relation, I0 is the modified Bessel function of the first kind, kVM is the fiber 

concentration factor (kVM = 0 for an isotropic in-plane distribution), and θp is the modal 

fiber orientation. We set θp to zero, so that gmax = g(0). To evaluate this integral numerically 

we used a left Reimann numerical summation. In the numerical implementation of this 

integral we used a left Reimann numerical sum. In Eq. 6A, Ψf is the Helmholtz free energy 

of the fiber phase (the subscript ‘f’ stands for fibers), defined as:

Ψf =

0 In < 1
ξ

2βf
In − 1 βf 1 ≤ In ≤ I0

Ef I0

1
2 − In

1
2 + B In − I0 + Ψ0 I0 < In

(8A)

where In is the pseudo-invariant of deformation along a fiber direction defined by unit vector 

n, i.e.,

In = n ⋅ C ⋅ n 9A)

where ξ =
Ef

2 βf − 1 I0 − 1 2 − βf, B =
Ef
2 (

I0 − 1
2(β − 1) + I0), and Ψ0 = ξ

2β I0 − 1 βf, and it is 

assumed that fibers do not have a compressive stiffness. Note that this constitutive relation 

describes the well-known toe-linear response in tendon [20], [21] and this particular form 

was selected based on its usefulness for 3D finite element simulations [22] (see Section 5.3.7 

of the FEBio theory manual v2.9, febio.org). The independent parameters in this constitutive 

relation for fibers are the tensile fiber modulus, Ef, the fiber nonlinearity parameter, βf (βf 

≥ 2), and the square of the uncrimping stretch of fibers, I0 = (λ0)2. In summary, there are 

five independent material parameters in the XIsoComp model (Table 1): [ENH, νNH] for the 

matrix and [Ef, βf, λ0] for the in-plane fibers, since kVM is set to zero for the XIsoComp 

model.

For the transversely isotropic model in tension (XIsoTens), we embedded fibers with a 

toe-linear response (Eq. 8A) in a Holmes-Mow material (Eq. 3A). The fibers were specified 

to be parallel to the axial direction (n = e1). As a result, there are six independent material 

parameters in the XIsoTens model: [EHM, νHM, βHM] for the matrix and [Ef, βf, λ0] for the 

fibers (Table 1).

Safa et al. Page 15

Acta Biomater. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://febio.org


Orthotropic model

For the orthotropic model in compression (OrthoComp) we used the same formulation as 

in (Eq. 5A–9A), except that the fiber distribution was not assumed to be uniform; that is, 

kVM > 0. This resulted in an aligned in-plane fiber distribution, and therefore orthotropic 

symmetry in the material configuration. This senario is a characteristic of prepapillary sclera 

[26], [27]. The OrthoComp model has one more material parameter than the XIsoComp 

model (six independent parameters): [ENH, νNH] for the matrix and [Ef, βf, λ0, kVM] for the 

fibers.
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Statement of Significance

Data fitting is a powerful technique commonly used to extract tissue material parameters 

from experimental data, and which thus has applications in tissue biomechanics and 

engineering. However, the problem of “uniqueness” or “identifiability” of the fit 

parameters is a significant issue, limiting the fit results’ validity. Here we provide 

a systematic method to evaluate data fitting and assess the uniqueness of results in 

the tissue constitutive models. Our study confirmed that the uniaxial stress-stretch 

experimental data are not adequate to identify all the tissue material parameters and 

provides a robust approach to check for parameter identifiability in other studies. This 

study is of potential interest to a wide range of readers because of its application for 

the characterization of other engineering materials while addressing the problem of 

uniqueness of the fitted results.
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Figure 1: 
Schematic overview of the methods to assess the identifiability of model parameters. Briefly, 

(1) after implementing the constitutive models and selecting the baseline parameters based 

on the literature, (2) we conducted a multi-start nonlinear least squares (NLSQ) optimization 

by using randomly generated initial guesses; (3) we then assessed identifiability of the 

material parameters using two criteria, one based on the quality of the fit of axial stress 

(Criterion 1), and the other based on the prediction of the lateral strain (Criterion 2).
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Figure 2: 
The accepted fits arising from different initial guesses based on only Criterion 1 (orange 

lines) and Criteria 1&2 (green lines) for the (A) IsoComp, (B) IsoTens, (C) XIsoComp, 

(D) XIsoTens, and (E) OrthoComp models. All the model fits closely matched their 

corresponding baseline (“experimental”) stress response, and in most cases, the fits 

essentially fully overlapped. Note that in each case, the virtually overlapping fits correspond 

to different sets of parameters arising from different initial guesses. The plotted quantity 
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is the axial component of the Piola-Kirchhoff stress normalized by the baseline parameter 

value of the matrix modulus. The symbols show the baseline stress with added noise (δ).
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Figure 3: 
The lateral strain predictions vs. axial stretch based on Criterion 1 (red) and Criteria 1&2 

(green) for (A) IsoComp, (B) IsoTens, (C) XIsoComp, (D) XIsoTens, and (E, F) OrthoComp 

models. We show two plots for the OrthoComp model due to different lateral strain 

magnitudes in this orthotropic model, i.e. e22 ≠ e33. It is evident that using only Criterion 

1 yields lateral strain predictions that do not coincide with the baseline (“experimental”) 

lateral strain, while using Criteria 1&2 significantly improves the match between the fitted 

results and the baseline values.
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Figure 4: 
Parallel coordinate representation of the fitted parameter values for the (A) IsoComp, (B) 

IsoTens, (C) XIsoComp, (D) XIsoTens, and (E, F) OrthoComp models. Fits are shows based 

on only Criterion 1 (red) and Criteria 1&2 (green). In each plot the vertical lines represent 

a single model parameter, enabling depiction the high-dimensional model parameters in a 

single graph.
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Figure 5: 
The relation between the objective function values and matrix Poisson’s ratios. We show 

objective function values for both lateral strain (solid circles; fLS; left axis log-scale) and 

axial stress (open circles; fAS; right axis linear-scale) for the (A) IsoComp, (B) IsoTens, 

(C) XIsoComp, (D) XIsoTens, and (E) OrthoComp models. In each model, the fits that met 

Criteria 1&2 had lower fLS values compared to fits that only met Criterion 1, which occurred 

near the baseline Poisson’s ratio for each model (dashed vertical line). However, this trend 

was not consistent when considering fAS, where only the IsoComp and XIsoComp models 
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(A and C) showed improved fitting with Criteria 1&2. This indicates that although lateral 

deformation prediction is sensitive to Poisson’s ratio, the same axial stress fits could be 

achieved with different Poisson’s ratios.
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Table 1:

Summary of the model parameters, including baseline parameter values and ranges. In each model, the moduli 

are non-dimensionalized by normalizing with the corresponding matrix modulus.

Model Matrix Fibers

Isotropic Compression (IsoComp) Neo Hookean

N/A

ENH νNH

Base 1 0.3

Min. 0 0

Max. 10 0.45

Isotropic Tension (IsoTens) Holmes-Mow

EHM νHM βHM

Base 1 0.3 5

Min. 0 0 0

Max. 10 0.45 60

Trans. Isotropic Compression 
(XIsoComp) Neo Hookean Uniform Distribution of Toe-linear Fibers Fiber Direction

ENH νNH Ef βf λ0 kVM

Base 1 0.3 100 10 1.03 0 Distributed in 
the 2–3 plane 

around x2Min. 0 0 0 2 1 0

Max. 10 0.45 1000 100 1.1 0

Trans. Isotropic Tension (XIsoTens) Holmes-Mow Aligned Toe-linear Fibers Fiber Direction

EHM νHM βHM Ef βf λ0

Base 1 0.3 5 200 10 1.03
x1

Min. 0 0 0 0 2 1

Max. 10 0.45 60 500 50 1.1

Orthotropic Compression 
(OrthoComp) Neo Hookean Non-uniform Distribution of Toe-linear 

Fibers Fiber Direction

ENH νNH Ef βf λ0 kVM

Base 1 0.3 100 10 1.03 3 Distributed in 2–
3 plane around 

x2Min. 0 0 0 2 1 0

Max. 10 0.45 1000 100 1.1 5
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Table 2:

Results of identifiability analysis. A γ value ≤ 0.05 indicates that the parameter was successfully identified, 

where a larger value indicates lack of identification.

Model Criteria Identifiability parameter γ :=
median(pfit) − p0

p0
# of parameters identified

Matrix Fibers

ENH νNH

IsoComp
1 0.013 * 0.249 1/2

1&2 0.001 * 0.046 * 2/2

EHM νHM βHM

IsoTens
1 0.015 * 0.364 4.924 1/3

1&2 0.029 * 0.035 * 0.250 2/3

ENH νNH Ef βf λ0

XIsoComp
1 0.055 0.114 4.115 4.998 0.003 * 1/5

1&2 0.034 * 0.127 4.036 6.105 0.004 * 2/5

EHM νHM βHM Ef βf λ0

XIsoTens
1 3.200 0.229 4.656 0.015 * 1.617 0.003 * 2/6

1&2 0.684 0.009 * 3.333 0.012 * 1.606 0.003 * 3/6

ENH νNH Ef βf λ0 kVM

OrthoComp
1 0.023 * 0.081 4.110 4.360 0.001 * 0.158 2/6

1&2 0.021 * 0.007 * 0.128 3.967 0.00003 * 0.032 * 4/6

*γ ≤ 0.05
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