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Summary

� The root economics space is a useful framework for plant ecology but is rarely considered

for crop ecophysiology. In order to understand root trait integration in winter wheat, we com-

bined functional phenomics with trait economic theory, utilizing genetic variation, high-

throughput phenotyping, and multivariate analyses.
� We phenotyped a diversity panel of 276 genotypes for root respiration and architectural

traits using a novel high-throughput method for CO2 flux and the open-source software

RHIZOVISION EXPLORER to analyze scanned images.
� We uncovered substantial variation in specific root respiration (SRR) and specific root length

(SRL), which were primary indicators of root metabolic and structural costs. Multiple linear

regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from

this model were used as a new trait. Specific root respiration was negatively correlated with

plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL,

diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified

genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene

candidates.
� Combining functional phenomics and root economics is a promising approach to improving

our understanding of crop ecophysiology. We identified root traits and genomic regions that

could be harnessed to breed more efficient crops for sustainable agroecosystems.

Introduction

Functional phenomics is an emerging transdisciplinary field that
integrates physiology, high-throughput phenotyping, and com-
putational biology in order to fill gaps in our knowledge of vari-
ous aspects of plant functioning (York, 2019). High-throughput
phenotyping allows for large-scale data collection on plant form
and function, and it is often used for studies of genetics within a
species. Phenomics focuses on understanding variation in plant
phenotypes, but it often lacks analysis of the relationship between
phenotypes and function, even if quantitative genetics are
employed. The use of functional phenomics is therefore required,
in which statistical associations within high-dimensional phe-
nomics datasets can be analysed to infer how traits influence one
another, and how they influence the physiological processes that
are important for crop growth. In particular, root phenomics data
and conceptual frameworks are lacking, resulting in a poor
understanding of their interactions and integration, as described
in York et al. (2013). The trait economics spectrum is a concep-
tual framework from ecology that could help explore trait inte-
gration in crops. In this context, economics refers to the balance

among traits for resource acquisition and utilization, with an
explicit treatment of the tradeoffs between pairs of traits (Reich,
2014). For example, in a controlled study of 74 plant species, a
root economics spectrum was found in which root respiration
was correlated with percent nitrogen, root length per unit mass,
and the decomposition rate of dried roots in soil (Roumet et al.,
2016). Recently, a two-dimensional root economics space was
proposed, formed by one gradient which represents whether or
not to cooperate with fungal partners, and a second confirming
the conventional fast–slow ‘conservation’ gradient (Bergmann
et al., 2020). Interestingly, the first dimension was partially
driven by specific root length, a proxy for structural cost, and the
second axis by root nitrogen content, a proxy for specific root res-
piration and metabolic cost. Therefore, the root economics space
is a useful framework for understanding carbon use efficiency in
crop roots.

Roots constitute the interface between plants and soil, and a
key function of roots is the extraction of the nutrients and water
required for plant productivity (Smith & De Smet, 2012; Meis-
ter et al., 2014). However, there is a complex relationship
between investment in the root system and plant productivity,
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because there is a cost associated with roots. The fraction of
newly fixed carbon from photosynthesis allocated to roots can
exceed 50%, and this proportion significantly increases under
edaphic stress (Lambers et al., 1996; Rachmilevitch et al., 2015).
Root system carbon costs can be classified as structural costs (the
physical structure of the roots and growth respiration) and main-
tenance costs (upkeep respiration and exudation) (Mooney,
1972; Kong & Fridley, 2019; Sun et al., 2021). For example, in
wheat seedlings, 30% of net photosynthesis was associated with
root structural and maintenance costs (Sawada, 1970). Optimiza-
tion of the structure and metabolism of the root system would
therefore have a significant impact on plant carbon use efficiency.

Specific root length is a measure of the carbon expenditure
required to increase root length, and is often given in units of m
g−1. Specific root respiration standardizes respiration based on
root length or mass, typically with units of nmol CO2 s

−1 cm−1

or mg−1, respectively. Specific root length was found to exhibit
variation among a set of barley and wheat lines, but the genetic
contribution was not explicitly considered (Løes & Gahoonia,
2004), and it was used for analysis of quantitative trait loci
(QTLs) in common bean (Ochoa et al., 2006). Across the plant
kingdom, as much as 52% of current photosynthates may be
respired by plant roots during a single day, depending on the
species and environmental conditions (Lambers et al., 1996).
Plant respiration uses substrates from photosynthesis to produce
carbon skeletons and usable energy, and in chemical reduction
processes required for development (Amthor, 2000); the process
of respiration in plants entails the consumption of oxygen and
the release of carbon dioxide. A multicomponent framework has
been suggested, in which respiration can be divided into three
parts: a growth fraction – the biosynthesis of new structural
biomass and exudates; a maintenance fraction – the translocation
of photosynthates from sources to sinks, and cellular ion-gradient
maintenance; and an ion-uptake fraction, including the uptake of
ions, assimilation of nitrogen and sulphur, and protein turnover
(McCree, 1970; Thornley, 1970; Johnson, 1983; Poorter et al.,
1991; Amthor, 2000). As up to 60% of assimilated carbon is lost
through respiration, strategies for the minimization of unneces-
sary respiratory activity could lead to substantial gains in crop
productivity by enhancing plant carbon use efficiency (Amthor
et al., 2019; Weber & Bar-Even, 2019; Roell & Zurbriggen,
2020).

Variation in root respiration rates among crop species occurs
due to differences in root tissue density, anatomy, activity, chem-
istry, and structure (Ben-Noah & Friedman, 2018). Studies have
shown that the reduction of root respiration through anatomical
changes, such as root cortical senescence in barley (Hordeum
vulgare) and wheat (Triticum aestivum) (Schneider et al., 2017),
or reduction in root secondary growth, such as that observed in
common bean (Phaseolus vulgaris), (Strock et al., 2018) permit
greater plant growth by improving phosphorus capture from
low-phosphorus soils. Strategies that have been proposed and/or
used to reduce root respiratory carbon cost for the improvement
of plant performance include making ion transport more efficient
(Amthor et al., 2019), manipulation of the genes or enzymes
involved in carbon metabolism in plant roots (Dorion et al.,

2017; Florez-Sarasa et al., 2020), and the use of arbuscular myc-
orrhizal symbiosis to reduce root respiratory rate as well as
increasing photosynthesis (Romero-Munar et al., 2017). Root
respiration that is not accounted for by necessary plant functions
can be referred to as ‘luxury’ respiration.

Understanding the genetic bases of specific root length and
respiration, among other traits, as well as their relationship to
plant performance, is of key importance for breeding more pro-
ductive and resilient crop varieties to adapt to climate change.
However, these traits have rarely been considered as a unit of
phenotype for breeding or genetic mapping. Genome-wide asso-
ciation studies (GWAS) for respiratory traits typically require
many hundreds of plant variants, as well as the measurement of
respiratory traits at the same time of day and at the same devel-
opmental stage (Scafaro et al., 2017). Infrared gas analyzers for
portable leaf photosynthesis or O2-electrode techniques are
commonly used to measure rates of root respiration (Poorter
et al., 1991; Strock et al., 2018), but most of those protocols
are low-throughput, and require costly instruments that are less
flexible in terms of outputting data in convenient formats.
Addressing the need for rapid, cost-effective, large-scale root res-
piratory screening will require the development of both high-
throughput root respiration measurement and data analysis
capabilities, the combination of which will greatly strengthen
functional phenomics by increasing statistical power and
enabling genetic mapping (York, 2019).

Wheat, a member of the grass family, is an important cereal
that is grown globally. Winter wheat in the Southern Great Plains
of the United States is often grown as a dual-purpose crop for
forage and grain production (Maulana et al., 2019). Yield, pro-
tein content (Rajaram, 2001), disease resistance (Ellis et al.,
2014), and heat resistance (Maulana et al., 2018) are major tar-
gets for modern wheat breeding and genetic improvement. Sig-
nificant marker–trait associations for aboveground traits, such as
yield and its components (Sukumaran et al., 2018) and nitrogen
use efficiency (Cormier et al., 2016; Hawkesford & Griffiths,
2019), have been reported across the wheat genome. Indeed, a
considerable number of QTLs associated with wheat root traits
have been identified on nearly all chromosomes in variable envi-
ronments (Hamada et al., 2012; Bai et al., 2013; Atkinson et al.,
2015; Maccaferri et al., 2016; Xie et al., 2017; Beyer et al., 2019;
Soriano & Alvaro, 2019). However, understanding of the genetic
and functional bases of root traits still lags behind that of above-
ground traits, and genetic variation of root structural and
metabolic traits remains underexplored. Accordingly, this study
was conducted with the following objectives: to develop a high-
throughput phenotyping platform that integrates a hydroponics
growth system, infrared gas analyzers, custom gas chambers, a
bead bath, flatbed scanners, analytical scales, and an R script for
measuring specific root respiration, specific root length, and other
root traits; to validate the platform using winter wheat to uncover
heritable variation of root respiration and architectural traits; to
employ functional phenomics to identify relationships among
traits and tissue-type dependencies; and to identify associated
QTLs/genes that drive root respiration and other root traits by
performing GWASs.
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Materials and Methods

Plant materials

The plant materials were selected from the hard winter wheat
association mapping panel (HWWAMP) of the Triticeae Coor-
dinated Agricultural Project (T-CAP). A total of 276 hard winter
wheat (Triticum aestivum L.) cultivars and breeding lines were
selected from the panel, which covers a broad range of selection
and breeding history in the Great Plains of the USA.

Experimental design

The 276 wheat lines were grown as two replicates in a single
growth chamber (552 plants), and the entire procedure was
repeated twice, for a total of four replicates and 1104 plants. Each
replicate was treated as a block for an overall experiment with a
randomized complete block design. The seedlings were trans-
planted into the hydroponic grow boxes on 19 June and 4 Octo-
ber 2019. The details of the germination, growth, and sampling
procedures are given in the paragraphs that follow.

Growth conditions

Seeds were surface-sterilized in 0.5% sodium hypochlorite
(NaOCl) for 10 min, rinsed three times using deionized (DI)
water, and pre-germinated in Petri dishes with filter paper
which were placed in darkness at 25°C for 3 d. Uniformly ger-
minated seedlings were selected (Fig. 1a), wrapped around the
root–shoot junction with L800-D Identi-Plugs foam (Jaece
Industries, North Tonawanda, NY, USA), plugged in a 15 ml
Falcon conical centrifuge tube (Corning Inc., Corning, NY,
USA) with the bottoms cut away from the 6 ml mark, and
transplanted into a hole cut into the lid of the growth system
(Fig. 1b). A unique barcode label was affixed to each tube for
sample identification. The hydroponics growth system consisted
of a polypropylene divider box (inside dimensions: length 38.10
cm, width 22.86 cm, height 20.32 cm, volume 17.7 l) and a
custom lid made from a PVC panel cut to fit into the top of
the box (4.5 mm thick × 250 mm wide × 392 mm long, with
the corners cut off to accommodate the box’s rounded corners).
Forty-eight holes of 18 mm diameter were drilled into the lid
using a hole saw, leaving equal spacing between holes. Twelve
growth boxes were placed in a Conviron E-15 growth chamber
(Conviron, Winnipeg, Canada) with a 16 h : 8 h, light : dark
photoperiod at 25 : 20°C, with a flux density at canopy level
of c. 400 µmol m−2 s−1. Each box was filled to the bottom of
the lid with a nutrient solution containing 125 µM KH2PO4,
1125 µM KNO3, 500 µM CaCl2, 250 µM MgSO4, 11.5 µM
H3BO3, 1.75 µM ZnSO4�7H2O, 2.25 µM MnCl2�4H2O, 0.08
µM CuSO4�5H2O, 0.03 µM (NH4)6Mo7O24�4H2O, and 19.25
µM Fe(III)-EDTA (C10H12N2NaFeO8). The nutrient solution
was continuously aerated with an air pump attached to airstones
submerged in each growth box, and the solution pH was main-
tained between 5.9 and 6.1 by the addition of KOH or HCl
throughout the experiment.

High-throughput root respiration measurements

Ten days after transplanting (Fig. 1c), plants were removed from
the nutrient solution. Roots were immediately excised from
shoots, blotted using tissue paper to remove excess water, and
placed in a 19 ml custom chamber connected to an LI-850 CO2/
H2O Analyzer (Li-Cor Inc., Lincoln, NE, USA) (Fig. 1d). The
custom chamber was made from a 12.7 mm (sold as ½ inch)
internal diameter clear polyvinyl chloride (PVC) pipe nipple
(United States Plastic Corp., Lima, OH, USA), which was 152.4
mm in length with threaded ends. Holes were drilled into 12.7
mm female national pipe thread (FNPT) nylon threaded caps
(United States Plastic Corp.) in order to accommodate the inser-
tion of quick-connect bulkhead male or female fittings (Li-Cor)
with rubber grommets to create a seal. A Balston filter (Li-Cor)
was inserted between the chamber and the analyzer to filter air.
The chamber was buried in a Lab Armor 20 l bead bath (Lab
Armor LLC, Irving, TX, USA) filled with Lab Armor metallic
beads, with the temperature set at 28°C. Beads were preferred to
water in order to prevent contamination of the system with water.
The chamber CO2 concentration was continuously recorded using
LI-850 WINDOWS software v.1.0.2 for 90 s at a rate of one reading
s–1. A USB barcode scanner (TaoTronics, Fremont, CA, USA)
was connected to each laptop to acquire and save the datafile with
the appropriate sample name, encoded by the barcode affixed to
the cut tube described in the section on growth conditions. Three
infrared gas analyzers were used to allow simultaneous respiration
measurements in parallel to increase throughput, which reached
25 samples per person h−1, with a team of eight.

In order to calculate the total respiration rate of a root sample
from the individual text files containing the time series molar
fraction of CO2, an R (R Core Team, 2018) script was developed
in order to load each text file from a directory, conduct a series of
computations, and output the total respiration rate. Total respi-
ration rate (CO2 flux) was calculated using Eqn 1.

F ¼ PV

RT

dC

dt
Eqn 1

where F is the CO2 flux in nmol s−1, P is the pressure in the
chamber in kPa, V is the corrected chamber volume in ml, R is
the ideal gas law constant in l kPa K−1 mol−1, T is air tempera-
ture in K, and dC/dt is the change in CO2 concentration on a
molar basis with time (µmol mol−1 s−1). Chamber volume (V)
was determined by subtracting the total root volume, estimated
using RHIZOVISION EXPLORER, from the chamber volume.

For root respiration analysis, the dead band (length of initial
time to be ignored) was set at 20 s. To estimate dC/dt, the slope
was used from a linear regression fit to the water-corrected CO2

concentration provided by the LI-850 analyzer over the corre-
sponding observation time (20–90 s) using the lm function in R
(R Core Team, 2018). The protocol for the root respiration mea-
surements and the R script for calculating total flux from a direc-
tory of text files are available at https://doi.org/10.5281/zenodo.
4247873 (Guo et al., 2020a).

After the root respiration measurements, roots were stored at
4°C and scanned within 1 wk. Roots from each plant were spread
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out in 5 mm of water in transparent acrylic trays and imaged
with an Expression 12000XL flatbed scanner equipped with a
transparency unit (Epson America, Los Alamitos, CA, USA) at a
resolution of 600 dpi. Given the small size of the root systems,
which were already clean because they were grown hydroponi-
cally, scanning throughput was 15 samples per person h−1.
Images were analyzed using RHIZOVISION EXPLORER v.2.0.2
(Seethepalli & York, 2020) and algorithms described by Seethep-
alli et al., (2020), with the options for image thresholding level,
filtering of noisy components, and threshold for root pruning
being set at 205 pixel intensity, 0.2 mm2, and 1 pixel, respec-
tively. A root diameter threshold of 0.3 mm was used to distin-
guish axial roots from lateral roots (Fig. 1e).

The root traits extracted using RHIZOVISION EXPLORER in this
study are as follows: number of root tips (Tip), number of
branching points (BP), branching frequency (BF), total root
length (TRL), axial root length (ARL), lateral root length (LRL),
average diameter (AvgD), total root volume (TRV), axial root
volume (ARV), lateral root volume (LRV), total root surface area
(TSA), axial root surface area (ASA), and lateral root surface area
(LSA). Branching frequency is determined by the software by
dividing the number of branching points by total root length.
When root scanning was completed, roots and shoots were dried
at 60°C for 3 d before dry weight determination, with a through-
put of 70 samples per person h−1. The oven-dried root mass and
root length quantified using RHIZOVISION EXPLORER were used to
calculate the specific root respiration (SRR) per unit of root dry
mass (SRR_M; nmol g−1 s−1) and the specific root respiration
per unit of root length (SRR_L; nmol m−1 s−1), respectively.

Root mass fraction (RMF) was found by calculating the
root dry weight as a proportion of the total plant dry weight.

Specific root length (SRL) was calculated by dividing root
length by the corresponding root dry weight. Lateral : axial
root length ratio was calculated by dividing lateral root length
by the corresponding axial root length, based on the diameter
threshold provided during image analysis, and lateral : axial
root volume ratio was calculated by dividing lateral root vol-
ume by the corresponding axial root volume. Branching den-
sity (BD) was calculated by dividing root tips by axial root
length. Root tissue density (RTD) was calculated by dividing
root dry weight by root volume, which brought the total
number of traits reported in this study to 25.

Broad-sense heritability (H2) of each trait was calculated based
on the equation described by Falconer & Mackay (1996):

H 2 ¼ σ2g
σ2g þ σ2e

r

The variables σ2g , σ2e and r represent the variance of the geno-
type effect, variance of the local environment effect, and the
number of replicates (blocks), respectively. The variances were
obtained by fitting to a mixed model including genotype as a ran-
dom effect and block as a fixed effect using the LME4 package
(Bates et al., 2014).

Principal component analysis (PCA) and visualization of out-
puts were performed on the trait means of the 25 traits using the
base function ‘prcomp’ and the R package FACTOEXTRA (Kassam-
bara & Mundt, 2017). The first ten principal component scores
were extracted for clustering and PC-based GWAS analysis (PC-
GWAS).

(a) (b) (c)

(d) (e)

Fig. 1 Platform for phenotyping root respiration and other root traits of winter wheat seedlings. (a) Seeds were surface sterilized and pre-germinated in
Petri dishes. (b) Seedlings were grown in aerated hydroponics for 10 d. (c) Shoot and roots of seedlings 10 d after transplanting. (d) Root respiration was
measured in an airtight chamber using an LI-850 analyzer with temperature control and a bead bath. (e) Axial roots (blue) are distinguished from lateral
roots (red) in a scanned image using RHIZOVISION EXPLORER. BB, bead bath; BF, Balston Filter; IRGA, infrared gas analyzer; RC, root chamber.
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Network analysis

Due to the high correlation between variables and singularities, root
volume, surface area related traits, and lateral : axial root length
ratio were dropped for network analysis. To assess the relationships
among the remaining 17 traits, pairwise Pearson’s correlation coef-
ficients (r) of the traits were estimated to construct a Gaussian
graphical model (GGM) for network analysis. Network analysis
with a Gaussian graphical model is a more holistic way to capture
causality and precursor/product relationships in complex trait net-
works relative to standard correlation analyses. A GGM provides
conditional dependence between two variables after removing the
effects of all other variables to avoid spurious correlations (Krum-
siek et al., 2011; Carlson et al., 2019). The network analysis and
visualization of trait relationships were carried out using the R pack-
age QGRAPH (Epskamp et al., 2012). Outdegree is the number of
connections that a trait node has to other trait nodes. Betweenness
centrality quantifies the number of times a trait node acts as a
bridge along the shortest path between two other trait nodes.

Multiple linear regression analysis

Multiple linear regression analysis was employed to determine
how total respiration can be partitioned into the contributions
from root tissue types. For this analysis, root volume was consid-
ered rather than mass because it could be derived from the image
data for each root class without requiring physical dissection of
the root system to acquire mass measurements. The total axial
root volume, lateral root volume (minus the tip volume), and lat-
eral root tip volume were used as the dependent variables, while
the total root respiration was the independent variable. The num-
ber of lateral root tips was estimated by subtracting four from the
number of root tips supplied by RHIZOVISION EXPLORER, assum-
ing that the typical wheat seedling had four seminal roots, based
on the counting of seminal roots in a limited subset. The average
number of total tips was nearly 400, so this correction had minor
effects. This number of lateral roots was multiplied by 0.01 mm3

in order to assign a small volume to the lateral root tips, which
were assumed to be more active based on previous research (Ben-
Noah & Friedman, 2018). Lateral root axis volume was deter-
mined by subtracting lateral root tip volume from the total lateral
root volume. Based on visual evaluation of feature images in
RHIZOVISION EXPLORER, total lateral root volume and total axial
root volume were assumed as the volumes of the diameter
ranges ≤ 0.3 mm or > 0.3 mm, respectively. The ‘stepAIC’
function implemented in R package MASS (Ripley et al., 2020)
was used for the stepwise regression, and it revealed this full
model to be the most parsimonious, so residuals of this model
were used as an additional trait (SRR_R) for subsequent analysis.
SRR_R is the respiration that is not accounted for after consider-
ing root system architecture and root tissue dependency.

Single nucleotide polymorphism (SNP) genotyping

High-density SNP markers from the wheat 90K SNP genotyping
array were obtained from genotype experiment

TCAP90K_HWWAMP of The Triticeae Toolbox database
(https://triticeaetoolbox.org/wheat/). Data constituting 21 555
SNPs were filtered to exclude markers with missing data greater
than 50% and minor allele frequency < 5%, resulting in 16 058
makers that were used in the association analysis. The map posi-
tions for the SNP markers used in this study were based on the
consensus map developed using a combination of eight mapping
populations (Wang et al., 2014).

Genome-wide association analysis

Three genome-wide association analysis approaches were
employed to identify genomic regions associated with various
root traits. The linear mixed model (LMM) in GEMMA (Zhou &
Stephens, 2012; Zhou & Stephens, 2014) was used to test for
association between SNPs and traits. The population relatedness
matrix was estimated using the centered relatedness algorithm
within GEMMA, and was chosen as a covariate in the model to
control population structure. A Wald test was performed to
determine P-values.

Single-trait (Univariate) association testing was run for each of
the 25 traits using mean phenotypic values, and PC-GWAS was
conducted using each of the first 10 PCs. Multi-trait (multivari-
ate) GWAS was carried out to increase the power of the associa-
tion tests and to detect polymorphisms with potentially
pleiotropic effects of trait-associated loci using the multivariate
linear mixed effect modeling capabilities of GEMMA. The 25 traits
were grouped into six multi-trait combinations based on their
genetic correlations or their structural and functional relation-
ships (McCormack et al., 2017; Ben-Noah & Friedman, 2018).
Root dry weight and shoot dry weight were combined to form a
biomass-related multi-trait set (biomass). Total root respiration,
root dry weight, root mass fraction, number of root tips, axial
root length, and branching density were combined to form a
root-respiration-related multi-trait set (root respiration) because
these traits had functional relationships based on network analysis
and provide a broader picture of root respiration. Axial root
length, lateral root length, axial root volume, lateral root volume,
axial root surface area, and lateral root surface area were com-
bined to form a root-morphology-related multi-trait set (mor-
phology). Branching point, branching frequency, and branching
density were combined to form a root-topology-related multi-
trait set (topology). Specific root length, root tissue density, and
average root diameter were combined to form a root-construc-
tion-related multi-trait set (construction). Root mass fraction, lat-
eral : axial root length ratio, and lateral : axial root volume ratio
were combined to form an allocation-related multi-trait set (allo-
cation). Multi-trait association was conducted with GEMMA using
the multivariate version of the same model used for single-trait
associations.

Outputs from GEMMA were used to generate Manhattan and
quantile–quantile (QQ) plots using the R package QQMAN

(Turner, 2018). As mentioned in many wheat studies (Maulana
et al., 2018; Beyer et al., 2019), determining a significance cutoff
threshold is one of the biggest challenges for GWAS. Significant
QTLs were initially tested based on a false discovery rate of 0.05
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following a stepwise procedure, which is very stringent (Müller
et al., 2011). So, the negative logarithm of the raw P-value
(–log10P) ≥ 3.5 was used for detecting SNPs that are significantly
associated with these complex quantitative traits, consistent with
the process outlined by Maulana et al. (2018).

Identification of candidate genes

The sequences of significant markers associated with phenotypic
traits were downloaded from the Triticeae Toolbox database
(Wang et al., 2014), and were BLAST searched against the wheat
genome in PHYTOZOME v.2.2 to identify candidate genes located
� 250 kb proximal to each identified marker. The � 250 kb
window was selected based on linkage disequilibrium analysis of
this wheat panel (Ayana et al., 2018; Maulana et al., 2018), which
reflects a relatively small interval. Candidate genes of interest
were selected based on the criteria of close proximity to the SNP
and possible involvement in the regulation of root development
(based on a literature review).

Results

Variations of root respiratory and architectural traits

Shoot dry weight (SDW), root dry weight (RDW), total dry
weight (TDW), total root respiration (TRR), SRL, lateral : axial
root length ratio (L : A_L), ASA, lateral : axial root volume ratio

(L : A_V), PC2, PC3, PC4 and PC7 exhibited normal distribu-
tion. Near normal distributions were observed for other root
traits (Supporting Information Fig. S1). The root traits with >
5-fold variation between maximum and minimum values in the
wheat population were SRR_L, TRL, LRL, LRV, LSA and BP.
3.2-fold and 2.2-fold variations were observed in SRR_M and
SRL, respectively, in the wheat population. Broad-sense heritabil-
ities ranged from 0.25 to 0.57 for the 25 traits (Table 1). The
respiration residual, SRR_R, of a multiple regression fit (Fig. 2a)
that accounts for respiration not explained by root system archi-
tecture, had a heritability of 0.44. The maximum heritability was
observed for SDW (0.57). The root traits with heritabilities
greater than 0.50 were SRL, BP and AvgD. Many strong correla-
tions were observed among traits. Total root respiration had cor-
relation values > 0.50 with RDW and TDW. Interestingly,
specific root respiratory traits (SRR_L and SRR_M) had signifi-
cant negative correlations with shoot, root, and total dry weight
(Figs 2b, 3).

Principal component analysis of the traits was conducted to
further identify the major linear trait combinations that maxi-
mize the multivariate variation, and the first 10 PCs collectively
explained 98.8% of the total variance. PC1, PC2, PC3 and PC4
explained 49.9%, 17.5%, 9.3% and 7.7% of the total variance,
respectively (Fig. 4a). Plant size-related traits, including TSA,
TRL, TRV, TDW, RDW and SDW, made important contribu-
tions (> 5%) to PC1. By contrast, PC2 was largely driven by two
structural cost related traits, AvgD and SRL, which contributed

Table 1 Summary statistics and units for shoot dry weight, total dry weight, and the 24 root traits characterized in this study in winter wheat.

Trait Abbreviation Unit Mean Min Max H2

Shoot dry weight SDW g 0.039 0.018 0.059 0.57
Total dry weight TDW g 0.053 0.024 0.080 0.51
Root dry weight RDW g 0.014 0.006 0.022 0.39
Total root respiration TRR nmol CO2 s

−1 0.54 0.23 0.91 0.42
SRR per root length SRR_L nmol CO2 s

−1 m−1 0.14 0.04 0.34 0.48
SRR per root mass SRR_M nmol CO2 s

−1 g−1 39.86 23.32 74.79 0.32
SRR residual SRR_R nmol CO2 s

−1 −0.0039 −0.3623 0.27 0.44
Specific root length SRL m g−1 299.7 182.21 398.36 0.55
Root mass fraction RMF % 26.48 19.05 36.17 0.43
Total root length TRL mm 4125.91 1315.65 7861.83 0.47
Axial root length ARL mm 1456.2 655.59 2537.42 0.48
Lateral root length LRL mm 2669.71 660.06 5494.75 0.48
Lateral : axial root length ratio L-to-A_L mmmm−1 1.82 0.83 2.66 0.48
Total root volume TRV mm3 329.49 135.78 610.24 0.45
Axial root volume ARV mm3 243.9 113.64 459.5 0.46
Lateral root volume LRV mm3 85.59 22.15 164.09 0.40
Lateral : axial root volume ratio L-to-A_V mm3 mm−3 0.36 0.17 0.53 0.45
Total root surface area TSA mm2 3680.62 1348.64 6477.28 0.45
Axial root surface area ASA mm3 2034.03 934.42 3639.73 0.47
Lateral root surface area LSA mm3 1646.59 414.22 3266.23 0.44
Average root diameter AvgD mm 0.29 0.25 0.37 0.53
Number of root tips Tip n 399.61 161.67 710 0.40
Number of branch points BP n 931.66 283 1992.5 0.54
Branching frequency BF n mm−1 0.22 0.18 0.31 0.45
Branching density BD n cm−1 2.81 1.75 5.83 0.25
Root tissue density RTD g cm−3 0.04 0.03 0.06 0.30

H2, broad-sense heritability.
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18% and 15%, respectively (Fig. 4b). Traits with > 7% contri-
butions to PC3 were the structural cost trait RTD (22%), three
root respiration traits (TRR, SRR_L and SRR_M), and branch-
ing trait BF (14%). PC4 was predominantly driven by SRR_M
and SRR_L, which represent metabolic costs and contributed
24% and 14% to the component, respectively (Fig. 4c).

Multiple linear regression partitions respiration among root
tissue types

Multiple linear regression analysis was employed to determine
the respective contributions of lateral root tip, lateral root axis,
and total axial root volumes to total root respiration, and to esti-
mate the SRR_R trait. The resulting model (P < 2.2 × 10–16)
explains 14.5% of the variation in total root respiration. Axial
root volume, lateral root volume, and lateral root tip volume were
all significant explanatory variables (P = 0.001, 1.37 × 10–5, and
0.03, respectively). The average specific root respiration rate on a
volume basis of lateral root tips was 30.5 and 8.1 times the rates
of axial roots and lateral roots, respectively, as determined from
comparing slopes in the model (Table S1). The model provides
estimates for the average SRR by volume for each root class across
the diversity panel, and given the known total volume within
each class for each root system, the model can predict total root
system respiration. The residuals of this model are the differences
between the predicted respiration and the actual respiration.
Therefore, these residuals represent respiration not explained by
average dependency on root type abundance within a root sys-
tem, where negative values indicate that a root system respires less
than expected. The residual respiration (SRR_R) ranged from
−0.36 to 0.27 nmol CO2 s

−1, which we hypothesized to have a
genetic component.

Trait correlation network

In addition to the correlation analyses, a network analysis based
on a Gaussian graphical model was performed to account for the
conditional dependencies between the investigated traits. The
traits exhibiting an outdegree value > 2.0 were AvgD, RTD,
ARL, SRR_M and SRL in descending order (Table S2). Average
root diameter showed the highest betweenness, connecting a root

branching subnetwork via ARL, and a biomass subnetwork via
RMF. SRL also exhibited a high betweenness, by connecting
other groups of traits belonging to root respiration, biomass, root
morphology, and topology. Greater values for outdegree and
betweenness indicate greater centrality in a network, suggesting
that a trait has influence on other traits. Consistent with Pearson
correlation analysis, SRR_M was weakly connected with root dry
weight, total dry weight, and RMF. SRL was negatively and posi-
tively correlated with SRR_L and SRR_M, respectively (Fig. 5).
In contrast to the Pearson correlation analysis (Fig. 3), no direct
network connection was observed between shoot dry weight and
root respiratory and architectural traits (Fig. 5).

Genome-wide association analysis

Multi-trait GWAS analysis of the six sets of traits identified 140
SNPs, while the single-trait GWAS of 25 traits identified 234
significantly associated SNPs (–log10 P > 3.5). A GWAS based
on the first 10 PCs identified 79 SNPs that passed the –log10P
of 3.5, and the majority of these detected SNPs were associated
with PC1, PC2 or PC9 (Fig. 6a; Table S3). Sixty-nine percent
of the significantly associated SNPs in the multi-trait approach
and 56% of the SNPs in the PC-GWAS were represented in
the single-trait GWAS (Fig. 6). Overall, the multi-trait GWAS
and PC-GWAS identified 77 additional, unique SNPs that were
not uncovered by the 25 univariate analyses (Figs 6a, S2). Fur-
ther analysis of all identified genomic regions retrieved potential
candidate genes which were within � 250 kb of representative
SNPs (Table S4), but which were much closer in general. Four
significant markers associated with SRR_M were identified on
chromosomes 1B, 4B and 4D (Fig. 7a). There were no candi-
date genes underlying the top two largest –log10P signals on
chromosomes 1B and 4B, while the third largest –log10P signal
(IWA430) on chromosome 4D was encoding for four poten-
tially underlying proteolysis genes (Table S4). Seven significant
markers associated with SRR_L were identified on chromo-
somes 4B and 5A. The marker (Excalibur_c100336_106) with
the largest –log10P signal on chromosome 4B, which co-associ-
ated with SRR_M, had no known potentially underlying gene.
Six candidate genes near the next two largest –log10P signals on
chromosome 5A were annotated with functions related to ATP

Fig. 2 (a) The relationship between
predicted total root respiration and total root
respiration in winter wheat, and deviations
from the relationship results in a new trait
specific root respiration residual (SRR_R). (b)
Regression between specific root respiration
by length and shoot dry weight.
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binding, protein binding, and protein kinase activity (Table
S4). Three additional significant markers associated with
SRR_R were detected on chromosomes 1A and 1B (Table 2).
Three candidate genes potentially underlying the largest –log10P

signal (Kukri_c10453_875) on chromosome 1A were associated
with processes of DNA transcription regulation (Table S4).
There were no candidate genes found near the other two mark-
ers. The multi-trait GWAS for root respiration identified 20

Fig. 3 Pairwise Pearson correlation for selected traits of the Triticeae Coordinated Agricultural Project (T-CAP) winter wheat seedlings. The numbers
represent the correlation values. The cross symbol (×) means that the correlation value is not significant at P < 0.05. Bright red to bright blue indicates
highly positive to highly negative correlations. Traits were measured in winter wheat. ARL, axial root length; ARV, axial root volume; ASA, axial root
surface area; AvgD, average root diameter; BD, branching density; BF, branching frequency; BP, number of branch points; LRL, lateral root length; LRV,
lateral root volume; LSA, lateral root surface area; L : A_L, lateral : axial root length ratio; L : A_V, lateral : axial root volume ratio; RDW, root dry weight;
RMF, root mass fraction; RTD, root tissue density; SDW, shoot dry weight; SRL, specific root length; SRR, specific root respiration; SRR_L, SRR per root
length; SRR_M, SRR per root mass; SRR_R, SRR residual; TDW, total dry weight; Tip, number of root tips; TRL, total root length; TRR, total root
respiration; TRV, total root volume; TSA, total root surface area.
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additional markers on chromosomes 1A, 1B, 2B, 3D, 4A, 4B,
5B, 6A and 7A (Fig. 7a). There were no known candidate genes
underlying the largest –log10P signal Excalibur_c5139_198 on
chromosome 1A, and four candidate genes potentially underly-
ing the following two largest –log10P signals on chromosomes
1A and 1B were annotated with functions related to protein
kinase activity and ADP binding (Table S4).

Ten significant markers associated with single-trait SRL were
identified on chromosomes 2A (9 markers) and 7A, as well as

17 candidate genes potentially underlying the top three largest
–log10P signals on chromosomes 2A and 7A (Fig. 7b; Table
S4). Five significant markers associated with single-trait AvgD
were identified on chromosomes 6B, 7A and 7B. Only one of
the top three largest –log10P signals on chromosome 7A had
three potentially underlying genes, which were annotated with
functions related to protein binding. Seven significant markers
associated with single-trait RTD were identified on chromo-
somes 1B, 1D and 7A, and eight candidate genes potentially
underlying the top three largest –log10P signals on chromo-
somes 1B, 1D and 7A were annotated as zinc finger CW-type
coiled-coil domain protein and integral membrane Yip1 family
protein. The multi-trait GWAS for root construction identified
eight markers on chromosomes 1A, 1B, 2B, 3B and 7A, with
one marker (GENE-0249_161) on 1B co-associated with sin-
gle-trait RTD, and another marker (RAC875_c63889_486) on
7A co-associated with single-trait SRL (Table 2). Eight candi-
date genes potentially underlying the top three largest –log10P
signals on chromosomes 1B, 2B and 3B were annotated as regu-
lators of VPS4 activity and potassium ion transmembrane trans-
port (Table S4).

Significant marker associations and underlying genes were
also detected for branching frequency, multi-trait biomass,
multi-trait allocation, multi-trait morphology, all PC-traits
except PC8, and the other single traits (Figs 6, 7c, S2, S3;
Table S3).

Discussion

Reducing the metabolic and structural carbon costs of roots has
become a viable engineering strategy for crop breeding to increase
yield and promote plant growth (Lynch, 2013, 2018; Amthor
et al., 2019). However, the genetic and functional basis of root
respiration traits still lags behind architectural root traits. Scaling
up phenotyping will strengthen functional phenomics of root res-
piration greatly by increasing statistical power and enabling

Fig. 4 (a) Scree graph showing percentage of variance explained by each of the first 10 principal components. Principal component analysis (PCA) variable
contribution plots show (b) the first and second PCs and (c) the third and fourth PCs, where relative weightings of the variables are indicated by vectors.
Trait a were measured in winter wheat. ARL, axial root length; ARV, axial root volume; ASA, axial root surface area; AvgD, average root diameter; BD,
branching density; BF, branching frequency; BP, number of branch points; LRL, lateral root length; LRV, lateral root volume; LSA, lateral root surface area;
L : A_L, lateral : axial root length ratio; L : A_V, lateral : axial root volume ratio; RDW, root dry weight; RMF, root mass fraction; RTD, root tissue density;
SDW, shoot dry weight; SRL, specific root length; SRR, specific root respiration; SRR_L, SRR per root length; SRR_M, SRR per root mass; TDW, total dry
weight; Tip, number of root tips; TRL, total root length; TRR, total root respiration; TRV, total root volume; TSA, total root surface area.

Fig. 5 Trait correlation network constructed from the Gaussian graphical
model. Red and green lines show negative and positive correlations,
respectively. The cutoff was set at 0.15. Traits were measured in winter
wheat. ARL, axial root length; AvgD, average root diameter; BD,
branching density; BF, branching frequency; BP, number of branch points;
LRL, lateral root length; RDW, root dry weight; RMF, root mass fraction;
RTD, root tissue density; SDW, shoot dry weight; SRL, specific root length;
SRR, specific root respiration; SRR_L, SRR per root length; SRR_M, SRR
per root mass; TDW, total dry weight; Tip, number of root tips; TRL, total
root length; TRR, total root respiration.
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genetic mapping (York, 2019). The platform we developed facili-
tates high-throughput phenotyping of root respiration, with inte-
gration of cost-effective equipment and an R script for data
processing, and it allowed throughput of about 25 samples per
person h−1. The use of a bead bath for controlling temperature
avoids the risk associated with using a water bath of water enter-
ing the respiration chamber, which can result in contamination
of the gas analyzer. We observed 8.5-fold variation for SRR_L
and 3.2-fold variation for SRR_M in the wheat panel. In previ-
ous work, root respiration was measured mostly using single root
segments (Poorter et al., 1991; Strock et al., 2018), and there was
little information about how different root types impact the res-
piration of whole root systems. Considering the difficulty of sepa-
rating different root tissue segments from whole root systems in
order to maintain high throughput, multiple linear regression
was used to predict the contributions of root tissue types to total
root respiration of wheat seedlings on average within the panel.
We found that a much higher degree of respiration was observed
in the lateral root tips than in the axial root tissue or lateral root
axis tissue (≤ 0.3 mm), which supports findings from studies in
woody plants showing that root tip meristems consume about 15
times more O2 than the rest of the root system (Mancuso &
Boselli, 2002; Aguilar et al., 2003; Burton et al., 2012).

Principal component analysis confirms a multidimensional space
of root trait variation in this intraspecific wheat diversity panel. The
first dimension was dominated by plant size traits which are typi-
cally not included in the trait economics literature because they are
difficult to acquire for wild species, such as entire trees (Reich,
2014). Consistent with findings from seedlings of tree species by
Kramer-Walter et al., (2016), a second dimension was dominated
by SRL and root diameter with opposite loadings, which may
reflect root adaptations for resource acquisition during breeding.
SRR-related traits loaded most strongly onto PC4, indicating that
they are important drivers within the multi-dimensional trait space
measured in this panel. Intraspecific trait economics spaces have
rarely been considered but may provide evidence for the underlying
genetic and physiological bases of the economics space. In this
work, SRL and SRR uncovered different candidate genes, which
implies both can be targeted simultaneously for crop improvement

because they have different developmental pathways. Reich (2014)
proposed that a central feature of the trait spectra is co-selection of
the correlated single traits due to evolutionary strategies across
species, which could also be true across crop varieties that are
adapted to diverse environments. Crossing contrasting crop lines
could be a strategy to test whether these associations can be uncou-
pled by genetic recombination in their progeny. If not, this may
indicate that the trait associations within a multi-trait dimension
are due to inherent physical and physiological constraints rather
than co-selection as an evolutionary strategy. Consideration of trait
economics spectra within crops is ripe for exploration, especially
considering the advances in high-throughput phenotyping and
functional phenomics (York, 2019).

Correlation network analyses have been widely used in biology
and social sciences to capture causality and precursor/product
relationship patterns in functional traits. Despite the elegance of
this approach, relatively few studies have applied network theory
to plant root traits (Poorter et al., 2014; Messier et al., 2017;
Carlson et al., 2019; Kleyer et al., 2019). In addition to root dry
weight, SRL, and average diameter, SRR_M, which is rarely used
in functional trait analysis, was identified as one of the hub traits,
and it had substantial effects on the plant phenotype as a whole.
Consistent with the findings of previous studies, SRL correlated
with root dry weight, root diameter, branching, and root tissue
density (Reich, 2014; Kramer-Walter et al., 2016). In addition,
we found that SRL can also be an indicator of root respiration,
on either a mass or length basis. Shoot biomass only had a strong
positive correlation with total biomass and a negative correlation
with root mass fraction in the network, which may indicate that
the formation of wheat seedling shoot biomass was mostly inde-
pendent, and also indicates that reducing or otherwise optimizing
the allocation of resources to the root could be a strategy to
improve shoot growth (Guo & York, 2019). Counterintuitively,
driving shoot growth with such a strategy may actually maintain
root mass and total metabolic burden, or even increase these total
costs, but with a lower proportion relative to the shoot. This
framework of carbon use efficiency represents an untapped posi-
tive feedback loop for plant growth. Interestingly, network, prin-
cipal component, and regression analyses all showed that

(a) (b)

Fig. 6 Venn diagrams of (a) associated single
nucleotide polymorphisms (SNPs), with a
cutoff threshold set at –log10P = 3.5,
(b) genes identified with a cutoff set at
–log10P = 3.5.In (a) and (b, diagrams depict
the significant results for: univariate analysis
of 25 traits, univariate analysis of 10 principal
components (PCs), and multivariate analysis
of six trait combinations.
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SRR_M was negatively correlated with total dry weight, suggest-
ing that reducing respiratory carbon could potentially increase
whole-plant growth (Lynch, 2015; Amthor et al., 2019).

Multi-trait GWAS analysis has recently gained more attention
because it often boosts SNP detection ability and assesses the full
spectrum of traits that are affected by trait-associated variants
(Porter & O’Reilly, 2017), which can be particularly useful for
challenging physiological traits (Chhetri et al., 2019). Combining
traits related to respiration, multi-trait association analysis identi-
fied 20 unique significant associations, while the single-trait
GWAS detected 13 unique significant associations for all SRR
traits. The findings potentially reveal the pleiotropic effects of
genes near significantly associated SNPs on root respiration. The
marker tplb0048b10_1365, the second-largest –log10P signal
associated with multi-trait root respiration, was reported to be
associated with nitrogen deficiency tolerance in wheat seedlings
(Ren et al., 2018). Multiple annotated genes potentially underly-
ing significant SRR_L and SRR_M associated SNPs are

annotated with functions in protein catabolism, protein binding,
ADP, and ATP binding, which are related to cellular respiration
(Araújo et al., 2011), root meristem activity (Xu et al., 2017) or
root senescence (Liu et al., 2019).

Genome-wide association studies for root architectural traits
have gained increasing attention in wheat, and several QTLs/ge-
nes in wheat have been found to associate with root architectural
and morphological traits such as root length, root number, and
root diameter across the genome (Maccaferri et al., 2016; Ayalew
et al., 2018; Beyer et al., 2019). Specific root length (SRL),
AvgD, and RTD are important components of the root eco-
nomic spectrum because they potentially provide information
about root morphology and structural costs (Kramer-Walter
et al., 2016; McCormack et al., 2017). Multiple genes potentially
underlying associated significant SNPs were identified as a zinc
finger protein, a cytochrome p450 family member, and a
haloacid dehalogenase-like hydrolase family protein, all of which
play important roles in controlling wheat root growth and

Fig. 7 Manhattan plot of genome-wide
association study (GWAS) analyses
conducted for the following traits: (a)
Specific root respiration (SRR) by mass, SRR
by length, residuals of total respiration vs
volume of different segments, and multi-trait
combination for root respiration. (b) Specific
root length (SRL), average root diameter
(AvgD), root tissue density (RTD), and multi-
trait combination for root construction.
(c) Number of branch points (BP), branching
frequency (BF), Branching density (BD), and
multi-trait combination for root topology of
the Triticeae Coordinated Agricultural Project
(T-CAP) winter wheat population. Each dot
represents a single nucleotide polymorphism
(SNP). The horizontal black line indicates the
threshold of significance at –log10P = 3.5.
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development (Kulkarni et al., 2017; Li & Wei, 2020). Multiple
genes potentially underlying two markers (Kukri_c24648_262
and Kukri_c5113_1082), which were co-associated with TRL,
LRL, TRV, LRV, TSA, LSA, BP, PC1, and multi-trait allocation
and topology (Table S4), were annotated as a nucleoporin
autopeptidase domain containing protein. Those genes may play
distinct roles in nuclear transport and root elongation (Parry,
2014).

A recent review outlined emerging possibilities for reducing
unnecessary carbon loss to increase yields (Amthor et al., 2019),
the findings of which were further supported by new simulation
results indicating that substantial gains could be made by target-
ing plant respiration (Holland et al., 2019). An optimal root
system will therefore conform to economic cost–benefit analy-
ses, for which the incremental cost increase associated with allo-
cation to the root system equals the incremental benefit
increase, measured as nutrient and water capture, or marginal

photosynthesis (Bloom et al., 1985). Recent work from the
Realizing Increased Photosynthetic Efficiency (RIPE) project
has also shown that it is possible to increase photosynthesis by
reducing photorespiration (South et al., 2019) and increasing
photosynthetic induction (Acevedo-Siaca et al., 2020). This
study focused on young seedlings, which is a crucial growth
stage at which vigor has been shown to lead to greater yield in
wheat. We propose that a combination of strategies that
increase photosynthesis and decrease ‘luxury’ root respiration
could have synergistic and compounding influences on plant
growth. The trait economics space discussed above provides a
useful framework for this strategy.

Conclusions

We developed a high-throughput platform for measuring multi-
ple traits within the root economics space, including root

Table 2 Subset of significant single nucleotide polymorphism (SNP) markers identified from multi-trait genome-wide association study (GWAS) analyses in
winter wheat and univariate GWAS analysis of single-traits by selecting the top three SNPs of each trait defined in Table 1.

Trait Model Markers Chr. MAF P-value

SRR_M Univariate Excalibur_c100336_106 4B 0.110 1.91E-05
SRR_M Univariate IAAV5776 1B 0.056 9.95E-05
SRR_M Univariate IWA430 4D 0.438 2.11E-04
SRR_L Univariate Excalibur_c100336_106 4B 0.110 1.70E-05
SRR_L Univariate CAP12_c956_61 5A 0.112 2.04E-04
SRR_L Univariate BS00066434_51 5A 0.146 2.19E-04
SRR_R Univariate Kukri_c10453_875 1A 0.281 7.51E-05
SRR_R Univariate IWA6965 1B 0.064 9.86E-05
SRR_R Univariate RAC875_c42206_305 1B 0.064 9.86E-05
Respiration Multivariate Excalibur_c5139_198 1A 0.213 5.69E-06
Respiration Multivariate tplb0048b10_1365 1B 0.064 4.35E-05
Respiration Multivariate Ex_c4876_1221 1A 0.248 9.36E-05
SRL Univariate RAC875_c63889_486 7A 0.202 7.58E-05
SRL Univariate GENE-1220_457 2A 0.064 1.29E-04
SRL Univariate RFL_Contig5917_2369 2A 0.071 1.73E-04
AvgD Univariate IWA7907 7B 0.190 1.95E-04
AvgD Univariate IWA4438 7A 0.083 1.97E-04
AvgD Univariate Tdurum_contig61864_1352 7A 0.082 2.03E-04
RTD Univariate GENE-0249_161 1B 0.272 6.84E-05
RTD Univariate IWA614 7A 0.277 1.97E-04
RTD Univariate Kukri_c20062_389 1D 0.165 2.06E-04
Construction Multivariate BS00082644_51 3B 0.247 4.91E-05
Construction Multivariate GENE-0249_161 1B 0.272 1.65E-04
Construction Multivariate IWA6076 2B 0.273 1.72E-04
BF Univariate CAP7_c1083_283 1A 0.140 1.74E-05
BF Univariate Kukri_c29121_226 1A 0.140 1.98E-05
BF Univariate Kukri_c53935_265 1A 0.136 3.47E-05
BP Univariate IWA1464 1D 0.147 6.00E-07
BP Univariate BS00032149_51 1D 0.133 7.39E-07
BP Univariate IWA2164 1D 0.150 1.31E-06
BD Univariate Tdurum_contig49608_1185 4B 0.143 1.59E-04
BD Univariate BS00063973_51 5A 0.404 2.63E-04
BD Univariate Excalibur_c33173_557 2D 0.205 2.91E-04
Topology Multivariate BS00032149_51 1D 0.133 6.15E-06
Topology Multivariate IWA1464 1D 0.147 6.95E-06
Topology Multivariate IWA2164 1D 0.150 1.74E-05

AvgD, average root diameter; BD, branching density; BF, branching frequency; BP, number of branch points; Chr., chromosome; MAF, minor allele
frequency; RTD, root tissue density; SRL, specific root length; SRR, specific root respiration; SRR_L, SRR per root length; SRR_M, SRR per root mass;
SRR_R, SRR residual.
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respiration and specific root length, which are aspects of root
metabolic and structural costs, respectively. Substantial, heritable
variation exists within wheat, providing further evidence for
intraspecific economics spectra. Employing the functional phe-
nomics approach allowed us to leverage genetic and phenotypic
diversity to infer the increased contribution of lateral root tips to
respiration, the negative relationship between SRR and seedling
mass, and network analysis that identified hub traits. Genome-
wide association studies for the univariate traits uncovered several
underlying genetic regions, while multivariate and PCA-based
GWASs provided an improved ability to detect the genetics of
the root economics space itself for the first time, to our knowl-
edge. The SNPs associated with the traits may be useful for
marker-assisted breeding. Candidate genes underlying significant
SNPs associated with root respiratory, structural, and topological
traits will require further research, with the aim of reducing respi-
ratory carbon loss and structural costs. We provide evidence that
the combination of functional phenomics and trait economic
theory has the potential to advance our understanding of plant
biology and promote breeding of carbon use efficient crop vari-
eties.
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