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Abstract

The main objective of diabetes control is to correct hyperglycaemia while avoiding

hypoglycaemia, especially in insulin‐treated patients. Fear of hypoglycaemia is a

hurdle to effective correction of hyperglycaemia because it promotes under‐dosing

of insulin. Strategies to minimise hypoglycaemia include education and training for

improved hypoglycaemia awareness and the development of technologies to allow

their early detection and thus minimise their occurrence. Patients with impaired

hypoglycaemia awareness would benefit the most from these technologies. The

purpose of this systematic review is to review currently available or in‐development

technologies that support detection of hypoglycaemia or hypoglycaemia risk, and

identify gaps in the research. Nanomaterial use in sensors is a promising strategy to

increase the accuracy of continuous glucose monitoring devices for low glucose

values. Hypoglycaemia is associated with changes on vital signs, so electrocardio-

gram and encephalogram could also be used to detect hypoglycaemia. Accuracy

improvements through multivariable measures can make already marketed galvanic

skin response devices a good noninvasive alternative. Breath volatile organic

compounds can be detected by dogs and devices and alert patients at hypo-

glycaemia onset, while near‐infrared spectroscopy can also be used as a hypo-

glycaemia alarms. Finally, one of the main directions of research are deep learning

algorithms to analyse continuous glucose monitoring data and provide earlier and

more accurate prediction of hypoglycaemia. Current developments for early iden-

tification of hypoglycaemia risk combine improvements of available ‘needle‐type’

enzymatic glucose sensors and noninvasive alternatives. Patient usability will be

essential to demonstrate to allow their implementation for daily use in diabetes

management.
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1 | INTRODUCTION

Hypoglycaemia is one of the major threats for people with diabetes

(PwD) in daily life, as it can result in symptoms that affect their

mental agility and can lead to coma if not treated rapidly.1 Psycho-

logical distress due to the fear of hypoglycaemia reduces the quality

of life of PwD,2 especially of persons with type 1 diabetes who have

been reported as having twice higher occurrence of hypoglycaemia

than those with type 2 diabetes.3

The fear of hypoglycaemia and associated symptoms lead many

PwD to accept hyperglycaemic glucose values, as the easiest solution

to avoid dealing with the management of unpleasant hypoglycaemic

events.2

There are different definitions of hypoglycaemia based on the

glucose levels, devices used and the impact of hypoglycaemia on the

person with diabetes.1,4,5 Alongside these differences in glucose

thresholds to define hypoglycaemia, there are huge inter—as well as

intraindividual variations in the glucose levels at which hypo-

glycaemic events are experienced.6 For example, PwD with a long

duration of diabetes and those with high glycaemic variability often

have impaired awareness of hypoglycaemia and may not feel symp-

toms until glucose levels reach very low values, while those with

sustained hyperglycaemia can feel symptoms of hypoglycaemia at

much higher glucose values than the level of 3.9 mmol/L (70 mg/dl)

defined in consensus documents.4,7

In this paper, we provide an overview of new sensing technolo-

gies, other than electro‐enzymatic and fluorescence‐based ones

present in currently marketed devices, which can be used to identify

or prevent hypoglycaemia. Then, we address the algorithms being

used or developed to enhance glucose monitoring and increase its

accuracy, and to predict future glucose values, that can have a

decisive role in predicting future hypoglycaemic events. Finally, we

present hypoglycaemia detection techniques not based on glucose

values but use one or different vital signs that are affected by low

blood glucose values and hypoglycaemic symptoms. We finish with a

discussion on the future of hypoglycaemia detection and prediction.

The diversity of techniques presented in this review are represented

in Figure 1 depending on the vital sign or fluid used for hypo-

glycaemia detection.

2 | METHODOLOGY

A literature review was performed using ‘PUBMED’, and ‘IEEE’ to find

articles about technologies related to hypoglycaemia detection and

prevention. After exploring and combining many search terms to

ensure having the broadest results, we used the following terms:

‘hypoglycaemia’, ‘blood glucose’, ‘glycaemia’, ‘prediction’, ‘predictive’,

‘detection’, ‘forecast’, ‘continuous glucose monitoring’, ‘CGM’ and

‘diabetes’.

F I GUR E 1 Mapping of hypoglycaemia detection and prediction techniques
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The search was performed in January 2019 and was restricted to

articles from 2013 onward, and gave in total 1616 results. M.C. and

O.D. made a first selection of 270 articles. In parallel, an alert was set

to avoid missing articles published after January 2019 dealing with

these topics. References of selected articles were analysed to extract

other related articles, and a complementary search in ‘ScienceDirect’

and ‘Google Scholar’ was used to find further information when

necessary and to complete the review with original works on each

subtopic identified. Monthly alerts and complimentary alerts helped

to add 25 articles.

Only articles published after 2013 were retained for this review.

New glucose sensors having a linear range detection wide enough for

blood or interstitial measurement were eligible. For prediction al-

gorithms, selected articles had to deal with glucose prediction and

present details on the datasets used, methodology and performance

metrics. We included algorithms that predicted glucose values in a

defined prediction horizon, as well as those that specifically predicted

hypoglycaemic events up to a maximum of 24 h in the future. Solu-

tions and technologies for hypoglycaemia correction like new

glucagon formulations and closed‐loop algorithms were excluded.

Figure 2 presents the PRISMA flow diagram of this review.

3 | SENSING TECHNOLOGIES FOR BLOOD OR
INTERSTITIAL GLUCOSE MEASUREMENT

The advent of enzymatic glucose sensors was a major revolution in

the lives of PwD by allowing accurate self‐monitoring of blood

glucose (SMBG). However, SMBG allowed only intermittent mea-

surement of blood glucose and PwD had to rely on their awareness of

hypoglycaemia and appropriate timing of their daily tests to identify

low glucose readings.

Continuous glucose monitoring (CGM) was an evolution that

used the same principles of enzymatic glucose sensors, but through a

new design of sensors allowed almost continuous (e.g., every

1–5 min) measurement of interstitial glucose (IG) for several

consecutive days (e.g., 7–14 days). CGM empowered PwD to better

manage their diabetes and minimise hypoglycaemia by allowing them

F I GUR E 2 PRISMA flow diagram
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to see their glucose at any time, along with information about the

rate and direction of change, and with many systems, providing alerts

of impending hypoglycaemia allowing the PwD to take preventative

action.

Both SMBG and CGM rely on an enzymatic reaction,8 mainly

using glucose oxidase (GOx), but some systems can use glucose‐1‐
dehydrogenase or hexokinase. After the first enzymatic reaction on

glucose, subsequent reactions follow creating a current on an elec-

trode. The measurement of the current allows calculation of glucose

levels in the interstitial fluid by applying a calibration function. These

electro‐enzymatic reactions were chosen for their high‐sensitivity

(Se), the good linearity between the current and glucose level, and

their range of detection going from 2 mmol/L (40 mg/dl) up to

40 mmol/L (400 mg/dl).9 However, at the extremities of the range of

detection, these sensors suffer from a reduction of accuracy, with an

increase in mean absolute relative difference (MARD) from an

average of 9%–15% in most of currently availably CGM systems10 to

percentages over 20% for low glucose values.11,12 New advances in

glucose sensor design may help to increase this accuracy at low

glycaemia levels.

3.1 | Evolutions of enzymatic and electrochemical
sensors towards a better accuracy

Over the last decades, development of nanomaterials opened a new

path to improve sensors thanks to their size, morphology, and higher

surface‐to‐volume ratios providing improved Se that could benefit

glucose measurement. Although many publications report on sensors

that are at experimental levels, and are sometimes far from having

the range of detection needed for blood glucose monitoring, some

articles presented sensors that may fit these needs.

Balakrishnan et al.13 propose a GOx surface modified with pol-

ysilicon nanogap, allowing a highly sensitive measurement with a

limit of detection down to 0.6 µmol/L (0.011 mg/dl) and a good linear

range up to 50 mmol/L (900 mg/dl) fitting the criteria for blood and

IG. Another proposed system works by immobilising GOx into an

oxide copper and gold nanostructure,14 with a linear concentration

range from 10 µmol/L (0.18 mg/dl) to 20 mmol/L (360 mg/dl). Many

other systems that are close to the requirements for clinical sensors

are described, like CeO2 nanorods,15 multiwalled carbon nanotubes

ZnO nanoparticles,16 gold and ZnO nanorods17 combinations of

enzyme models and graphene,18,19 all taking advantage of the

nanostructures and materials to increase the Se of enzymatic

sensors.20,21

These nanomaterials are also proposed for nonenzymatic

sensing, using platinum, gold, nickel, copper, palladium and other

composites,22,23 but only a few show a linear range inside the

physiological levels of blood or IG in PwD. From this small number,

we have a CuO NPs Ag electrode with a range from 0.05 to

18.45 mmol/L (0.9–332 mg/dl),24 a Pd–Pt graphene electrode,25 a

Ni(OH)2 nanostructure with a glucose range detection of 0.01–

30 mmol/L,26 a Pd NPs silver electrode.27

However, the path to market of these newly designed sensors is

long and many steps are still needed. After initial laboratory accuracy

assessments, reproducibility, biocompatibility and other fluid com-

ponents' interferences must be evaluated. Toxicity evaluation is also

necessary for these materials that may be present in invasive devices

to ensure safety of use. They must also fit to industrialisation pro-

cesses and storage requirements, and be amenable to scaling and

quality control. Only after succeeding in these step will real world

data collection from clinical studies be possible, that would allow us

to know the true level of improvement of accuracy and MARD

reduction of these next‐generation sensors.

3.2 | Noninvasive blood glucose sensors

Noninvasive methods for CGM could change the life of PwD suffering

from frequently occurring and severe hypoglycaemia.

Currently available noninvasive technologies do not reach the

same accuracy as electrochemical minimally invasive sensors present

nowadays in CGM.28,29 It remains uncertain whether they will reach

standards like ISO‐15197 or UCM 380327 for medical device

approval that would make them suitable for closed‐loop systems and

automated advisory systems. However, these devices could allow

better acceptance by the patients due to their noninvasiveness, as

well as more affordable access to CGM for many patients thanks to

reduced need for expensive consumables.

Amongst the noninvasive continuous monitoring solutions we

identified in development, many use optical technologies. For

example, ‘Wear 2b©’ from Israel30 and ‘Prediktor Medical©’ company

from Norway31 are developing devices with near‐infrared (NIR)

spectroscopy, while ‘D‐pocket©’ and ‘D‐band©’ devices (Dia-

MonTech)32 are using mid‐infrared spectroscopy and photothermal

detection.

Other minimally invasive approaches need also to be mentioned,

like “K'Watch©” device (PkVitality, France)33 using micro‐needles to

measure IG at skin surface and ‘SugarBeat©’ device (Nemaura Med-

ical)34 that uses reverse iontophoresis to extract interstitial fluid

through two electrodes. These two devices are near‐to‐market and

report MARDs almost similar to commercially available enzymatic

CGM systems, despite using minimally invasive methods to access

the interstitial fluid.

For a better insight in non‐invasive techniques, we recommend

recent reviews by Avari et al.28 and Gonzales et al.29

4 | ALGORITHMS FOR GLUCOSE AND
HYPOGLYCAEMIA PREDICTION

In commercially available CGM devices that use an enzymatic sensor,

algorithms are needed to convert measured electrical current into a

glucose value, and in some cases to correlate the IG value to the

blood glucose (BG) value that may have a different linear range, and

also to reduce the delay of 10–15 min35–37 between tissue and blood.
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By consequence, the first steps to better detect hypoglycaemia

are to improve the calibration algorithms that must be performed to

calculate real blood glucose value allowing faster and more accurate

detection of a low values.

4.1 | Calibration algorithms

Early CGM systems used first‐order linear functions or Kalman filters

as calibration algorithms,38,39 with one or two SMBG entries per day.

Recent developments in calibration algorithms pave the way to a

reduction of capillary calibration needs and an improvement in

MARD.

An algorithm presented by Mahmoudi et al.40 was used to reduce

requirement for calibration.41 It uses three steps, starting by a rate‐
limit filtering to ensure physiological limits of rate of change are not

exceeded, then a selective smoothing to reduce the noise of the

signal, followed by a regression that calculates the corresponding

glucose value using the electrical signal and the SMBG entries. This

algorithm demonstrated better accuracy in the range of low blood

glucose levels.41,42

Some other groups43–45 used a regularised deconvolution to

compensate for the difference between blood and IG, followed by

linear regression using two SMBG calibration values. The algorithm

was then further developed to use less calibrations using a Bayesian

framework that revaluates calibration parameters at each iteration

to a final version using no calibration,46 making the simple first‐order

linear functions more accurate by taking into account the whole 7‐
day period and obtaining a reduction in MARD of 1.2%.

Other teams have tried to use past weeks' data of previous

sensors, refining the calibration parameters for each new sensor

insertion.47,48 These algorithms cannot be easily used in real‐time in

wearable devices, but the increasing usage of smartphones for gly-

caemic monitoring may open the way to such implementations.

These attempts show that using more complex techniques can

help to reduce the MARD by more than 1%, and may improve per-

formance in the hypoglycaemic range where CGM systems are

currently less accurate.12,42,46

4.2 | Prediction algorithms

After improving the accuracy of CGM devices, through new sensors

and more complex calibration algorithms as presented earlier,

another step towards further improving the quality of life of PwD and

their ability to counter hypoglycaemia are predictive algorithms and

alarms as presented in Figure 3. They allow the patients to act early

and effectively prevent episodes of hypoglycaemia.

Similar to calibration algorithms, first‐generation of prediction

algorithms used linear regressions or Kalman filters,39 which are

simple calculation techniques that can be embedded in monitoring

devices and use past data to allow a short‐term prediction (20‐min

prediction horizon for hypoglycaemia or hyperglycaemia alarm in

current commercial devices).

While many articles present different prediction algorithms, only

a few tried to assess their clinical efficacy and benefits in real life or

at least in simulations.

A first in silico study led by Zecchin et al.49 with 50 virtual pa-

tients from the UVA/PADOVA simulator compared the duration of

hypoglycaemic events in three scenarios: one when hypoglycaemia

was not detected by any device, one where the patient took rescue

carbs when crossing hypoglycaemia threshold, and one when 30‐min

predictions alerted about hypoglycaemia. The simulation results

show that hypoglycaemia alert reduced time spent in hypoglycaemia

from 17.7% to 4.7% in the scenario with threshold alert and to 1.2%

in the scenario with predictive alert.

These predictions help patients to take clinical decisions in their

treatment, as shown in an early study.50 Twelve patients were asked

to record their decision making around hypoglycaemia, comparing

their usual care with a system that informed them of a 30‐min pre-

diction. Twenty percent of the patient's decisions were changed and

led to improved glycaemia. However, in some cases overtreatment

led to hyperglycaemia.

An observational study51 showed that the activation of such

predictive hypoglycaemia alarms reduced time below 3 mmol/L

(54 mg/dl) by almost 40%. Another retrospective study52 found that

predictive alarms prevented 59% of low glycaemic values.

Incoming years, we expect an increase of clinical evaluations of

such algorithms, with the integration of prediction techniques in

CGM systems and other devices, even though from a logical

perspective the benefits for patients seem obvious through their

empowerment to take proactive decisions before reaching critical

glucose levels. However, education as for every new device will be

necessary to prevent the counter effects of over reactions.

4.3 | A diversity of modelling strategies

Numerous factors can affect blood glucose levels and induce hypo-

glycaemic events such as insulin dosage, meal consumption, physical

activity, sleep quality, alcohol consumption, interfering medication,

stress and emotions, leading to a diversity of features that can be

F I GUR E 3 Process from glucose sensing to
hypoglycaemic event alert found in many

available devices
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used in addition to blood glucose history to develop predictive al-

gorithms. The increasing availability of devices like CGM systems,

insulin pumps or connected insulin pens, meal‐recognition apps,

physical activity wearables and the increasing usage of CHO counting

amongst PwD allow collection of a variety of nonglucose data that

can be employed to predict blood glucose.

We found 48 relevant publications53–100 that presented a pre-

diction algorithm published between 2013 and 2020 showing the

recent increasing interest for this topic. Information on these algo-

rithms is presented in appendices.

4.4 | Prediction inputs

In these publications, a diversity of strategies was used depending on

the data collected and their complexity and the algorithm objective.

More than half of the algorithms used one or two additional data

inputs, usually insulin doses or carbohydrates (CHO) or both. These

two inputs are easily accessible as they are almost always collected in

bolus advisors used in sensor augmented pump trials with enough

accuracy for modelling purposes. For a better interpretation by

prediction algorithms, these two additional inputs are processed in

almost one third of reviewed articles by physiological models to

extract additional features describing the absorption dynamics of

insulin action101–104 or meals.104–107

The addition of insulin and CHO data to CGM in prediction

models can slightly improve the performance of algorithms. However,

outside of clinical studies where patients are specifically selected for

their ability to carb count, using the CHO input in real life setting

seems difficult to achieve. To avoid this burdensome task for pa-

tients, three publications70,92,95 proposed to use meal timestamps to

inform the prediction algorithm of this event. Another research

team58 proposed that meal entries could be simplified by classifying

them with a five‐level scale from very light to very heavy meal.

Physical activity is the other major input impacting blood glucose

level. Nine studies investigated the use of armbands or wristbands to

collect information on heart rate,71,93,94 energy expendi-

ture75,76,85,99,100 or the number of steps,87 to augment the predict-

ability by this input. In all cases where comparisons have been made,

the addition of a signal informing the algorithm about activity

increased its prediction performance, even for commercial devices.

This shows that in real‐life setting, many accessible devices are

accurate enough for this purpose. The difficulty will be more on the

technical side to integrate different models and take into account the

diversity of data structure for each device. Finally, stress,84 medica-

tion,70 daily events and circadian rhythms86 were also investigated as

potential inputs, and could be helpful to differentiate prediction

models for daytime and night‐time.

4.5 | Prediction algorithms and outputs

After this step of input selection, and the use or non‐use of meal and

insulin physiological models, an algorithm is selected depending on

the purpose of the algorithm and its ability to process different type

of inputs. For blood glucose prediction, where the output is a value a

few steps ahead, the algorithms used are regressive models (ARM,

ARMAX, ARIMAX ...), different types of neural networks (ANN, CNN,

RNN, ELM, ESN …), genetic algorithms and grammatical evolution,

support vector machines (SVMs) and support vector regressions,

Gaussian processes, self‐organising maps (SOM) and kernel ridge

regression. In some cases as illustrated in Figure 4, the authors added

a final step with rules to create a hypoglycaemia or hyperglycaemia

warning using computed blood glucose values from the prediction

algorithms.

Another strategy presented in Figure 5 is to predict directly the

occurrence of a hypoglycaemic event in a defined prediction horizon,

without computing blood glucose values. This strategy is mostly used

for postprandial hypoglycaemia, exercise‐induced hypoglycaemia and

night‐time hypoglycaemia, where the aim is to inform the PwD quite

early, at meal time or bedtime or prior to the start of exercise to

reduce the risk of having such adverse event in the following hours.

The algorithms used are mainly classification algorithms like SVM,

SOM, classification trees, linear discriminant functions, random for-

ests and also ANN and grammatical evolution.

Finally, some teams53,59,62,71,73,78,81,83 merged different algo-

rithms having the same output to increase the models' performance,

taking advantage of each algorithms characteristics. Vehi et al. 87

took this strategy one step further, by proposing three algorithms for

each situation, one predicting hypoglycaemia in the next hour using

grammatical evolution, which can be enhanced by another algorithm

for postprandial hypoglycaemia risk in the next 4 h following the meal

using SVM, and another algorithm trained for night‐time hypo-

glycaemia using ANN.

F I GUR E 4 Multivariable blood glucose
prediction. In addition to glucose value, others

inputs are added to increase accuracy. A blood
glucose prediction value is calculated, and
classification rules allow evaluating the incoming

hypoglycaemia event
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The diversity of approaches, inputs used, algorithms and the

number of publications in the last few years, shows that this field of

research is expanding and researchers are still exploring all the ca-

pabilities that machine learning and artificial intelligence offer. New

algorithms are created every year,108 and are tested rapidly by

different teams on different blood glucose datasets.

Most studies were performed in people with type 1 diabetes

(T1D) who are most in need of this type of algorithm and are more

challenging for algorithms due to their high glucose variability and Se

to external factors than people with T2D. We can also highlight that

in the last two years, many publications used large datasets of more

than 80 patients with collection duration of several weeks or months.

This shows an increasing availability of qualitative datasets collected

during clinical studies that can be exploited for machine learning

purpose.

4.6 | Performance metrics

The performance metrics are key elements that allow determina-

tion of the accuracy of the developed model and its ability to

predict correctly blood glucose or an adverse event. Some

commonly used metrics are purely mathematical and give an insight

on the level of errors made by the presented model. The most used

mathematical metric is root main square error (RMSE), followed by

mean absolute error (MAE), mean absolute difference (MAD),

MARD, energy of the second‐order difference (ESOD), relative

absolute difference (RAD) and sum of squares of the glucose pre-

diction error (SSGPE). RMSE, MAE, MAD and SSGPE represent the

errors between predicted and real values, while MARD and RAD

are more sensitive to errors in low glucose values. ESOD is an

indicator of the variability and the oscillations present in the pre-

dicted glucose profile, the lower the value the smoother is the

profile.

For better clarity, some authors also use clinical evaluation

metrics that can reflect the impact of prediction on clinical decisions

and some were developed specifically for diabetes‐related technol-

ogies. Metrics like time lag or time gain109 give an insight of the

average time gained by patient before his real glucose level reaches

the predicted value, and represent the true prediction horizon.

‘J Index’109 was developed specifically for blood glucose prediction

algorithms, and combines ESOD and time gain to reflect the clinical

usefulness of the predicted value.

Error grids were developed to assess the clinical accuracy of

SMBG, classifying the error between the assessed device and a

standard reference measured by laboratory test in different zones,

each one corresponding to a level of clinical risk in case of difference

between the real and the measured value. Many teams used the

classical Clarke's error grid110 and Parkes Error grids111 that were

intended for assessing the accuracy of SMBG. A few teams used the

continuous glucose‐error grid analysis (CG‐EGA)112 designed for

assessing the accuracy of CGM, and one team used prediction

(PRED)‐EGA.113 This last error grid was developed specifically to

assess the clinical accuracy of prediction algorithms, modifying the

way rate of change is evaluated in CG‐EGA which results in a

reduction of misclassified cases.

The accuracy of hypoglycaemia event prediction uses more

standard metrics like receiver operating characteristics curves, Se,

Sp, positive predictive value, false alarm rate, accuracy, Matthews

correlation coefficient and F1‐score. However, we see in some pub-

lications differences in the way hypoglycaemic events are defined.

Some authors considered the hypoglycaemic event as crossing the

BG value of 3.9 mmol/L (70 mg/dl), others as having two or three BG

values of 3.9 mmol/L, and others used also the second level of 3

(54 mg/dl) or 2.8 mmol/L (50 mg/dl).

This variety of performance metrics makes it difficult for an

external reader to compare results from different publications. We

also regret the lack of use of clinical performance metrics, especially

the ones like J‐Index and PRED‐EGA or CG‐EGA and time gain that

could be more pertinent to validate the accuracy of the presented

algorithms.

5 | NONGLYCAEMIA‐BASED DETECTION
TECHNIQUES

Another axis of research in the last years was the development of

technologies for hypoglycaemia detection using other sources than

blood or IG, exploring other metabolic alterations that can occur

during a hypoglycaemic event.

F I GUR E 5 Multivariable event prediction. In
this other model, the algorithm is trained

directly for hypoglycaemia event prediction
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5.1 | Electrocardiogram‐based hypoglycaemia
detection

The impact of low blood glucose levels on the electrical activity of the

heart has been studied in the last years.114–118 Reports show a

prolongation of the QT interval, an increase in heart rate variability

(HRV), and changes in cardiac repolarisation during hypoglycaemic

episodes. Thus, using electrocardiogram (ECG) changes could be a

noninvasive way to detect the onset of hypoglycaemia.

The development in the last decade of new ECG wearables

enabled easy collection of cardiac signals and opened the way to

ECG‐based hypoglycaemia detection through deep learning

algorithms.

First attempts to predict hypoglycaemia from ECG were made by

the Nguyen HT team in many publications,119–126 using the same

dataset of 15 T1D children overnight, with an ECG Holter and CGM

measurement. Many algorithms were used in these publications like

neural networks or extreme learning machines, and inputs were QTc

and HRV, with a learning approach that did not take into account

interindividual variations. The best results obtained a Se of 80% and a

Sp of 50% for only night‐time hypoglycaemia.

A publication in 2016127 using data from an ECG Holter from

outpatients over two days showed that significant prolongations of

QT intervals can occur and be detected during daytime in real‐life
setting.

Another proof of principle study published in 2019128 used a

wearable device in 23 T1D outpatients, the ‘VitalPatch©’ (Vital-

Connect) that can be placed on the chest for 5 days and can measure

heart rate. Results showed that 55% of day and night hypoglycaemias

were clearly detectable using only HRV, and 27% showed an atypical

pattern.

These two studies showed that theoretically, QTc and HRV could

be two ECG features that can be used for noninvasive hypoglycaemia

detection, whether patients do or do not have diabetes, and that

having cardiovascular autonomic neuropathy does not influence their

ability to detect these measurable changes during hypoglycaemia.129

This last characteristic will have to be further confirmed in patients

with long‐standing diabetes or those with confirmed cardiac auto-

nomic neuropathy.130

While working on this review, an original work was published

that leverages these approaches of hypoglycaemia detection through

ECG to a next level, using a deep learning algorithm to detect the

beginning of the event using the raw ECG signal directly without

feature extraction.131 After collecting and processing data from eight

healthy patients using a wearable ECG patch that records ECG signal

and actigraphy, two different algorithms were used to detect night‐
time hypoglycaemia. They obtained good results with a Se, a Sp

and an accuracy around 84% respectively for both models. The

originality of this work, beside using real‐life raw data from com-

mercialised ECG wearables, is using a person‐specific approach with

a learning process for each individual patient. This allows the system

to account for individual differences between subjects as visible in

Figure 6, while all other studies were cohort‐based approaches.

These different studies show that ECG could be used in real‐life
conditions for helping patients to detect hypoglycaemic events.

Improved devices and algorithms can make these algorithms more

accurate and easier to implement in real‐life, which paves the way for

new tools. If T1D patients may not be the first beneficiary of these

technologies, ECG‐based algorithms could be useful for patients

without diabetes suffering from night‐time hypoglycaemia, due to

other conditions such as insulinoma, nesidioblastosis, endocrine,

kidney, liver or heart disorders, anorexia, tumours.

5.2 | Electroencephalogram detection

One of the other symptoms of hypoglycaemia is a decrease in

cognitive function. Hence, time series electro‐encephalogram (EEG)

can also be a good candidate for severe hypoglycaemia event

detection (below 2.2 mmol/L), as it was confirmed by the first studies

were EEG and blood glucose were recorded simultaneously.132–134

Figure 7 presents an illustration of these difference of EEG signal

during hypoglycaemia.

In recent years, in addition to their ECG studies, Nguyen and his

team135,136 have also conducted several studies with EEG. In their

first attempts, they collected overnight EEG and BG data every 5 min

through ‘YSI glucose analyser©’ (YSI Life Sciences) from five T1D

adolescents, and performed insulin‐induced hypoglycaemia. Signifi-

cant changes in EEG alpha band were observed during hypo-

glycaemia, and achieved detection performance results of 75% Se

and 60% Sp. Further studies with three more volunteers and using

other algorithms slightly improved their results137–139

A Danish team in association with the company ‘UnEEG med-

ical©’ (Denmark) have developed a wearable EEG for ambulatory

and studied hypoglycaemia detection. In their first studies before

2013 where they investigated insulin‐induced hypoglycaemia, they

concluded that EEG changes during low blood glucose events

were detectable during both day‐ and night‐time.140,141 This work

was followed by another publication in 2016 where the same

experiment was performed in eight prepubertal children with

T1D in three phases to record EEG during daytime hypoglycaemia

and during sleep.142 The same algorithm developed for adults

detected all hypoglycaemic events during daytime, but had too

many false alarms during sleep, indicating that it needed a specific

adjustment for children during night‐time. A later study143 was

performed with 24 T1D adults who underwent two hyper-

insulinemic hypoglycaemic clamps on two subsequent days, to

assess if brain changes were different after antecedent hypo-

glycaemia, and found no significant differences in EEG records. The

conclusion was that EEG‐based detection can be used as hypo-

glycaemia alarm in daily use without suffering from loss of accuracy

through successive episodes. On average, during these studies, EEG

was able to detect a blood glucose level around 2.2 mmol/L

(40 mg/dl), and between 15 and 20 min before reaching the nadir

point, giving just enough time to prevent a severe hypoglycaemic

episode.
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After this series of clinically controlled trials, an ambulatory 3‐
month study144 was performed with eight T1D persons to evaluate

the efficacy of an EEG alarm device in real‐life conditions. CGM was

recorded for two periods of 5 days and SMBG was performed at each

EEG alarm. One person withdrew from the study due to device

discomfort, and 659 days were recorded. Sixteen alarms were

F I GUR E 6 Illustration of interindividual differences in heartbeats during hypoglycaemia events. The solidlines represent the mean of all
the heartbeats that correspond to each subject in the training dataset: green during normal glucose levels, red during hypoglycaemic events.
The comparison among four different subjects highlighted the fact that each subject may have a different ECG waveform during

hypoglycaemic events. For instance, Subjects 1 and 2 present a visibly longer QT interval during hypoglycaemic events, differently from
Subjects 3 and 4. Reproduced from Porumb et al.129

F I GUR E 7 Encephalogram (EEG) segments during euglycaemia and hypoglycaemia. Each segment represents a 5‐s interval of EEG

recordings during each phase, showing a higher amplitude in the low‐frequency bands and greater regularity during hypoglycaemia episodes
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triggered by the device at a median value of 2.4 mmol/L (43 mg/dl),

and all subjects were able to take preventive actions before pro-

gression to severe hypoglycaemia. No false negative alarms were

reported for hypoglycaemic events needing external help, but pa-

tients experienced 2.9 false alarms/week during daytime (and only

0.2/week during night‐time).

In all these studies, the ‘24/7 EEG SubQ©’ (unEEG medical) was

used, a device in which a small part is implanted behind the ear, and

an external device powers the implanted part, processes the signal in

real‐time and launches the alarm if an event is detected.

New marketed devices opened the way for continuous real‐life
measurement of ECG and EEG signals with enough accuracy to

allow the development of algorithms for severe hypoglycaemia

detection. These devices are not intended to enter in competition

with CGM systems, but can be an alternative for some patients prone

to hypoglycaemia. However, ECG seems more suitable for a daily use,

being noninvasive and easier to wear and hide.

5.3 | Other hypoglycaemia detection techniques or
indirect blood glucose estimation

Beside EEG and ECG, other physiological signals that can be altered

during a hypoglycaemic event have also been investigated.

Galvanic skin response (GSR) was studied extensively to develop

alarms for night‐time hypoglycaemia since the 80s, taking into ac-

count alterations in skin temperature, perspiration and electrodermal

activity at event onset. Two commercial devices were produced and

tested in the 80s, ‘Diabalert©’ and ‘Sleep Sentry©’, but clinical studies

showed a low accuracy and many false alarms.145,146

Another available device on the market is ‘Diabetes Sentry©’

(Diabetes Sentry),147 a wristband that measures the GSR and alerts

patients in case of hypoglycaemia. The website states a rate of 90%

alarm success, but no publication on this device was found to confirm

these claims.

The ‘SenseWear Pro Armband©’ (Bodymedia) is a noninvasive

multisensor that measures GSR, but also skin temperature, ECG and

body motion. This device as mentioned previously has been used with

CGM to increase prediction accuracy,75–84 but it was also evaluated

for glucose estimation. In a publication by Sobel et al.148 the device

was evaluated in 41 T1D and T2D patients. They underwent two

tests to assess its accuracy in evaluating blood glucose level in dy-

namic conditions, during a glucose increase using an oral glucose

tolerance test and during a glucose decrease during a treadmill test.

During the study, reference blood glucose was measured every 5 min

using an intravenous catheter, and a CGM was used for model

training and for comparison. During the meal test, the device MARD

was 26% versus 18% for the CGM, and for the exercise test the

device MARD was 16% versus 12% for the CGM; and 95% of the

readings were in Zone A + B in the CEG. However, both device and

CGM were less accurate for low‐blood glucose readings, with only

20% hypoglycaemic values correctly estimated by the armband and

8.9% by the CGM.

This study, while confirming the limitations of CGM for the ac-

curate measurement of high and low values and during rapid glucose

variations, shows that this device measuring four separate physio-

logical signals simultaneously can be almost as accurate as CGM.

Nevertheless, these results need confirmation in larger trials and

under real‐life conditions, to avoid the risks of overfitting of the

learning algorithm than can occur in small datasets.

Other teams tried to detect blood glucose levels or hypo-

glycaemic events through volatile organic compounds (VOCs)

present in breath, mainly acetone, methyl nitrate, ethanol, meth-

anol149–151 and isoprene,152 that change with glucose variations.

Shrestha et al.153 collected breath samples from 52 PwD and

analysed their composition, then trained a linear discriminant

analysis to detect breath samples in hypoglycaemia and found

seven main VOC that are significantly related to hypoglycaemic

state. They succeeded in a classification of breath samples with a

Se of 91% and Sp of 84%. In two other studies, an experimental

device was presented and tested with artificial samples simulating

VOC concentrations in real breath samples at different levels of

blood glucose, and with different levels of acetone and ethanol.

They obtained an accuracy of 97% for hypoglycaemia breath

samples in their tests154 and developed a prototype with the

shape of a wristband.155

Tronstad et al.156 presented another prototype with ‘Prediktor

Medical©’ from Norway, combining skin temperature, bioimpedance

and NIR spectroscopy to predict glucose trends during hypo-

glycaemia. Their prototype was not reliable enough for low blood

glucose threshold detection, and they concluded that a combination

of other sensors with NIR could allow a noninvasive detection.

Another publication by the same team157 combined a sudomotor

activity sensor, ECG (heart rate and QTc), NIR and bioimpedance

spectroscopy. In this second publication, the aim was to detect

hypoglycaemia using this combination of vital signs that are altered

during low blood glucose events, and for classification purpose the

threshold was defined at 4 mmol/L (72 mg/dl). The investigators

succeeded in detecting almost all events with a Se of 95% and a Sp of

93%. In both trials, 20 T1D patients with impaired hypoglycaemia

awareness were recruited, and data were collected during hypo-

glycaemic and euglycemic clamp studies.

Karunathilaka et al.158 used also NIR spectroscopy to generate

a noninvasive hypoglycaemia alarm, that was tested using an

experimental setting that mimics glucose excursions in the human

body, with an aqueous layer containing different levels of glucose

and urea that can dynamically variate thanks to a pump and a

tissue phantom composed of collagen and keratin to simulate hu-

man skin. This complex experimental setting allowed them to

approach real life settings with blood glucose variations and

different skin thicknesses and tissue orientations. They succeeded

with this noninvasive technique with only 3.3% of false alarms in

the first experimental procedure and a correct classification up to

93% in the second and more complex experimental procedure.

Further testing with animal models is expected to complement

these first results.
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Even though we cannot categorise them as a technology or de-

vice, diabetes alert dogs were evaluated in some publications.159–161

If investigational studies using perspiration samples show accuracy

up to 90% for hypoglycaemia detection, real‐life studies show poorer

efficacy. Two studies159,160 with respectively 8 and 14 patients and

their dogs using blinded CGM systems show a Se around 30% with a

large variability between dogs (from 0% to 100%). Despite this lack in

accuracy, these dogs help patients and their relatives in improving

their quality of life and their confidence in managing their

diabetes.161

Some other fluids have been investigated for glucose monitoring,

like tears, sweat, urine and saliva as their glucose concentrations

seem to correlate with blood glucose concentrations, but due to

higher lag‐times between these fluids and blood, they cannot be used

for efficient hypoglycaemia detection or diabetes management.

The alternative techniques presented in this last chapter and

resumed in appendix files used very different strategies, some being

more realistic for ambulatory use than others. However, we must not

forget that for an adoption by final users under real‐life conditions,

such devices must achieve good accuracy, a continuous measure of

vital signs to allow a real onset detection and not only point‐of‐care

testing, and present a low burden for patients and affordable costs

for payers.

6 | DISCUSSION

In this review, we present many technologies for hypoglycaemia

detection and prediction, with different levels of complexity and

advancement that are summarised in Table 1.

Without any doubt, CGM will remain the first and main tool for

hypoglycaemia detection. New enhancements in nanomaterials along

with more complex and effective calibration algorithms will help the

next generation of CGM systems to improve their accuracy, espe-

cially at low glucose levels.

Moreover, prediction algorithms provide a promising solution for

PwD. Some algorithms are already implemented in commercial de-

vices such as ‘G6©’ device (Dexcom)51 and ‘Guardian Connect©’

(Medtronic)52 and can reduce hypoglycaemic events by more than

half. Connectivity of CGM systems, insulin pumps and activity

wearables with smartphones gives the capacity to use multivariate

algorithms and permits cloud‐based complex calculations. One of the

major shared points between many reviewed prediction algorithms is

that adding CHO intake, insulin doses or activity measurements helps

increase the accuracy over a mid‐term or long‐term prediction ho-

rizon. Besides, combining different models may permit several levels

of hypoglycaemia alarms, each one trained for a specific situation like

meals, exercise or night‐time.

Unfortunately, we observed that most algorithms have been

trained on small datasets or on clinically obtained datasets from

highly motivated patients, which are far from real‐life settings where

patients often do not routinely record events like CHO or exercise

needed to inform these algorithms. Access of research teams to big

datasets is needed for increasing the performance of these

algorithms.

We can expect also the integration of these complex and

multivariate algorithms in hybrid‐closed loop systems that are now

entering the market.

Clinical assessment of the safety and efficacy of prediction al-

gorithms is still in its infancy, with only a small number of papers in

the last 2 years. Hence, it will be necessary to develop specific pro-

tocols to collect data on how patients use them in real‐life settings;

so that clinical guidelines can be written and patients informed to

avoid misuse and overreactions, as was observed in one

publication.50

People with T1D who require permanent monitoring of glucose

levels are not the only ones exposed to hypoglycaemia. Other pa-

thologies and some treatments can also induce hypoglycaemia.

Alternative methods to CGM systems and CGM‐based prediction

algorithms can be useful for patients who do not need an expensive

system for real‐time and continuous glucose measurement.

GSR is already used in some marketed devices, and is still being

investigated in other prototypes. Its combination with heart rate and

other vital signs allows blood glucose estimation, albeit with a com-

bined CGM‐use for the training phase. This technology that was

explored since the eighties suffered from poor accuracy in early

commercialised devices, but is still improving. It may become a good

alternative to CGM systems for noninvasive hypoglycaemia

detection.

One of the most promising methods, that seems near‐to‐market,

is ECG‐based detection of hypoglycaemia. The most recent studies

were performed with wearable noninvasive patches allowing real‐
time ECG capture, and algorithms were tested in real‐life, during

day‐ and night‐time, and showed good accuracy in hypoglycaemia

detection. Some such devices are already on the market and are used

for patients with heart diseases. Thus, we can expect companies that

developed these devices may be able in the next years to add some

extra features such as hypoglycaemia detection. But we need to point

out that these devices only have a short duration of use, and

consumable costs could make them expensive for long‐term contin-

uous monitoring. Current smartwatches do not permit continuous

ECG monitoring and need a manual input to start ECG measurement

for a few seconds. The evolution of these smartwatches towards

continuous monitoring would increase the acceptability of

ECG‐based hypoglycaemia detection for patients.

The situation is the same for EEG detection technique with a

similar level of advancement. However, current EEG‐based devices

are more invasive than ECG‐based ones needing a small implant to

measure brain activity.

In both cases, larger studies are needed for a final assessment of

their performances and to evaluate the loss of accuracy in real‐life in

patients affected by other metabolic disorders that can disturb the

ECG‐ or EEG–based detection algorithms.

Finally, other techniques have been considered in this re-

view. Breath‐based detection is one of them, previously known

through diabetes alert dogs. A prototype device was developed
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for point‐of‐care testing with a good accuracy, but it seems difficult to

imagine how such a technique and devices based on it could be used in

real‐life for continuous evaluation. NIR spectroscopy, alone or com-

bined with other techniques, has also been used to generate hypo-

glycaemia alarms. It also stands amongst the candidates for

noninvasive glucose monitoring, which could become in the future a

good alternative.

Some other fluids like tears, sweat, urine or saliva are other

milieus usable for blood glucose estimation, using the fluids' glucose

correlation with blood glucose variations. However, the large lag‐
time between glucose variations in these fluids and in blood makes

them less suitable candidates for hypoglycaemia detection. Thus,

they are not detailed in this review. For further reading on these

alternative modes of noninvasive and minimally invasive glucose

monitoring, we recommend some recent reviews.30,31

However, these technologies for the detection of hypoglycaemia

cannot be proposed alone to patients, but have to be accompanied with

a global strategy and plan of action to unveil their full potential in

clinical practice. A recent report162 highlighted the utmost importance

of therapeutic education programs to help patients recognise hypo-

glycaemia events, know the effects of their medications and activities,

and how to appropriately correct a detected hypoglycaemia. Medica-

tions may also have to be adapted in some cases depending on the type

of diabetes, for physical activities and for specific situations like reli-

gious fasting. This education and medication management is essential

to reduce hypoglycaemic risks, before implementing the appropriate

tool or device that will assist the patient.

7 | CONCLUSION

This extensive review presented a broad panel of devices and tech-

nologies related to hypoglycaemia detection and prediction tech-

niques. PwD will almost certainly benefit from the next generation of

CGM devices that will likely embed mid‐term or long‐term prediction

features along with better accuracy and Se to glucose variations.

We believe other techniques and devices will struggle to

compete with CGM devices in the near future as they are limited to

event detection, and cannot inform PwD about their actual glucose

levels. As such, they require reduced costs and acceptability related

to noninvasive use to be successful.
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