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SUMMARY

The characterization of the genetic basis of maize (Zea mays) leaf development may support breeding

efforts to obtain plants with higher vigor and productivity. In this study, a mapping panel of 197 biparental

and multiparental maize recombinant inbred lines (RILs) was analyzed for multiple leaf traits at the seedling

stage. RNA sequencing was used to estimate the transcription levels of 29 573 gene models in RILs and to

derive 373 769 single nucleotide polymorphisms (SNPs), and a forward genetics approach combining these

data was used to pinpoint candidate genes involved in leaf development. First, leaf traits were correlated

with gene expression levels to identify transcript–trait correlations. Then, leaf traits were associated with

SNPs in a genome-wide association (GWA) study. An expression quantitative trait locus mapping approach

was followed to associate SNPs with gene expression levels, prioritizing candidate genes identified based

on transcript–trait correlations and GWAs. Finally, a network analysis was conducted to cluster all tran-

scripts in 38 co-expression modules. By integrating forward genetics approaches, we identified 25 candidate

genes highly enriched for specific functional categories, providing evidence supporting the role of vacuolar

proton pumps, cell wall effectors, and vesicular traffic controllers in leaf growth. These results tackle the

complexity of leaf trait determination and may support precision breeding in maize.

Keywords: expression Quantitative Trait Loci mapping, Genome Wide Association Studies, forward genet-

ics, maize, leaf development, Weighted Gene Co-expression Network Analysis, multiparental populations,

Zea mays.

INTRODUCTION

In the post-genomic era, the ability to identify gene

functions remains one of the main challenges in molecular

biology. In the past decades, gene models have been mined

in several plant genomes (Seaver et al., 2018; Van Bel et al.,

2012), contributing to our understanding of the molecular

basis of the determination of complex traits (Civelek and

Lusis, 2014). This knowledge is pivotal for breeding efforts

aiming at the development of more productive crops

(Varshney et al., 2018), and may contribute to the virtuous

cycle linking the characterization of plant genomes with the

production of novel varieties (Poland, 2015).

Among cereal crops, the global production of maize (Zea

mays) is the highest, approaching 1.15 billion tons in

2019 (http://www.fao.org/faostat/). Besides serving as food

and animal feed and for energy production, maize is also

firmly established as a model species for monocots since

the early characterization of its genome sequence (Schn-

able et al., 2009). Maize studies benefit from an ever

expanding genetic toolbox with increasingly precise geno-

mic information (Jiao et al., 2017), pan-genome sequences

(Hirsch et al., 2014; Sun et al., 2018), advanced segre-

gant populations (Dell’Acqua et al., 2015; McMullen et al.,

2009), and genome editing protocols (Feng et al., 2018; Liu

et al., 2020). The integration of these resources, which are

unmatched in crop species, supports maize as the corner-

stone of precision breeding efforts (Hilscher et al.,

2017), contributing to global food security (Ma et al., 2018).
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Any approach aimed at the manipulation and exploita-

tion of functional variation from a breeding perspective

relies on the capacity to identify the causative variants con-

trolling complex traits. In maize, reverse genetics was

extensively used to connect traits to genetic variants by

the inactivation and manipulation of gene sequences using

targeted or untargeted mutagenesis, by way of trans-

posons (May et al., 2003), targeting-induced local lesions

in genomes (Till et al., 2004), RNA suppression (Mark

Cigan et al., 2005), and genome editing (Svitashev et al.,

2016). A complementary approach to explore gene func-

tions is that of forward genetics, employing statistical

methods combining trait values and allelic variation in seg-

regant populations to characterize quantitative trait loci

(QTLs), by either QTL mapping or genome-wide associa-

tion (GWA) studies (Mackay et al., 2009). In maize, these

approaches contributed to the characterization of the

genetic basis of several traits of agronomic relevance

(Buckler et al., 2009; Li et al., 2016; Wallace et al., 2014a;

Xue et al., 2016).

The determination of the genetic basis of quantitative

traits, however, is hampered by the complex interrelation

of genetic variants and regulators of expression (Albert

and Kruglyak, 2015; Wallace et al., 2014b), including

structural variation (Marroni et al., 2014; Wang et al.,

2015). The ultimate characterization of causative variants

is a challenging task (Eichler et al., 2010), and validation

of individual gene functions at a system-wide scale calls

for the characterization of gene expression (Krouk et al.,

2013), protein networks (Walley et al., 2016), and metabo-

lomic profiles (Krumsiek et al., 2016). In maize, expres-

sion QTL (eQTL) mapping was successfully applied to

reduce the gap between allele variants, expression vari-

ance, and maize phenotypes, improving the confidence

in candidate gene identification (Christie et al., 2017;

Kremling et al., 2019; Liu et al., 2017; Pang et al., 2019;

Wang et al., 2018).

In this framework, one strategy to improve the ability to

identify genes relevant for breeding is to rely on a combi-

nation of precision phenotyping (Baute et al., 2015; Zhang

et al., 2017), advanced genetic materials (Dell’Acqua et al.,

2015), and genomic tools (Kremling et al., 2019). Numer-

ous loci and interactions contribute to the genetic archi-

tecture of maize leaf phenotypes (Monir and Zhu, 2018;

Tian et al., 2011). It was shown that early leaf organ

growth is controlled by a complex transcriptional network

(Baute et al., 2015, 2016) involving genes that have an

effect on seed yield (Sun et al., 2017). A synthesis of for-

ward genetics methods in a system genetics framework

(Civelek and Lusis, 2014) bears the promise to accelerate

the identification of candidate genes involved in leaf

growth dynamics and support genome editing from a

breeding perspective.

In the present study, we employed a forward genetics

approach integrating transcriptomics, phenotyping, and

GWAs to prioritize genomic loci and candidate genes

involved in the determination of maize leaf traits (Fig-

ure 1). The first step was to characterize the associations

between expression levels and leaf phenotypes with an

approach in concordance with Baute et al. (2016). The

second step was to identify marker–trait associations

(MTAs) with GWAs. The final step was to derive eQTLs

and relate them with trait–phenotype associations and

with MTAs. We then conducted a network analysis to

capture the broader picture of gene interactions control-

ling the expression of leaf traits. We describe a complex

interaction network of biological pathways contributing

to leaf development, identifying 25 candidate genes in-

volved in leaf trait determination. We discuss these

results considering previous literature, shedding new
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Figure 1. Outline of the research strategy. Develop-

ing leaves of maize were phenotyped and harvested

for RNA sequencing in previous studies (Baute

et al., 2015, 2016). RNA sequencing reads were

used to derive gene expression levels and alleles at

SNPs. Candidate genes were identified integrating

three approaches: (i) correlation of phenotypes and

gene expression levels, (ii) association between

SNP markers and gene expression levels (eQTL),

and (iii) association between SNP markers and phe-

notypes (GWA). eQTL, expression quantitative trait

locus; GWA, genome-wide association; SNP, single

nucleotide polymorphism.
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light on the molecular mechanisms underlying maize leaf

length, division zone (DZ) size, and leaf elongation

dynamics.

RESULTS

Genotypic features of the mapping panel

RNA sequencing (RNA-seq) data of recombinant inbred

lines (RILs) derived from biparental and MAGIC multi-

parental maize crosses originated from previous experi-

ments (Baute et al., 2015, 2016). Raw reads were trimmed

for quality, yielding more than 20 million reads per sample

(Table S1). After read mapping to the maize genome,

29 573 transcripts were present in at least 60% of the geno-

types and showed an expression variance above 5%. Map-

ping of RNA-seq reads yielded 373 769 biallelic single

nucleotide polymorphisms (SNPs) mostly in telomeric

regions (Figure 2a). A genetic diversity analysis showed

that each RIL set clustered between their corresponding

founder lines, with the MAGIC population showing a

higher diversity (Figure 2b). The partially overlapping

genetic background of the two populations determined a

weak structure, with the two main principal components

(PCs) accounting for 14.5% of the genotypic variance. To

account for this structure, downstream correlation analy-

ses considered the RIL sets individually, while GWA and

eQTL mapping used a covariate and kinship correction.

The linkage disequilibrium (LD) decay, estimated on the

basis of pairwise r2 measures, dropped below r2 = 0.2

(considered a threshold for null LD) in 0.94 million base

pairs (Mb) on average, with the slowest LD decay observed

on chromosome (Chr) 2 (1.34 Mb) and the fastest LD decay

on Chr 10 (0.66 Mb) (Figure 2c; Table S2). Long-range LD

was generally low, but it was consistently higher in peri-

centromeric regions (Figure S1).

Trait associations with transcript levels

In both biparental and MAGIC RILs, the leaf elongation rate

(LER), size of the cell division zone (DZ size), and leaf

length were positively correlated with each other. Leaf

elongation duration (LED) was negatively correlated with

LER (Figure 3a,b). Trait levels for each RIL set are reported

in Table S3. Pearson correlation coefficients (PCCs) were

calculated between transcript levels of all retained gene

models with trait values (Table S4) using permutation

thresholds (Table S5) to derive genes whose expression

was significantly correlated with phenotypes, hereafter

referred to as PCC genes (Figure S2; Table S6). By this

Figure 2. Genotypic diversity and LD decay in the mapping panel. (a)

Chromosome-specific SNPs density in 1-Mb genomic intervals. The number

of SNPs is represented in a green to red scale. (b) Structure in the mapping

panel. Parental lines and RILs are represented on the first two PCs. Geno-

typic diversity between parental lines is roughly even, but their differentia-

tion on the PCA space is distorted by that of RILs. (c) Chromosome-specific

LD decay. Vertical dashed bars project to the x-axis (Mb distance) the 0.2 r2

threshold representing null LD. LD, linkage disequilibrium; PC, Principal

component; RIL, recombinant inbred line; SNP, single nucleotide polymor-

phism.
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procedure a total of 1327 unique PCC genes were identi-

fied, which in seldom cases were correlated to multiple

traits at once (Figure 3c). A total of 178 PCC genes were

jointly identified by LED and leaf length measures, with 75

additional PCC genes also associated with DZ size. LER

and leaf length, the phenotypes showing the highest corre-

lation, shared only seven PCC genes (44% of the LER PCC

genes) and just two PCC genes were identified in common

by the three phenotypes having the highest correlation

(LER, leaf length, and DZ size). Gene ontology (GO) analy-

sis revealed that PCC genes for DZ size were highly

enriched in plastid translation, peptidyl-histidine phospho-

rylation (>45 fold), and the cytokine-activated signaling

pathway (>20 fold) in the biological process category and

in nucleic acid binding in the molecular function category,

with most proteins acting in the chloroplast according to

the cellular component category (File S1). Other traits did

not show specific enrichment, except for leaf length, where

genes were enriched in DNA-binding transcription factor

activity and transcription regulator activity (File S1).

Trait associations with SNP markers

A GWA study was conducted between SNPs and trait val-

ues to identify MTAs (Figures S3 and S4). The 90th per-

centile of the permuted P-value distributions was used to

define GWA significance thresholds for each trait, that is

6.77 9 10�7 for leaf length, 5.15 9 10�7 for DZ size,

1.07 9 10�6 for LER, and 4.63 9 10�7 for LED. In total, 33

significant, non-overlapping MTAs were identified

(Table S7). Leaf length resulted in nine MTAs at multiple

locations on Chr 1, Chr 3, Chr 4, Chr 8, and Chr 10, while

DZ size was associated with loci on Chr 1 at around

175 Mb. LER was associated with nine MTAs, one of which

was located on Chr 2, seven clustered around 190 Mb on

Chr 4, and one was located on Chr 7. For LED, six MTAs

were reported at multiple locations on Chr 1, Chr 2, Chr 3,

Chr 4, Chr 5, and Chr 8 (Figure S3). LD decay information

was used to reduce redundancy between MTAs in linkage

with each other, so that unique QTLs were derived, select-

ing only the most significant MTAs among those mapping

within a chromosome-specific LD decay distance. By this

criterion, the four traits mapped to 24 unique QTLs

(Table S8).

eQTL analysis

eQTL mapping was performed considering all SNPs and all

gene expression values, resulting in 8 714 461 significant

associations. The genetic structure between the two RIL

sets was corrected by using as covariates the first 10 PCs

from transcript levels (accounting for 50% expression vari-

ance) and the first 10 PCs from SNP data (Figure S5). All

SNPs derived from RNA-seq hence belonged to coding

(a) (b)

(c)

Figure 3. PCCs between traits and transcripts. PCCs

between traits in biparental (a) and multi-parental

(b) populations are represented by pie charts. The

size of pie charts is proportional to the number of

PCCs, whose numerical value is reported in the

lower portion of the figure. (c) Overlap of PCC

genes among traits. In the lower left panel, traits

are sorted by the number of PCC genes, and shar-

ing patterns of PCC genes are represented by con-

nected dark points. In the top panel, the number of

PCC genes is reported for each pattern of traits, as

per the lower panel, with decreasing PCC gene set

sizes. PCC, Pearson correlation coefficient.
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regions of the genome. However, depending on local LD

patterns, SNPs are expected to be in linkage with inter-

genic loci, including non-coding DNA. eQTLs clustered in

correspondence to pericentromeric regions (Figure S6),

possibly contributed by LD among SNP markers. The LD

decay information was used on the set of eQTLs to reduce

redundancy between SNPs in linkage to each other. For

each gene, only the most significant association within the

LD decay distance was considered, resulting in a filtered

number of 158 202 LD-reduced eQTLs, including 17 466

unique genes and 76 852 unique SNPs. Conventionally,

associations between SNPs and transcripts closer than

1 Mbp are classified as local, while the remaining eQTLs

are considered distant. By this definition, most of the asso-

ciations found were distant eQTLs (52%). While local eQTL

genes were typically controlled by a small number of

SNPs, eQTL genes in the distant class could be controlled

by more than 150 loci (Figure S7).

To prioritize eQTLs with functional relevance in relation

to leaf phenotypes, the list of significant eQTLs was

narrowed using information with respect to PCC genes and

SNPs with associations with leaf traits (Figure 1). The sub-

set of eQTLs including genes whose expression was corre-

lated with trait levels (PCC-eQTLs) is reported in Table S9.

The subset of eQTLs including SNPs associated to pheno-

types (GWA-eQTLs) is reported in Table S10. Altogether,

PCC-eQTLs and GWA-eQTLs targeted 1025 genes con-

trolled by 3968 SNPs (Table S11). Distant eQTLs were also

prevalent in this subset (Figure S8a), and the b estimates

of the eQTL model, that is, the change in transcription

levels resulting from allelic variants at each eQTL, were

similar for all traits except for LED, where distant eQTLs

had a stronger negative effect (Figure S8b).

The highest numbers of PCC-eQTLs and GWA-eQTLs,

involving 2617 unique SNPs and 601 unique genes, were

obtained for LED. For this trait, an individual SNP could

influence the expression level of 51 transcripts. Conversely,

individual transcripts could be associated with up to 44

SNPs (Table S12). LER was the phenotype associated with

the lowest number of PCC-eQTLs and GWA-eQTLs, with

Figure 4. Genomic position of SNPs and transcripts in GWA-expression quantitative trait loci (GWA-eQTLs). Each panel reports the outcome of the GWA-eQTLs

for one of the traits. On the x-axis, the genomic position of significant GWA-eQTLs is shown in genomic Mb. On the y-axis, the genomic position of transcripts

targeted by GWA-eQTLs are shown. Chromosomes are represented by alternating white and gray vertical shades. Significant GWA-eQTLs are represented by

gray dots, and their position is highlighted by vertical dashed lines. Transcripts that are identified in both GWA-eQTLs and PCC-eQTLs are highlighted by col-

ored open circles. eQTL, expression quantitative trait locus; GWA, genome-wide association; SNP, single nucleotide polymorphism.
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154 associations between transcripts and MTAs involving

77 unique SNPs and 72 unique genes (Figure 4).

Co-expression network analysis

In order to capture the broader picture of the molecular

mechanisms driving leaf development, a weighted gene

co-expression network analysis (WGCNA) was conducted

in each RIL set and then combined with a consensus

approach. A soft threshold power revealed a network with

a scale-free topology with R2 > 0.85 for each RIL set (Fig-

ure S9). In the consensus network, genes were divided in

38 co-expression modules (Figure S10) with a size range

from 31 (plum1 module) to 5460 (turquoise module) genes

(Table S13). Leaf length was correlated with six modules,

LER with one module, LED with eight modules, and DZ size

with six modules (P < 0.05). Only the magenta, tan, and

cyan modules were associated with all traits except with

LER (Figure 5a). The GO annotation of candidate modules

showed significant enrichment (false discovery rate

[FDR] < 0.05) for secondary cell wall biogenesis (magenta

and dark-orange modules), cell cycle arrest and auxin sig-

nal transduction (tan module), lignin catabolic process

(dark-orange module), peptide biosynthetic process (light-

cyan module), and transcription co-activator activity (cyan

module) (Files S2 and S3).

Candidate modules correlating with traits had higher

intra-modular mean connectivity (kWithin, i.e., the degree of

connection of a given gene with genes of the same mod-

ule) and lower inter-modular mean connectivity (kOut, i.e.,

the degree of connection of a given gene with genes out-

side of the module) than modules not associated with

traits. All modules exhibited a negative mean connectivity

difference (kDiff), that is, the difference between intra- and

inter-modular connectivity, with only 5% of the total genes

having a positive kDiff value (Figure 5b). eQTLs were exam-

ined in relation to network connectivity considering their

genomic location (Figure S11). Distant eQTL genes had a

higher gene module membership (MM), that is, correlation

between the gene expression level and the first PC of the

assigned module (module eigengene), and a higher total

connectivity within the whole network. Genes that were

controlled by local eQTLs showed a higher correlation

between expression levels and the traits, meaning that lo-

cal eQTLs could influence the phenotype more directly

than distant eQTL genes, which instead might have a

higher impact on the whole network.

Candidate gene discovery

A total of 25 genes produced transcripts whose expression

level was simultaneously correlated with one of the traits

(PCC genes) and controlled by one or more MTAs for the

same trait (GWAs) (Table 1). A complex pattern of expres-

sion control emerged for several such candidate genes.

For example, a SNP located at 50.5 Mb on Chr 2 increased

the expression of two PCC genes located at 5.19 Mb on

Chr 2 (Zm00001d002064) and at 177.54 Mb on Chr 4

(Zm00001d052047), while it decreased that of a PCC gene

located at 141.2 Mb on Chr 2 (Zm00001d004822). RILs with

the homozygous alternative allele at this locus showed

lower values of DZ size, LED, and leaf length, reinforcing a

possible role of the targeted transcripts in the determina-

tion of the phenotypes (Figure 6). According to PLAZA 4.0,

Zm00001d002064 encodes a glycosyltransferase,

Zm00001d004822 encodes a putative bZIP transcription fac-

tor, and Zm00001d052047 does not have a functional

description. The eQTL candidate genes belonged to 11 co-

(b)(a)Figure 5. Co-expression analysis. (a) Consensus

module–trait associations. Each row corresponds to

a consensus module eigengene, each column corre-

sponds to a trait; numbers in each cell contain the

correlation value. Asterisks denote significant corre-

lations. Only modules with at least one significant

correlation are reported. Gray cells indicate discor-

dance between correlations in the two RIL sets. (b)

Connectivity measures of consensus modules. The

first panel corresponds to intra-modular connectiv-

ity (kWithin), the second to the inter-modular connec-

tivity (kOut), and the third to the difference between

intra- and inter-modular connectivity (kDiff). In each

panel, the boxplot to the left reports connectivity

measures for modules not correlated with traits,

while the boxplot to the right refers to modules cor-

related with traits. The color of each dot corre-

sponds to the module name. RIL, recombinant

inbred line.
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expression modules (Table 1). The turquoise and blue

modules featured the highest number of candidate genes,

six and four, respectively. Thirteen eQTL candidate genes

appeared in modules associated with traits and could be

linked to traits beyond those correlating with the co-

expression module.

A GO enrichment analysis was conducted by traits for

the 25 candidate genes identified. For the biological pro-

cess annotation terms, 42% of candidate genes were

enriched (P < 0.05) in transport activities (two of which

specifically in calcium ion transport), 40% in cell recogni-

tion, 8% in organelle assembly, and 8% in recognition of

pollen and in pollen–pistil interaction (Table S14). Expres-

sion levels of candidate genes as reported in the maize

RNA-seq gene atlas and the Electronic Fluorescent Pic-

tograph browser are reported in File S3.

DISCUSSION

Associations between leaf traits and molecular diversity in

the collection

The genetic control of plant organ growth is complex. Pre-

vious studies revealed that different organs in maize

partially share their genetic architecture and control (Dig-

nat et al., 2013). In maize, early leaf growth is relevant from

a breeding perspective as it can be put in relation with

adult plant yield (Sun et al., 2017) and heterotic potential

(Feys et al., 2018). With this study, we aimed at establish-

ing the links between DNA variants, RNA transcript levels,

and trait measures in early leaf phenotypes.

RNA-seq-derived SNP markers are representative of the

functional space of the genome, and are a reliable source

of information about molecular diversity and uniqueness

of typed accessions (Zhao et al., 2019). When deriving

SNPs from mRNA, all variants fall in coding regions.

However, depending on the recombination landscape,

they may be in linkage with intergenic regions, including

regulatory elements and non-coding DNA. Hence, the

association signals derived from SNPs included in this

study may capture causative variants outside gene bod-

ies. When used in GWA studies or eQTL mapping, RNA-

seq-derived SNPs may target causative variants in LD

with them, most probably in upstream promoter regions

(Li et al., 2012). It has been shown that variants in open

chromatin regions explain a large proportion of pheno-

typic variation in maize (Rodgers-Melnick et al., 2006). In

Table 1 Candidate genes identified by the combined approach

Chr SNP Mb SNP eQTL gene ID Chr gene Mb gene LER LED Leaf length DZ size WGCNA_module

1 175 266 Zm00001d030812 1 161 357 – – Light yellow
2 50 479 Zm00001d002064 2 5192 – Magenta
2 50 479 Zm00001d004822 2 141 289 – – – Green
2 50 479 Zm00001d052047 4 177 540 – – Blue
3 133 576 Zm00001d041358 3 114 163 – – Blue
3 133 576 Zm00001d042191 3 155 498 – – – Turquoise
3 213 973 Zm00001d043881 3 212 800 – – Blue
3 224 595 Zm00001d044255 3 223 099 – – – Brown
4 189 323 Zm00001d052416 4 189 489 – – – Turquoise
4 192 085 Zm00001d014166 5 34 841 – – – NA
4 198 624 Zm00001d014166 5 34 841 – – – NA
4 198 624 Zm00001d052992 4 207 906 – – Turquoise
4 238 223 Zm00001d053442 4 231 583 – – Tan
4 238 223 Zm00001d053633 4 237 652 – – – Dark red
4 239 602 Zm00001d021760 7 162 497 – – – Blue
4 239 602 Zm00001d053716 4 239 768 – – Green
5 205 947 Zm00001d017728 5 205 372 – – – Grey
5 205 947 Zm00001d017756 5 206 004 – – – Yellow
5 205 947 Zm00001d017770 5 206 299 – – – Red
5 205 947 Zm00001d017866 5 209 133 – – – Turquoise
8 77 011 Zm00001d008966 8 27 722 – – – Red
8 77 011 Zm00001d009439 8 64 588 – – – Turquoise
8 89 591 Zm00001d008742 8 18 823 – – – Red
8 164 886 Zm00001d010366 8 111 285 – – Magenta
8 164 886 Zm00001d011745 8 160 627 – – – Turquoise
8 164 886 Zm00001d011924 8 164 685 – – Green

For each eQTL gene (eQTL gene ID), the associated SNP is reported with chromosome (Chr SNP) and position in Mb (Mb SNP). Gene chro-
mosome (Chr gene) and start position in Mb (Mb gene) are also given. The trait(s) associated to each eQTL are reported with a tick mark
under the trait name (LER, LED, leaf length, and DZ size). The consensus module to which each eQTL gene belongs is given when available
(WGCNA module). DZ, division zone; eQTL, expression quantitative trait locus; LED, leaf elongation duration; LER, leaf elongation rate; SNP,
single nucleotide polymorphism; WGCNA, weighted gene co-expression network analysis.
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this frame, the extensive genotyping based on RNA-seq

analysis provides a uniform representation of RIL haplo-

types (Figure 2a). The genetic structure of the mapping

panel is reminiscent of the two populations of which it is

comprised (Figure 2b). It is expected that the two-way

RILs have slower LD decay than the MAGIC RILs (Del-

l’Acqua et al., 2015); this may reduce the mapping defini-

tion of the panel, contributing to areas of higher LD

(Figure S1). This is also reflected in our eQTL mapping

results, which show extensive portions of local signals in

close vicinity and localizing in pericentromeric regions

(Figure 4). It is likely that increased pericentromeric LD

induces some redundancy in the PCC-eQTL identification

procedure (Figure S6) since transcripts are tested with all

SNPs regardless of their prior association with traits.

Using the PCC approach, we identified thousands of

genes whose expression was correlated with trait values

(Table S6). The number of PCC genes shared across differ-

ent phenotypes was not proportional with the number of

genes correlated with any given phenotype, revealing a

complex effect of the RIL genetic background on the gene

expression patterns. These figures are in agreement with

those reported in Baute et al. (2015, 2016), which rely on

the same genetic materials and trait values. In the present

study, we identified 183 PCC genes in common with these

earlier studies. Discrepancies among gene lists can result

from the different set of phenotypes considered, from the

fact that two RIL sets are used as a combined mapping

panel in this study, and from the fact that the studies

employ different maize genome annotations.

Figure 6. Example of the effects of an eQTL on gene expression and phenotypic value. The SNP located on Chr 2 at position 50 479 366 influences the transcript

levels of three genes (Zm00001d002064 encoding a glycosyltransferase, Zm00001d052047 encoding putative bZIP transcription factor, and Zm00001d004822

encoding a protein with unknown function) and the phenotypic values of DZ size, LED, and leaf length. Genotype 0 is the homozygous reference, genotype 1 is

heterozygous, and genotype 2 is the homozygous alternative. Heterozygous genotypes may be derived from residual heterozygosity still present in RIL popula-

tions. DZ, division zone; eQTL, expression quantitative trait locus; LED, leaf elongation duration; RIL, recombinant inbred line.
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In GWA studies, sample size is crucial to achieve statisti-

cal power (Visscher et al., 2017). This is especially true as it

becomes increasingly clear that the genetic control of

maize traits, among other species, is dependent on a

plethora of loci with small effects (Wallace et al., 2014b). In

the present study, we detected 26 significant QTLs, some

of which were pleiotropic among the tested traits (Fig-

ure S3; Table S8). It is likely that these are not the sole loci

controlling leaf traits (Tian et al., 2011), but rather are the

MTAs with the highest effect that could be detected segre-

gating in the mapping panel given the sample size. The

QTLs identified by MTAs are in agreement with previous

reports, as multiple QTLs for maize leaf growth were

repeatedly mapped in genetic positions compatible with

our findings on Chr 1, Chr 2, Chr 4, Chr 7, and Chr 10 (Ku

et al., 2010; Reymond et al., 2003). One QTL for LED at

205 Mb on Chr 5 co-maps with an MTA reported for early

maize growth (Muraya et al., 2017), and the hotspots for

GWAs (Figure S3) and eQTLs (Figure 4) identified on Chr 4

and Chr 10 may correspond to QTLs reported in maize for

leaf length and for leaf angle at similar positions (Wang

et al., 2017).

Transcriptional mechanisms underlying leaf trait

determination

PCC-eQTLs were more abundant than GWA-eQTLs, because

by the PCC approach we identified a large number of tran-

scripts, targeting several genomic loci controlling their

expression. PCC genes may represent genes whose expres-

sion is not controlled by variants in LD with RNA-seq-

derived SNPs, or whose expression is controlled by SNPs

whose allele frequency cannot be associated with measured

phenotypes through GWA. Likewise, MTAs may target

genes whose expression variance is not captured by the

tissue-specific and/or timepoint-specific RNA expression

samples, or may affect phenotypes without causing

changes in gene transcript levels, for example, by way of

non-coding RNAs (Wang et al., 2015). eQTLs were over-

whelmingly acting as distant for all traits (Figures S7 and

S8), that is, derived from markers in distant gene bodies

and intergenic regions in LD with them. Previous studies

reported that distant eQTLs may explain a higher proportion

of expression variance than local eQTL in maize (Liu et al.,

2017; Swanson-Wagner et al., 2009), as hotspots of distant

eQTL may act as key regulators of phenotypes (Wang et al.,

2018). Local eQTL display a mode of gene expression regu-

lation in cis, with co-regulated gene clusters. Conversely,

distant eQTLs tend to form hotspots in the genome, control-

ling genes significantly enriched in specific functional cate-

gories and being trans-regulators for a variety of metabolic

pathways (Wang et al., 2018). Still, trans-regulation may

occur via downstream effects of cis-regulatory elements,

like in the case of transcription factors (Rockman and Kru-

glyak, 2006). Further studies may focus on the trans eQTLs

reported here as putative hotspots containing master regu-

lators controlling leaf development.

The WGCNA approach aimed at capturing the broader

picture of the complex gene interactions contributing to

trait values (Ardlie et al., 2015), with a consensus clustering

procedure that is aimed at reducing confounding effects

when dealing with sub-groups of samples (Shahan et al.,

2018; Wu et al., 2002). Negatively correlated genes were

considered unconnected, leading to the construction of a

signed network. The overall network was scale-free (Fig-

ure S9) and was comprised of distinct modules, as

expected for biological networks (Barab�asi and Oltvai,

2004). Co-expression clusters had a similar behavior for

leaf length, LED, and DZ size, sharing modules with high

correlation values and suggesting the activation of the

same pathways (Figure 5a). LER was the only trait signifi-

cantly correlated with only one module (yellowgreen) with

a small number of genes (Table S13), in accordance with

the fact that this trait showed the smallest number of

eQTLs (Table S11). The co-expression analysis revealed

that genes controlled by local eQTLs were less connected

to the whole network, but they had a higher intra-modular

connectivity. This suggests that local eQTLs are more likely

to influence specific biological pathways and might be less

crucial for the network stability. Conversely, genes that

were influenced by distant eQTLs showed a higher inter-

modular connectivity and a lower gene–trait association,

indicating that they might have a broad effect, acting in dif-

ferent pathways across candidate modules (Figure S11).

Candidate genes

The list of gene models resulting from the intersection of

the two approaches provides several compelling candi-

dates for leaf traits, showing that the combination of

eQTLs with trait measures may support the identification

of breeding targets (Table 1). The genomic positions of

SNPs associated to expression levels of candidate genes

overlapped with the genomic positions of several associa-

tions previously reported for leaf traits, including: (i) MTAs

reported for leaf length (Chr 3 and Chr 4), leaf area (Chr 8),

and leaf width (Chr 4, Chr 5, and Chr 8) on the maize

Nested Association Mapping population (Tian et al., 2011),

(ii) multi-environment meta-QTLs reported for leaf architec-

ture traits (Chr 3, Chr 4, and Chr 8) (Zhao et al., 2018), (iii)

QTLs associated with leaf rolling for leaf length (Chr 4 and

Chr 5) and leaf width (Chr 1) (Gao et al., 2019), (iv) QTLs

for ear leaf length specific to sowing density (Chr 4) (Wang

et al., 2017), and (v) QTLs for leaf orientation (Chr 8)

(Zhang et al., 2021).

The list of candidate genes includes several putative

DNA-binding domain proteins, like in the case of the three

eQTLs associated to DZ size, LED, and leaf length (Fig-

ure 6). In this group of genes, Zm00001d004822 encodes a

C2H2-like zinc finger protein whose lower expression is
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associated with lower values of LED. The same eQTL SNP

is responsible for the upregulation of the gene

Zm00001d002064, whose expression level is associated to

three phenotypes at the same time (Table 1); the gene

encodes a glycosyltransferase, likely involved in cell wall

biogenesis and organization (Liepman et al., 2010; Suliman

et al., 2013; Yin et al., 2010) and in plant growth (Burn

et al., 2002; Yao et al., 2019). Glycosyltransferases are

thought to be involved in pericarp development in maize

(Chateigner-Boutin et al., 2016) and possibly in drought tol-

erance (Shikha et al., 2017). The function of the third gene

in the eQTL group is unknown (Table 1). The information

sourced from maize expression atlases can support a

biological interpretation of this eQTL (File S3). According

to the MaizeGDB RNA-seq expression data atlas, the

glycosyltransferase-encoding gene Zm00001d002064 is

highly expressed in immature leaves, while

Zm00001d052047 (unknown function) is highly expressed

in pollen in the background of B73 (which bears the low-

expression allele in our study, as shown in Figure 6) and,

to a lesser extent, in leaves (File S3). The closest Arabidop-

sis ortholog for this gene (AT4G30780) encodes a helicase

and suggests an involvement in DNA accessibility. The

zinc-finger gene Zm00001d004822 has an expression pat-

tern opposite to that of the other genes at this eQTL and

may have a trans-regulatory effect on their expression,

though further studies are necessary to fully uncover the

relation between these candidate genes.

The gene Zm00001d053716 encodes a Tic21 translocon

component that is localized in the chloroplast inner mem-

brane. Tic21 (AT2G15290) null mutants in Arabidopsis thali-

ana suggest that it might be important in later stages of leaf

development due to its crucial function as part of the inner

membrane protein-conducting channel (Teng et al., 2006).

Seven unlinked genes encoding proteins involved in proton

transport and signal transduction were involved in multiple

traits (Table 1), supported by the corresponding GO enrich-

ment (Table S14). According to PLAZA 4.0, the candidate

gene Zm00001d017770 encodes a soluble inorganic

pyrophosphatase 2 involved in acidification of vacuoles.

Lower amounts of the pyrophosphate-energized vacuolar

membrane proton pump AVP1 in A. thaliana AVP1

(AT1G15690) mutants result in a reduction in leaf size

caused by a decrease in cell number without a concomitant

change in cell size (Li et al., 2005), and overexpression of

AVP1 results in enlarged leaves (Gonzalez et al., 2010). Lack

of expression of this gene has been related to developmen-

tal damage in A. thaliana (Fukuda et al., 2016). In maize,

vacuolar pyrophosphatases were also related with leaf

development in different evapotranspiration regimes (Devi

and Reddy, 2018) and under drought tolerance (Wang et al.,

2016), and may enhance organ size by a mechanism similar

to that of AVP1 (Schilling et al., 2017). The gene

Zm00001d014166, located on Chr 5 and controlled by two

distant eQTLs on Chr 4, encodes a putative calcium-

transporting ATPase (Table S14), while the gene

Zm00001d010366 on Chr 8 encodes a putative IQ-25

domain-binding protein overexpressed in samples with the

alternative SNP and involved in DZ size and LED. The A.

thaliana ortholog of the latter (AT3G16490) is a calmodulin-

binding protein (CaM) that requires calcium ions as inter-

mediate for signal transduction. Ca2+-ATPases play an

important role in Ca2+ homeostasis by restoring the ion

concentration to resting levels (Snedden and Fromm, 2001;

Zielinski, 1988).

The glycosydase superfamily protein encoded by

Zm00001d42191 may be related to DNA repair, specifically

in the presence of oxidative stress. This in turn may put

this candidate gene in relation to cell division efficiency as

well as the abscisic acid response (Jiang and Zhang, 2001),

similarly to the serine/threonine protein kinases encoded

by Zm00001d052416 and Zm00001d008966, which are

involved in leaf length and LED, respectively, and are both

involved in signal transduction and in the abscisic acid

pathway.

Network metrics show a largely negative difference

between intra- and inter-modular connectivity (kDiff), sug-

gesting that the impact of genes correlated to modules

may be higher on the whole network than inside each

module (Figure 5b). The large inter-modular connectivity

(kOut) of candidate genes suggests that there is overlap in

biological functions across modules, as expected from a

complex phenotype like leaf trait determination. Network

studies in humans (Battle et al., 2014) and plants (M€ahler

et al., 2017) showed that genes with higher connectivity

(e.g., hub genes) are less likely to be related to detectable

eQTLs, likely because hub genes are more constrained

against changes in gene expression as compared to genes

in the periphery of the network. In our study, genes

belonging to modules correlated with phenotypes share a

higher degree of internal connectivity (kWithin) (Figure 5b).

These results imply that when targeting specific traits from

a breeding perspective, it may be more critical to focus on

genes that have a lower whole-network connectivity, but

play a key role in controlling the phenotypic variation of

the trait of interest (Langfelder et al., 2013) as reported for

eQTLs.

CONCLUSIONS

Our results show that the forward genetics approach in

maize may leverage transcriptomic and phenotypic data

produced on a relatively small set of maize RILs to provide

compelling evidence to identify candidate genes involved

in leaf growth. Other studies focusing on different species,

including poplar (Populus deltoides) (Balmant et al., 2020),

strawberry (Fragaria 9 ananassa) (Barbey et al., 2020),

maize (Kremling et al., 2019), and sweet potato (Ipomoea

batatas L.) (Zhang et al., 2020), and traits devised
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alternative ways to integrate phenotyping, transcriptomic,

and GWA data to prioritize candidate genes. These studies

demonstrated that combined approaches, when applied on

large datasets in some cases already available in the litera-

ture, may effectively advance our understanding of the

molecular mechanisms underlying complex traits and pro-

vide candidate genes to prioritize for validation and breed-

ing. Indeed, further studies in reverse genetics are needed

to fully validate candidate genes and their interactions.

The small number of candidate genes that we report for

leaf traits, strongly supported by predicted gene function

and previous reports, are manageable targets for multi-

locus genome editing (Liu et al., 2020) to confirm their role

and possibly manipulate their expression levels. The value

of our forward genetics approach lies in the valorization of

transcriptomic data in segregant populations to derive

information about gene networks and their interactions in

the determination of their roles in traits of interest. This

approach can be applied on virtually any organism featur-

ing a matched transcriptomic and phenotypic dataset.

When put in relation to plant traits, the rapidly expanding

body of knowledge on eQTL control and determination will

accelerate our understanding of complex trait determina-

tion in crops, contributing to breaking new ground in preci-

sion breeding.

EXPERIMENTAL PROCEDURES

Plant material and phenotyping

This study relies on previously published phenotyping and tran-
scriptomic data (Baute et al., 2015, 2016). Data were produced on
two segregant populations with a partially overlapping pedigree:
(i) a biparental population composed of 103 biparental RILs
derived from the intercross between the inbred lines B73 and H99
(Marino et al., 2009) and (ii) 94 RILs randomly sampled from the
MAGIC maize population and derived from the intercross of the
inbred lines A632, B73, B96, F7, H99, HP301, Mo17, and W153R
(Dell’Acqua et al., 2015). The random sampling of MAGIC RILs
ensures a balanced representation of the eight founder haplotypes
thanks to the lack of genetic structure in these mapping popula-
tions (Dell’Acqua et al., 2015; Scott et al., 2020). All plant materials
were phenotyped with the same method, with full details given in
Baute et al. (2015, 2016). In short, RILs were grown in completely
randomized order, one plant per pot, 20 pots per RIL, in a con-
trolled environment (24°C, 55% relative humidity, light intensity of
170 mmol m�2 sec�1 photosynthetically active radiation, in a
16 h/8 h day/night cycle). Phenotyping was focused on leaf four of
the seedlings and included the following traits: final leaf length
(mm), DZ size (µm), LER (mm h�1), and LED (h). DZ size is defined
as the distance between the base of the leaf and the most distal
mitotic cell in the epidermis according to 40,6-diamidino-2-
phenylindole staining. LER was determined measuring the length
of leaf four from soil to tip on a daily basis from emergence to full
maturity and deriving the average growth rate during the steady
growth stage as in Rymen et al. (2007). LED was measured in days
until full maturity. Traits were measured on 18–20 plants per RIL,
except for DZ size, which was determined on three plants per RIL
due to the complexity of the phenotyping procedure. Traits were

consistent and repeatable: heritability (h2) was 0.65 for leaf length,
0.81 for DZ size, 0.52 for LER, and 0.61 for LED (Baute et al., 2015,
2016).

SNP detection from transcriptomic data and quantification

of transcript abundances

In previous studies, paired-end Illumina RNA-seq reads with a
length of 100 bp were produced from proliferative tissues of the
fourth leaf of RIL seedlings, with the same procedure on the two
populations. Three biological and three technical replicates were
performed for parental lines, and one biological replicate was per-
formed for RILs. For details, see Baute et al. (2015, 2016).

Raw RNA-seq data were retrieved from ENA-ERP009123, ENA-
ERP011069, and ENA-ERP012784. The data were filtered for quality
using the erne-filter tool from the ERNE2 package (version 2.1.1,
http://erne.sourceforge.net/) (Vezzi et al., 2012). Bases with a Phred
score of >30 were retained and reads shorter than 50 nt were dis-
carded. To identify SNPs and quantify gene expression levels,
post-processed reads from each sample were mapped indepen-
dently to the reference B73 assembly version 4.0 (Jiao et al., 2017)
using the aligner STAR v. 2.5.3a (Dobin et al., 2013) in 2-pass pro-
tocol, with default parameters. The annotation was provided dur-
ing the read mapping step and the order of the multi-mapping
alignments for each read was chosen to be random. A bam file
was produced for each sample and used to extract and to normal-
ize gene transcript abundances into transcript per million values
using StringTie v.1.3.2 with default parameters (Pertea et al.,
2016). Only genes expressed in at least 60% of the samples and
with expression variance above 5% across RILs were considered
for downstream analysis.

SNPs were obtained following the GATK (McKenna et al., 2010)
best practices for variant discovery in RNA-seq datasets, starting
from the raw data clean-up (http://www.broadinstitute.org/gatk/
guide/best-practices). Briefly, the workflow includes (i) removal of
duplicates with PicardTools-MarkDuplicates (https://broadinstitute.
github.io/picard/), (ii) splitting into component reads and trimming
of reads with N operators in the CIGAR string (Split’N’Trim –
GATK v. 3.8), and (iii) local realignment around insertions or dele-
tions in the sample’s genome compared to the reference
(RealignerTargetCreator + IndelRealigner – GATK v 3.8). SNPs
were called with the tool UnifiedGenotyper from GATK v 3.8 in
the multi-sample mode. Since the RILs were derived from at most
eight parents, RIL SNP calls were restricted to those present in the
parental genomes. The tool was run with the default parameters
and heterozygosity set to 0.01. Only biallelic SNPs were allowed.
Markers heterozygous in the parental lines, markers with more
than 20% of missing data, and markers with a minor genotype fre-
quency of <0.1 were filtered out to avoid noise and spurious asso-
ciation in the downstream analysis.

LD analysis

LD was calculated on a subset of high-quality SNPs filtered for
minor allele frequency above 30%, using LDcorsv (Mangin et al.,
2012). The r2 metric was obtained for each pairwise marker com-
parison and LD heatmap plots were produced with R/BigLD (Kim
et al., 2018) (available at https://github.com/sunnyeesl/BigLD).
The LD decay was estimated using the Hill and Weir equa-
tion (Hill and Weir, 1988) interpolating estimated LD values with
physical distance between markers (Brunazzi et al., 2018; Mar-
roni et al., 2011) with custom R scripts. An estimated r2 of 0.2
was considered null LD and used to derive a chromosome-
specific LD decay distance.
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Trait associations with transcript levels and SNP markers

Transcript levels were correlated with trait values using PCCs in R.
Transcript–trait correlation analysis was conducted separately for
the biparental RILs and MAGIC maize RILs to account for popula-
tion structure. Maintaining the populations separated allowed to
fully exploit their features, in particular (i) the balanced allele fre-
quency within each RIL set, (ii) faster LD decay in the MAGIC RILs,
and (iii) different segregating haplotypes, and hence stronger
breeding significance of the candidate genes jointly identified. The
significance threshold for each trait correlation was determined
permuting the phenotype 7000 times and extracting the top and
bottom 5/1000th quantiles of the permuted PCC distribution. The
intersections of transcripts with correlation coefficients exceeding
the significance threshold in both biparental RILs and MAGIC
maize RILs were termed PCC genes and used for downstream
analyses. A GO enrichment analysis was conducted with the Pro-
tein ANalysis THrough Evolutionary Relationships (PANTHER)
classification system (Mi et al., 2010; Thomas et al., 2003), report-
ing terms with an FDR of <0.05 (Fisher exact test).

RNA-seq-derived SNP markers were used in a GWA analysis to
test their associations with leaf traits with R/MVP (available at
https://github.com/xiaolei-lab/rMVP). Estimation of variance com-
ponents was performed with the EMMA method (Kang et al.,
2008), and mapping was conducted with the FarmCPU module
(Liu et al., 2016). Population structure was corrected using PC
covariates from the genetic diversity in the RIL set. The number
of PC covariates to be included for each trait was iteratively
assessed by running the GWA with a varying number of PCs
from 1 to 15 and selecting the retained model via visual assess-
ment of model fit through quantile–quantile (Q–Q) plots. The
threshold for each GWA scan was determined by 199 permuta-
tions of the trait values and selecting the 90th percentile of the
permuted P-values with the procedure implemented in R/MVP.
As multiple MTAs in LD were likely to target the same locus, a
custom procedure was used to collapse significant signals based
on LD decay. All MTAs falling within twice the LD decay distance
from the signal with the highest significance were merged in a
single QTL. For each QTL, the most significant MTA was the sole
reported and used in further analyses.

eQTL mapping and derivation of candidate genes

eQTL mapping was conducted to establish associations between
gene expression levels and SNPmarkers. The R packageMatrix eQTL
v2.2 (Shabalin, 2012) was used with default parameters in the linear
model mode. To identify the optimal number of covariates to control
for structure in the dataset, a random subset of 1000 SNPs and 1000
transcripts was used to map eQTLs using 1–20 PCs derived from
gene expression values and from population structure. The model fit
was checked on Q–Q plots. The full model was run with the optimal
number of covariates considering all SNPs and all transcripts used
for PCC and GWA analyses. For each transcript tested, a stringent
Bonferroni correction was employed to reduce Type II errors, divid-
ing a nominal P-value of 0.01 by the total number of SNPs tested.
Accordingly, eQTLs with a P-value of <2.7 9 10�8 were considered
significant for downstream analyses. Similarly to MTAs, LD decay
information was used to collapse significant eQTL hits on the basis
of chromosome-specific LD extension: for each tested transcript, all
markers significantly associated with it were clustered on the basis
of chromosome-specific LD decay distance, so that the only eQTL
reported is the marker with the highest significance. eQTLs were
classified as localwhen the SNP was below 1 Mb upstream or down-
stream from the associated gene and as distant otherwise.

Co-expression network and identification of trait-

associated modules

WGCNA was performed using the R package WGCNA v1.63 (Lang-
felder and Horvath, 2008). A consensus clustering approach was used
to identify robust modules across RIL sets, so that modules represent
groups of co-expressed genes that are preserved in the two popula-
tions. This approach, which is an extension of standard co-expression
network analysis, is commonly used to account for sub-groups of
samples in animal and plant studies (Monti et al., 2003; Shahan et al.,
2018; Wu et al., 2002). Genes that were strongly negatively correlated
were considered unconnected (since they could belong to different
biological categories), leading to a signed network.

The signed consensus network was constructed through the
function blockwiseConsensusModules(). The adjacency matrix
was calculated with a soft threshold power of 8 for both RIL sets
and consensus modules were forced to contain at least 30 genes.
Connectivity values were obtained through the function intramod-
ularConnectivity() starting from the adjacency matrix. The function
moduleEigengenes() was used to calculate the most important
eigengenes of the expression matrix to quantify co-expression
similarity of each module. Modules whose eigengenes were corre-
lated with a value above 0.8 were clustered together. MM was
used as a fuzzy measure correlating the gene expression profile
with the module eigengene. After the trait measurements were
imported into the co-expression network, gene trait significance
and the gene trait significance P-value were calculated for each
gene in the two RIL populations separately. For each trait, only
modules with the same correlation coefficient sign in both popula-
tions were considered for the downstream analysis, choosing the
lowest absolute value for each module–trait pair.

The function intramodularConnectivity() was applied to the
adjacency matrix separately for each population to calculate the
network connectivity values kTot, kWithin, kOut, and kDiff, where kTot
is the connectivity of each gene to all other genes in the whole
network, corresponding to the sum of all edge weights; kWithin is
the connectivity of each gene within a single module (i.e., intra-
modular connectivity); kOut (calculated as kTot � kWithin) is the
inter-modular connectivity; and kDiff is the difference between
kWithin and kOut.

Identification and characterization of candidate genes

The eQTL results were intersected with the list of PCC genes and
with the list of QTLs derived with the GWA study. eQTL genes were
defined as candidate genes when they were (i) significantly corre-
lated with one of the traits (PCC genes) and (ii) controlled by a SNP
marker that was also associated with one of the traits (MTAs) (Fig-
ure 1). Candidate genes were characterized with PLAZA Monocot
4.0 (Van Bel et al., 2018), using the integrative orthology tool and
the GO enrichment tool. Statistical overrepresentation analysis of
the WGCNA modules was conducted through the PANTHER classi-
fication system (Mi et al., 2010; Thomas et al., 2003). Only terms
with FDR < 0.05 (Fisher exact test) were considered significant. The
expression levels of candidate genes were manually inspected on
the RNA-seq gene atlas (Walley et al., 2016) and on the Electronic
Fluorescent Pictograph browser (eFP Atlas Browser), both part of
MaizeGDB (maizegdb.org; Portwood et al., 2019), to describe pecu-
liar features of their expression patterns.
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