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ABSTRACT To develop an effective Pseudomonas aeruginosa outer-membrane-vesi-
cle (OMV) vaccine, we eliminated multiple virulence factors from a wild-type (WT) P.
aeruginosa strain, PA103, to generate a recombinant strain, PA-m14. Strain PA-m14
was tailored with a pSMV83 plasmid carrying the pcrV-hitAT fusion gene to produce
OMVs. The recombinant OMVs (termed OMV-PH) enclosed increased amounts of the
PcrV-HitAT bivalent antigen (PH) and exhibited lower toxicity than did the OMVs
from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded
70% protection against intranasal challenge with 6.5� 106 CFU (;30 50% lethal doses
[LD50]) of PA103, while immunization using OMVs without the PH antigen (termed
OMV-NA) or the PH antigen alone failed to offer effective protection against the same
challenge. Further immune analysis showed that OMV-PH immunization significantly
stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses over those
with PH or OMV-NA immunization in mice and that these more-potent responses can
effectively hinder P. aeruginosa infection. Undiluted antisera from OMV-PH-immunized
mice displayed significantly more opsonophagocytic killing of WT PA103 than antisera
from PH antigen- or OMV-NA-immunized mice. Moreover, OMV-PH immunization
afforded significant antibody-independent cross-protection to mice against PAO1 and
the AMC-PA10 clinical isolate. Taking our findings together, the recombinant P. aerugi-
nosa OMV delivering the bivalent PH antigen exhibits high immunogenicity and may be
a promising next-generation vaccine candidate against P. aeruginosa infection.

KEYWORDS P. aeruginosa, outer membrane vesicles, nanoparticle, vaccine, protective
immunity

P seudomonas aeruginosa, a Gram-negative bacterium, is one of the major opportun-
istic bacterial pathogens in health care settings (1). P. aeruginosa is listed as one of

the leading nosocomial pathogens responsible for life-threatening pneumonia, surgical
infection, and bacteremia (2), especially among immunocompromised individuals with
underlying diseases such as cancer, AIDS (3), or cystic fibrosis (CF) (4) and among patients
in intensive care units (5). P. aeruginosa has a complex gene regulation network including
hundreds of genes that enable the bacterium to adapt rapidly to many different environ-
ments (6), resulting in its intrinsic resistance to treatment with antibiotics. Recently, the re-
sistance rates of P. aeruginosa have been increasing in many parts of the world. Multidrug-
resistant (MDR) and extensively drug-resistant (XDR) high-risk strains are widespread in
health care settings (7). Therefore, the treatment of P. aeruginosa infections is becoming
extremely challenging, and development of an effective vaccine for active and/or passive
immunization is imperative to prevent P. aeruginosa infection and reduce the spread of
MDR and XDR P. aeruginosa strains. In the past several decades, vigorous efforts have
been aimed at developing an effective P. aeruginosa vaccine (2). Although several P.
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aeruginosa vaccines have been assessed in clinical trials, no licensed vaccines are available
for humans yet (8).

A growing body of evidence has shown that mice immunized with outer membrane
vesicles (OMVs) packaging homologous or heterologous antigens can prime significant
protective responses counteracting the pathogens from which these homologous or
heterologous antigens originated (9). OMVs from Neisseria meningitidis as a component
of the vaccine against N. meningitidis serogroup B have been licensed (10), highlighting
the potential of OMV-based vaccines to prevent infection by drug-resistant bacteria. P.
aeruginosa OMVs are involved in pathogenesis by delivering numerous virulence fac-
tors to distant locations (11–13) but also contain abundant OM proteins, such as porins
OprF and OprH/OprG and flagellin (14), which are potential protective antigens (15).
Protection against P. aeruginosa infection by immunization with OMVs directly purified
from wild-type (WT) P. aeruginosa has been observed (16, 17), but OMV toxicity, a
major obstacle to OMV vaccines, was not mentioned in those studies. A range of bacte-
ria are being engineered to generate safe and immunogenic OMV vaccines (18), but
the use of genetically modified P. aeruginosa strains for making OMV vaccines is largely
unexplored.

P. aeruginosa PcrV is located at the tip of its type III secretion system (T3SS) needle
complex, which is required for translocation of the effectors (19), and is critical for
pathogenicity (20). Studies have demonstrated that immunization with either PcrV
alone or PcrV fusion antigens protects against pulmonary and burn infections by P. aer-
uginosa (21–24). Also, PcrV-specific antibodies are effective in counteracting P. aerugi-
nosa infection in different animal models (25) and can reduce inflammation and dam-
age of the airways of CF patients (26). Thus, PcrV seems to be an ideal antigen.
However, PcrV as a vaccine component has not been evaluated in human clinical trials
thus far, probably due in part to difficulties in the production of high-quality PcrV (23).
In addition, the iron acquisition systems play an important role in the virulence of P.
aeruginosa (27, 28). Among them, the ferric iron-binding periplasmic proteins HitA
(PA4687) and HitB (PA4688) are involved in iron transportation (29) and are associated
with bacterial virulence (30), rendering them potential vaccine candidates. HitA immu-
nization offers protection against systemic infection with P. aeruginosa in the murine
model (31). Moreover, protein alignment shows that both PcrV and HitA have 98% to
100% amino acid identity among different clinical isolates. Our previous study demon-
strated that immunization with OMVs carrying a vector that oversynthesized the LcrV
antigen of Yersinia pestis afforded enhanced protection against pneumonic plague
(32). Thus, immunization with OMVs containing increased amounts of the PcrV and
HitA antigens might potentiate protective immunity against P. aeruginosa infection. In
this study, we genetically manipulated P. aeruginosa PA103, a serotype O11 strain that
is prevalent in hospital settings (33), to eliminate an array of virulence factors. The mu-
tant strain was tailored with a plasmid to oversynthesize the PcrV-HitA fusion antigen
(PH) and produce immunogenic self-adjuvanting OMVs with diminished toxicity.
Immunization with OMVs enclosing PH offered significant protection against lethal
pneumonic infection with PA103, stimulated potent humoral and cellular immune
responses, and provided broad protection against P. aeruginosa strains of different
serotypes.

RESULTS
Trimming P. aeruginosa to mitigate the toxicity of outer membrane vesicles. A

multitude of virulence factors (Fig. 1A) produced by P. aeruginosa are involved in acute
and chronic infections (34). Studies have illustrated that OMVs from WT P. aeruginosa
can package numerous virulence factors, such as toxic effectors of the type III secretion
system (T3SS), among other toxins, and deliver them into host cells, leading to cytotox-
icity and impairment of host defense (11–13). The toxins (ExoU, ExoT, or ExoS) secreted
by the T3SS enable P. aeruginosa to breach the epithelial barrier by antagonizing wound
healing during colonization and to promote cell injury, ultimately causing pneumonia (35).
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Additionally, several toxic effectors (exotoxin A, LasA, and LasB) of the type II secretion sys-
tem (T2SS) contribute to bacterial pathogenicity (36, 37). As shown in Fig. 1B, considerable
amounts of known toxins (ExoA and ExoU) were present in OMVs isolated from WT PA103
but absent from OMVs from strain PA-m6, with deletions of multiple toxin genes. The O-
antigen moiety of lipopolysaccharides (LPS) is one of the immunogenic antigens in P. aeru-
ginosa. O-antigen immunization confers high levels of protection against the homologous
strain but is largely inefficient against different serotypes (38, 39). WbjA (encoded by wbjA),
a glycosyltransferase, adds glucose to complete the O-antigen trisaccharide repeating unit

FIG 1 Analysis of outer membrane vesicles (OMVs) from the genetically manipulated P. aeruginosa
strain PA103. (A) Schematic diagram of genes and their encoding proteins. The 14 genes were deleted
constitutively to generate the final strain, PA-m14, producing OMVs of low toxicity. (B) Determining the
presence of the ExoU and ExoA toxins in a bacterial cell lysate (BCL) and in OMVs from wild-type PA103
or the PA-m6 mutant strain by Western blotting. (C) Quantification of LDH release into culture
supernatants of human THP-1 cells treated with 10mg/ml of OMVs from WT PA103, PA-m1, PA-m6, PA-
m13, or PA-m14 for 4, 8, and 24 h (3 replications). PBS was used for a control group. (D) Toxicities of
different OMVs from wild-type PA103 or its derived mutants in BALB/c mice. BALB/c mice (n=5) were
injected intramuscularly with 50mg of OMVs from either wild-type PA103, PA-m1, PA-m6, PA-m11, or PA-
m14. Mouse body weight changes after intramuscular injection with OMVs isolated from different strains
were measured. Mice were monitored daily for 2weeks. Statistical significance was analyzed by the log
rank (Mantel-Cox) test. (E) TLR4 activation of OMVs in vitro. Secreted embryonic alkaline phosphatase
(SEAP) activities in HEK-Blue cells with murine TLR4 were compared. HEK-Blue mTLR4 cells (InvivoGen)
were cocultured with 10mg/ml OMVs from WT PA103, PA103 DlpxL1, or PA-m14 for 6 or 8h. OMVs from
Salmonella Typhimurium were used as a positive control, and 10 mg/ml of purified PcrV-HitAT protein or
PBS was used as a negative control. The statistical significance of differences among the groups was
analyzed by two-way multivariant ANOVA with a Tukey post hoc test (ns, no significance; *, P, 0.05; **,
P, 0.01; ***, P, 0.001; ****, P, 0.0001).
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of the LPS of PA103 (40). Thus, mutants (from PA-m6 to PA-m14) (Table 1) carrying the
wbjAmutation are devoid of full-length O antigen (see Fig. S1A in the supplemental mate-
rial), eliminating the immune response to the specific O antigen. Besides the toxic factors
mentioned above, alginate or elastases can induce high levels of antibodies during P. aeru-
ginosa infection. However, these antibodies have poor opsonic activities, especially in CF
patients (41), fail to clear the infection effectively (42), and even exacerbate the lung infec-
tion (43). Siderophores (pyochelin and pyoverdine), rhamnolipids, and alkaline phospha-
tases can promote P. aeruginosa pathogenicity and infection (34, 44). To further mitigate
the potential toxicity of OMVs, we consecutively deleted genes encoding different viru-
lence factors (Fig. 1A) to generate a PA-m13 mutant (Table 1).

The lipid A moiety of LPS in Gram-negative bacteria is another major contributor to tox-
icity (45). The presence of two acyltransferase HtrB (LpxL) homologs, PA0011 (HtrB1) and
PA3242 (HtrB2), in strain PAO1 might modify lipid A via the addition of 2-hydroxylaurate
at the C-2 and C-29 positions, respectively (46). In silico analysis demonstrated that PA103
also has two LpxL homologs, PA103_1714 (99.038% identity to PA3242; designated LpxL1)
and PA103_4391 (100% identity to PA0011; designated LpxL2). The lpxL1 deletion was suc-
cessful in PA103, but not the lpxL2 deletion (lab observation). Thus, adding the lpxL1muta-
tion to strain PA-m13 so as to generate strain PA-m14 may further reduce bacterial OMV
toxicity. Lipid analysis indicated that OMVs from WT PA103 contained both hexa-acylated
and hepta-acylated lipid A species, as characterized in P. aeruginosa isolates from cystic

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Genotype or relevant characteristics Source
Strains
E. coli
Top10 F– mcrA D(mrr-hsdRMS-mcrBC) f 80lacZDM15 DlacX74 recA1 araD139 D(ara-leu)7697 galU

galK rpsL endA1 nupG
Invitrogen

x6212 F– l– f 80 D(lacZYA-argF) endA1 recA1 hsdR17 deoR thi-1 glnV44 gyrA96 relA1 DasdA4 85
SM10(lpir) Kmr; thi-1 thr-1 leuB26 tonA21 lacY1 supE44 recA integrated RP4-2 Tcr::Mu aphA1 (RP4-2 is RP4

DTn1)
86

RHO3 Kms; SM10(lpir) Dasd::FRT DaphA::FRT 87
P. aeruginosa
PA103 Wild-type strain Joanna B. Goldberg
PAO1 Wild-type strain Shouguang Jin
AMC-PA10 Clinical isolate from a patient sputum sample; resistant to piperacillin-tazobactam,

ceftazidime, cefepime, aztreonam, ciprofloxacin, amikacin
Albany Medical Center

PA103 DexoU DexoU 88
PA-m1 DlpxL1 This study
PA-m2 DexoU DexoA This study
PA-m3 DexoU DexoA DexoT This study
PA-m4 DexoU DexoA DexoT DlasA This study
PA-m5 DexoU DexoA DexoT DlasA DlasB This study
PA-m6 DexoU DexoA DexoT DlasA DlasB DwbjA This study
PA-m7 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA This study
PA-m8 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA DphzM This study
PA-m9 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA DphzM Dalg This study
PA-m10 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA DphzM Dalg DrhlAB This study
PA-m11 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA DphzM Dalg DrhlAB DpvdA This study
PA-m12 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA DphzM Dalg DrhlAB DpvdA DplcH This study
PA-m13 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA DphzM Dalg DrhlAB DpvdA DplcH DphoA This study
PA-m14 DexoU DexoA DexoT DlasA DlasB DwbjA DpchA DphzM Dalg DrhlAB DpvdA DplcH DphoA DlpxL This study

Plasmids
pYA3342 Asd1 vector, Ptrc, pBR ori 85
pYA3493 Asd1 vector with b-lactamase N-terminal signal sequence, Ptrc, pBR ori 85
pDMS197 Suicide vector; Tetr;mob (RP4) R6K ori, sacB 82
pUCP20 E. coli-Pseudomonas shuttle vector; Apr Cbr 89
pSMV81 The pcrV-hitAT DNA fragment was cloned into EcoRI and HindIII sites in pYA3494 This study
pSMV82 The pcrV-hitAT-6�His fragment was cloned into NcoI and HindIII sites in pYA3342 This study
pSMV83 The Ptrc-bla ss-pcrV-hitAT DNA fragment from pSMV81 was cloned into pUCP20 This study
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fibrosis patients (47, 48), whereas OMVs from PA-m14 completely lost hepta-acylated lipid
A species and contained mainly hexa-acylated lipid A species (Fig. S1B and C). Therefore,
disruption of LpxL1 led to the loss of a secondary laurate acyl chain. However, the pre-
dicted hexa-acylated lipid A species in our OMVs were not present in the study of Ernst
and colleagues (46), which reported only penta- or tetra-acylated lipid A species.
Additionally, the transmission electron microscopy (TEM) images showed that the mor-
phology of PA-m14 was slightly altered from that of PA103 but that the OMVs from PA-
m14 were much smaller than those from WT PA103 (Fig. S2B).

To evaluate the toxicity of P. aeruginosa OMVs, lactate dehydrogenase (LDH) release
from human THP-1 cells was measured as described in Materials and Methods below.
The results showed that OMVs from WT PA103, PA-m1, PA-m6, and PA-m13 caused
comparable cytotoxicity, while the OMVs of PA103 caused significantly more cytotoxic-
ity than the OMVs of PA-m14, after 4 h of treatment (Fig. 1C). The cytotoxicity profiles
were similar after 8 and 24 h of treatment. The highest cytotoxicity was observed in
cells treated with OMVs from PA103. OMVs from PA-m1, with the elimination of one
fatty acid chain of lipid A, presented significantly lower cytotoxicity than OMVs from
PA103 but still retained slightly higher cytotoxicity than OMVs from PA-m6, PA-m13, or
PA-m14 (Fig. 1C). Subsequently, in vivo toxicity testing of different OMVs showed that
mice injected intramuscularly (i.m.) with 50mg OMVs from WT PA103 succumbed
within 3 days, while 80% of mice survived i.m. injection with 50mg OMVs from strain
PA-m1 (with a single lpxL1 mutation), and i.m. injection with 50mg OMVs from PA-m6,
PA-m13, or PA-m14 did not cause any death in mice (Fig. 1D). Injection with OMVs
from either PA-m6 or PA-m13 caused mice to gain weight more slowly than with injec-
tion with OMVs from PA-m14 over a 20-day observation period (Fig. 1D). The results
implied that the deletion of multiple virulence factors and the elimination of one fatty
acid chain of lipid A significantly diminished the toxicity of P. aeruginosa OMVs.
Further, we compared the secreted embryonic alkaline phosphatase (SEAP) activities of
HEK-Blue murine Toll-like receptor 4 (mTLR4) cells cultured with different OMVs. The
TLR4-stimulatory activities of OMVs from P. aeruginosa were all dramatically lower than
those of OMVs from the Salmonella enterica serovar Typhimurium strain UK1 (a positive
control) but significantly higher than those of the purified PcrV-HitAT fusion protein
and phosphate-buffered saline (PBS) controls (Fig. 1E). The SEAP activities of OMVs
from the P. aeruginosa DlpxL1 and PA-m14 strains were comparable but were signifi-
cantly lower than those of OMVs from the WT P. aeruginosa strain (Fig. 1E). Taken to-
gether, these results indicate that PA-m14 OMVs are less toxic than other OMVs.
Therefore, we chose to use strain PA-m14 for generating OMVs in this study as a vac-
cine candidate for a proof of concept.

Increasing the amounts of the PcrV-HitAT fusion antigen enclosed by P. aeruginosa
OMVs. As mentioned above, conservative PcrV and HitA antigens have been evaluated
as vaccine candidates (21, 22, 31). P. aeruginosa OMVs contained an array of conserva-
tive protein antigens (14), but the amounts of protective antigens (PcrV and HitA)
enclosed in the OMVs directly isolated from the mutant strain PA-m14 were marginal
(Fig. 2), which could limit OMV immunogenicity. Our previous study indicated that im-
munization with OMVs carrying increased amounts of the Y. pestis LcrV antigen offered
greater protection against plague challenge than immunization with OMVs direct from
WT Y. pestis, containing very small amounts of LcrV (32). Thus, we sought to increase
the amounts of PcrV and HitA enclosed in OMVs by oversynthesizing a fusion antigen
designated PH (68 kDa), which is composed of both truncated PcrV (E28 to I294, with
the signal peptide removed) and HitA (D28 to N355) from PA103. Antigens guided by
the T2SS into the bacterial periplasm space could increase the antigen amounts in the
lumina of OMVs, significantly increasing protective immunity (32, 49, 50). Therefore, we
constructed the pSMV83 plasmid (Table 1 and Fig. 2A), in which the bla ss-pcrV-hitAT

fragment, encoding an N-terminal b-lactamase signal peptide to facilitate secretion of
the PH fusion antigen into the periplasm of P. aeruginosa, was driven by a strong Ptrc
promoter. Subsequently, the pSMV83 plasmid was introduced into strain PA-m14 to
determine the synthesis of the PH antigen in bacteria and their fractions (cytoplasm,
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periplasm, and OMVs). The results showed that the cytoplasmic fraction of the PA-m14
(pSMV83) strain contained larger amounts of PH than the periplasmic fraction (Fig. 2B),
and OMVs from this strain carried significant amounts of the PH antigen (Fig. 2C and
D). No PH was detected in those fractions in PA-m14 harboring the empty plasmid
pUCP20 (Fig. 2B, C, and D).

Immunization with recombinant P. aeruginosa OMVs induces protection against
P. aeruginosa infection. Before the challenge study, we determined that the LD50 (50%
of the lethal dose) of WT PA103 in BALB/c mice by intranasal (i.n.) administration was
2� 105 CFU (Fig. 3A). Meanwhile, groups of mice (n=10; 5 males and 5 females) were
i.m. immunized with 50mg of OMVs purified from PA-m14(pSMV83) (referred to as
OMV-PH) in 100ml PBS, which contained ;2mg PH, and were then boosted 21 days af-
ter prime immunization (Fig. 3B). Compared to the others, immunization with 50mg of
either OMV-PH or OMVs from PA-m14(pUCP20) (termed OMV-NA) affected mouse
weight gain (Fig. 3C) and led to moderate swelling at the injection site 1 week after
injection (observation data) but did not cause observable disease symptoms in mice.
Immunization with 50mg of OMV-NA, PH (10mg)-Alhydrogel, or PBS-Alhydrogel (referred
to as PBS) was used as an experimental control. On day 42 after the initial vaccination,
mice were challenged with P. aeruginosa by the i.n. route. Vaccination with OMV-PH
afforded 70% protection for mice infected with 6.5� 106 CFU (;30 LD50) of PA103, but
only 20% of mice immunized with PH or OMV-NA survived the same challenge (Fig. 3D).
None of the PBS-immunized mice survived the challenge (Fig. 3D). Das et al. have reported
that vaccination with a PcrV-PopB fusion protein adjuvanted with dmLT reduced P. aerugi-
nosa lung burden (51), so we attempted to evaluate the immune protection of PH plus
the dmLT adjuvant in mice. However, no significant differences in antibody titers or
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protective efficacy between PH-Alhydrogel and PH-dmLT immunization were observed in
our study (Fig. S3A).

Further, groups of immunized mice (n=5) were challenged with a lethal dose of
PA103 (5� 105 CFU) to determine bacterial burdens in major organs. At 2 days postin-
fection (dpi), PBS-immunized mice had substantially higher P. aeruginosa titers in lungs
(mean, 7.2 log10 CFU/g tissue), spleens (mean, 5.7 log10 CFU/g tissue), livers (mean, 5.6
log10 CFU/g tissue), and blood (mean, 5.2 log10 CFU/g tissue) than PH-, OMV-NA-, or
OMV-PH-immunized mice. In PH-immunized mice, bacteria reached moderate levels in
livers (mean, 1.2 log10 CFU/g tissue) and blood (mean, 2.5 log10 CFU/g tissue), but no
bacteria were detected in spleens (Fig. 3E). In OMV-NA-immunized mice, bacteria
reached moderate levels in spleens (mean, 4.3 log10 CFU/g tissue) and livers (mean, 1.2
log10 CFU/g tissue); however, no bacteria were detected in blood (Fig. 3E). No P. aerugi-
nosa was detected in the spleens, livers, and blood of OMV-PH-immunized mice (Fig.
3E). In addition, all OMV-immunized mice survived subcutaneous challenge with 7.4� 107

CFU (10 LD50) of PA103, while 40% of PH-immunized mice survived the same challenge,
and PBS-immunized mice succumbed to the challenge within 4days (Fig. S3B).

Serum antibody responses and the microbial killing capacity in vitro. Antibody
measurement showed that the highest anti-PH IgG titers among all immunized groups
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On day 42 after the initial immunization, BALB/c mice (n=5) were infected i.n. with a sublethal dose (5� 105 CFU) of PA103. On
day 2 postchallenge, different tissues (lung, liver, spleen, and blood) were collected from euthanized mice. Data are shown as
means 6 SD. The experiments were performed twice, and data were combined for analysis. The statistical significance of
differences among the groups was analyzed by two-way multivariant ANOVA with a Tukey post hoc test (ns, no significance; *,
P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001).
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were mounted by the PH-immunized mice at week 2, 4, or 6 postimmunization. OMV-
PH immunization stimulated significantly higher anti-PH IgG titers than OMV-NA im-
munization, but lower anti-PH IgG titers than PH immunization, at week 2, 4, or 6 post-
immunization (Fig. 4A). Anti-PH IgG titers from both the OMV-PH- and PH-immunized
groups were significantly boosted at week 4 and were maintained at week 6 (Fig. 4A).
To distinguish between Th1/Th2 responses in immunized mice (52), analysis of IgG
subclasses in response to PH showed that the IgG2a/IgG1 ratios in OMV-immunized
mice were close to 1 at weeks 4 and 6 postimmunization, while the IgG2a/IgG1 ratios
in PH-immunized mice were less than 0.7 at different points (Fig. 4B). Also, measure-
ment of IgG titers in response to a P. aeruginosa cell lysate (PCL) showed that higher
anti-PCL IgG titers were mounted in both OMV-PH- and OMV-NA-immunized mice at
2weeks postimmunization and that these titers were significantly boosted at week 4
and maintained at week 6. However, low anti-PCL IgG titers were maintained in PH-
immunized mice even after a booster (Fig. 4C). Analysis of IgG subclasses in response
to PCL showed that the IgG2a/IgG1 ratios in mice immunized with either OMV-PH or
OMV-NA were $1 at weeks 4 and 6 postimmunization, while the IgG2a/IgG1 ratios
were much less than 1 (;0.6) in mice immunized with PH throughout the entire period
(Fig. 4D). Collectively, the OMV-immunized mice generated broader antibody responses
against multiple antigens and more-balanced Th1/Th2 responses than the PH-immunized
mice.

Since an opsonophagocytic killing (OPK) assay has already been established to
evaluate the correlation of functional antibody levels in serum samples with

FIG 4 Antibody responses to the PH fusion antigen in immunized mice and antibody opsonophagocytic killing capacity. BALB/c
mice were immunized with either PBS-Alhydrogel, 10mg of PH-Alhydrogel, 50mg of OMV-NA, or 50mg of OMV-PH by i.m.
administration and were then boosted on day 21 after prime immunization. Blood was collected on days 14, 28, and 42, and
antigen-specific antibodies were determined by ELISA. Data represent 5 mice per group. (A) Total anti-PH IgG titers at days 14,
28, and 42 in differently immunized mice. (B) IgG2a/IgG1 ratios in response to the PH fusion antigen at days 14, 28, and 42. (C)
Total anti-PCL IgG titers at days 14, 28, and 42 in differently immunized mice. (D) IgG2a/IgG1 ratios in response to a PCL at days
14, 28, and 42. (E) Comparative analysis of opsonophagocytic killing activity against PA103 using antisera from differently
immunized mice. (F) Assay of antibody inhibition of PA103 cytotoxicity to HeLa cells. Sera collected from different immunized
mice were used for this assay (see Materials and Methods). Data are shown as means 6 SD. The statistical significance of
differences among groups was analyzed by two-way multivariant ANOVA with a Tukey post hoc test (ns, no significance; *,
P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001). (F) Inhibition of PA103 cytotoxicity by sera from immunized mice.
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protection (53, 54), we used it to determine whether the P. aeruginosa-specific anti-
bodies were protective. Undiluted sera from OMV-PH-immunized mice exhibited
the highest killing activity (;97% of PA103 organisms were killed), and undiluted
sera from OMV-NA- or PH-immunized mice also exhibited significantly higher opso-
nophagocytic activity (;50%) for PA103 than sera from PBS-immunized mice (Fig.
4E). The OPK activity of 10-fold-diluted sera from OMV-PH- or OMV-NA-immunized
mice decreased to around 35% but was still substantially higher than that from
PBS- or PH-immunized mice, while sera from PH-immunized mice completely lost
OPK activities after 10-fold dilution (Fig. 4E). There were no significant differences
in serum OPK activity after 100-fold dilution (Fig. 4E). The results suggested that
antibodies from OMV-PH- or OMV-NA-immunized mice exhibited significant OPK
activity in a concentration-dependent manner. Surprisingly, sera from all the immu-
nized mice described above failed to show significant OPK activity for PAO1 (sero-
type O5) or a clinical isolate from patient sputum, AMC-PA10 (Table 1; also Fig. S3C
and D). Since P. aeruginosa PA103 is a cytotoxic strain (55), we determined whether
sera generated from immunized mice could block the cytotoxicity of PA103 for
HeLa cells. The results showed that sera from OMV-NA-immunized mice afforded
moderate protection against PA103 cytotoxicity in comparison to the PBS control
but significantly less protection than sera from either PH- or OMV-PH-immunized
mice (Fig. 4F). This indicates that the PH-specific antibody is the major contributor
to mitigating P. aeruginosa cytotoxicity, while blocking P. aeruginosa cytotoxicity
alone is not sufficient to prevent infection.

Cell-mediated immune responses induced by OMV-PH immunization. After 48 h
of in vitro induction with the PH fusion antigen, lung and spleen cells were stained and
were analyzed using flow cytometry. Lung CD41 T cells from OMV-PH-immunized mice
displayed dramatically higher production of gamma interferon (IFN-g), tumor necrosis
factor alpha (TNF-a), and interleukin 17A (IL-17A) than those from OMV-NA-, PH-, or
PBS-immunized mice (Fig. 5). The numbers of CD41 IFN-g-producing cells in the lungs
from PH- or OMV-NA-immunized mice were comparable but were significantly higher
than those from control mice (Fig. 5, right). After PH stimulation, the largest amounts
of TNF-a and IFN-g were produced in lung CD81 T cells from OMV-PH-immunized
mice. The amounts of TNF-a and IFN-g produced by lung CD81 T cells from OMV-NA-
or PH-immunized mice were comparable but higher than those from control animals
(Fig. S4). There were no significant differences in lung CD81 T cells producing IL-17A
among OMV-PH-, OMV-NA-, and PH-immunized mice (Fig. S4).

The numbers of spleen CD41 T cells producing IFN-gwere comparable for OMV-PH-
and OMV-NA-immunized mice but were significantly higher than those from PH-immu-
nized and PBS-immunized mice (Fig. 6). The numbers of spleen CD41 T cells producing
TNF-a and IL-17A from OMV-PH-immunized mice were dramatically higher than those
from OMV-NA-, PH-, and PBS-immunized mice (Fig. 6). Spleen CD81 T cells from mice
immunized with either type of OMV produced higher levels of IFN-g and TNF-a than
cells from PH- or PBS-immunized mice (Fig. S5). Similarly, there were no significant dif-
ferences in spleen CD81 T cells producing IL-17A among OMV-PH-, OMV-NA-, and PH-
immunized mice (Fig. S5). Taking these findings together, the OMV-PH vaccination eli-
cited more-potent antigen-specific Th1 and Th17 responses in the lungs and spleens
of mice than the other vaccinations.

OMV-PH vaccination offers protection against P. aeruginosa strains of different
serotypes in murine pneumonia models. Further, we investigated whether OMV-PH
immunization could offer broad protection. At 42 days after the initial immunization,
OMV-PH-, OMV-NA-, PH-, or PBS-immunized mice were challenged with the most com-
monly used laboratory-adapted strain, PAO1 (serotype O5), or the clinical isolate AMC-
PA10. OMV-PH immunization was able to provide 60% protection against i.n. challenge
with 4.8� 106 CFU of PAO1 and 4.8� 106 CFU of AMC-PA10 (Fig. 7). Low percentages
of PH- or OMV-NA-immunized mice survived the same challenge, and no PBS-immu-
nized mice survived this challenge (Fig. 7).

Protection Induced by P. aeruginosa OMVs Infection and Immunity

November 2021 Volume 89 Issue 11 e00396-21 iai.asm.org 9

https://iai.asm.org


DISCUSSION

The biogenesis of OMVs from pathogenic Gram-negative bacteria is associated with
numerous cellular behaviors, such as interbacterial communication, threat avoidance,
virulence, and modulation of the host immune response (56). OMVs from Gram-nega-
tive bacteria intrinsically contain different pathogen-associated molecular patterns
(PAMPs) and an array of potential antigens that can activate innate and adaptive
immune responses (57); thus, they possess high potential as vaccines. The goal of this
study was to build a proof of concept for developing recombinant P. aeruginosa OMVs
as vaccines to prevent surges of drug-resistant P. aeruginosa in health care settings.

Rational elimination of multiple known toxins (ExoU, ExoT, and ExoA) and other vir-
ulence factors significantly decreased the toxicity of P. aeruginosa OMVs (Fig. 1C). In
addition, OMVs isolated from strain PAO1 induce potent detrimental inflammation
reactions in the lung via TLR2 and TLR4 pathways in vivo (58). Lipid A, one of the moi-
eties of endotoxin (LPS) sensed by the TLR4 complex, can lead to toxicity and even
septic shock (59). Tetra- and penta-acylated lipid A species in P. aeruginosa lack immu-
nostimulatory activity and cause fewer neutrophil respiratory bursts than several hexa-
and hepta-acylated lipid A species (60, 61). However, the single lpxL1 mutation, remov-
ing a secondary laurate acyl chain in the lipid A species of PA-m1 and PA-m14 OMVs,
significantly reduced toxicity (Fig. 1C and D) and TLR4 activation from those for OMVs
from WT PA103 (Fig. 1E). So far, OMVs from PA-m14 still contained abundant hexa-acy-
lated lipid A species (see Fig. S1B in the supplemental material) and uncharacterized
TLR2 agonists that may contribute to the remaining toxicity. We noticed that the lipid
A species in OMVs from WT PA103 and from PA-m14 with the lpxL1 mutation (Fig. S1B)
were not completely consistent with those in previous studies (46–48). These inconsis-
tencies may be due to different P. aeruginosa strains, culture conditions, or sample
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preparations. Also, the disruption of LpxL2 that seemed to mediate the addition of the
C-2 position 2-hydroxylaurate in P. aeruginosa (46) was not achievable in strain PA103
(lab observations). Regarding the above discrepancies, we speculate that the presence
of high phenotypic heterogeneity among different P. aeruginosa species (62) might be
one of the reasons. Moreover, the presence of PagP, a lipid A palmitoyltransferase for
the addition of a palmitate (C16:0) acyl chain (47), and PagL, a lipid A deacetylase for
removing the C10 acyl chain at position 3 (63–65), in P. aeruginosa may impact lipid A
fatty acid acylation. Further studies on lipid A synthesis in strain PA103 will be pursued
to mitigate the toxicity of P. aeruginosa OMVs. Regarding the fact that PA-m14, with
multiple mutations, produces OMVs smaller than those of the WT (Fig. S1D), we specu-
late that deletions of O antigen (wbjA), exopolysaccharide (algD), or quorum-sensing
signaling systems (lasAB and rhlAB) might have led to this occurrence.

Antigens guided by the T2SS into the periplasmic space of P. aeruginosa could
increase the antigen amounts in the lumina of OMVs (Fig. 2B, C, and D) and enhance
protective immunity (Fig. 3D). However, the amounts of PH antigen encased in OMVs
were still relatively low. The reason might be that the Bla SS fragment leading fusion
antigen secretion by the T2SS, which originated from Escherichia coli, may not be fully
compatible with the T2SS of P. aeruginosa. The N-terminal amino acid residues of P.
aeruginosa exotoxin A (residues 1 to 120) are sufficient to direct b-lactamase secretion
(66), implying that N-terminal signal peptides of P. aeruginosa T2SS substrates fused
with homologous or heterologous proteins might enhance the secretion of these
fusion proteins into the periplasm of P. aeruginosa. Alternatively, increased bacterial
membrane curvature favors OMV biogenesis (67), which may promote antigen enclo-
sure in OMVs. Disruption of tolR in E. coli (68) and Salmonella enterica (69) resulted in
high levels of OMV formation without significantly compromising the cell envelope
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and growth. Protein alignments showed that PA103_1767 (39% amino acid identity) in
strain PA103 was homologous to E. coli TolR. However, the tolR mutation in PA103 was
unsuccessful (lab observation). It is not clear whether the TolR in PA103 has other func-
tions essential for bacterial replication. In addition, the crude OMVs used in the current
study may contain protein aggregates, bacterial debris, and OMVs of mixed sizes (70,
71), which may distract immune responses after immunization. Also, several disadvan-
tages of density gradient ultracentrifugation, such as lower volume processability, high
equipment requirements, time-consuming and labor-intensive processes, and low
portability, limit the quantitative yield of OMVs. Since the current yield of OMV-PH was
relatively low, we used the crude OMVs without further purification via the density gra-
dient ultracentrifugation in this study. In future studies, we will seek to greatly increase
P. aeruginosa OMV production by disrupting genes associated with membrane curva-
ture and to prepare purified OMVs for immunization.

PH immunization generated higher PH-specific antibody titers than OMV-PH or
OMV-NA immunization (Fig. 4A), and OMV-NA immunization induced levels of anti-PCL
titers comparable to those with OMV-PH immunization (Fig. 4C). However, OMV-NA or
PH immunization failed to offer good protection against pulmonary challenge with
PA103 (Fig. 3D) and did not effectively prevent bacterial persistence in the lungs or dis-
semination to livers and spleens (Fig. 3E) compared to OMV-PH immunization. Also,
sera from PH-immunized mice could not effectively kill P. aeruginosa in the in vitro OPK
assay compared to sera from OMV-PH- or OMV-NA-immunized mice (Fig. 4E). Our
results were inconsistent with those of several previous studies, in which anti-PcrVNH

sera from PcrVNH-immunized mice (24) or POH-specific antibodies from mice vacci-
nated with the trivalent subunit PcrV-OprI-Hcp1 (POH) (23) exhibited significant OPK
activity against P. aeruginosa. One possible explanation is that different P. aeruginosa
strains used in the OPK assay or sera from mice immunized with different antigen com-
binations caused this inconsistency. Another explanation is that OMVs enrich bacterial
outer membrane and periplasmic components. Thus, high anti-PCL antibody titers raised
from mice immunized with OMVs, instead of PH antigen (Fig. 4C), may target many P. aer-
uginosa factors. Intriguingly, undiluted sera from OMV-PH-, OMV-NA-. or PH-immunized
mice had marginal opsonic killing activity against PAO1 and AMC-PA10 in vitro (Fig. S3B
and C). Strain PA-m14, with a wbjA mutation, lacked full-length O antigen attached to the

FIG 7 Evaluation of broad protection against pulmonary infection with different P. aeruginosa strains in
immunized mice. BALB/c mice (n, 5 to 10; mixed males and females) were immunized with either PBS-
Alhydrogel, 10mg of PH-Alhydrogel, 50mg of OMV-NA, or 50mg of OMV-PH by i.m. administration and
were then boosted on day 21 after prime immunization. (A) Survival of mice challenged intranasally with
a lethal dose (4.8� 106 CFU) of PAO1 on day 42 after the initial immunization. (B) Survival of mice
challenged intranasally with a lethal dose (5.2� 106 CFU) of AMC-PA10 on day 42 after the initial
immunization. The experiments were performed twice, and data were combined for analysis. Statistical
significance was analyzed by the log rank (Mantel-Cox) test (ns, no significance; *, P , 0.05; ***, P ,
0.001).
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LPS core (Fig. S1A). Thus, OMV-PH immunization is supposed to generate antibodies in
mice to an array of conserved antigens of P. aeruginosa, but not to the O antigen of
PA103. Currently, the reason why the OMV-PH immunization sera did not have OPK activ-
ity against strains PAO1 and AMC-PA10 in vitro is unclear. A study reported that the combi-
nation of flagellin-, OprI-, and OprF-specific IgG antibodies triggered the highest level of
C3-deposition-mediated opsonic killing activity (72). Strain PA103 did not synthesize flag-
ella composed of flagellin units (73). Thus, the lack of flagellin-specific IgG antibodies, and
the low levels of OprI/OprF-specific IgG antibodies. induced by the OMV-PH immunization
may lead to the deficiency of broad OPK activity against different types of P. aeruginosa
strains. In addition, the quality of antibodies generated in PH-, OMV-PH-, or OMV-NA-
immunized mice may not be optimal.

Unlike OMV-NA or PH immunization, OMV-PH immunization induced high PH-spe-
cific antibody titers, but also balanced Th1/Th2 or Th1-biased immune responses (Fig.
4B and D). Moreover, lung and spleen CD41 T cells from OMV-PH-immunized mice pro-
duced significant levels of Th1/Th17 cytokines (IFN-g, IL-17A, or TNF-a) after in vitro PH
stimulation in comparison to cells from OMV-NA- or PH-immunized mice (Fig. 5 and 6).
Growing clinical and experimental evidence suggests that an excellent P. aeruginosa
vaccine must stimulate antibodies and Th1/Th17-type T-cell responses to provide
effective protection against pulmonary and systemic infection with P. aeruginosa (23,
74, 75). The PH-specific antibodies from PH or OMV-PH immunization both significantly
inhibited cytotoxicity caused by PA103 infection (Fig. 4F), but in vivo protection against
PA103 infection differed substantially between PH and OMV-PH immunization (Fig. 3D;
also Fig. S3B), further suggesting that antibody alone is not sufficient to prevent P. aer-
uginosa infection. Thus, both potent antigen-specific antibody and T-cell responses to
OMV-PH immunization can explain why only the OMV-PH immunization could afford
significant broad protection against different P. aeruginosa strains (Fig. 3 and 7). The
detailed underlying mechanisms for protection will be interrogated further.

Chronic lung infection with P. aeruginosa accounts for most of the morbidity and
mortality in CF patients (76). Studies have shown that high levels of antibodies against
alginate or elastases were induced upon P. aeruginosa infection, but these antibodies
had poor opsonic activities, especially in CF individuals (41), where they failed to clear
the infection effectively (42, 77) and could even exacerbate lung infection (43).
Increasing numbers of studies have demonstrated that humoral and cellular immune
responses play synergistic roles in protection against P. aeruginosa infection (8, 78).
Th17-mediated protection against P. aeruginosa in mice is antibody independent (79).
The absence of alginate or elastases in OMV-PH might eliminate the potential adverse
effects of immunization on CF individuals. Moreover, immunization with OM-PH induced
potent antigen-specific Th1 and Th17 responses that facilitated P. aeruginosa clearance in
the respiratory tract and reduced mortality (Fig. 3, 5, and 6). Although OMV-PH exhibits
higher potential than other formulations in this study, more efforts are needed to improve
P. aeruginosa OMV vaccines further. Ultimately, the concept in this work will be valuable in
the development of OMV-based vaccines against other drug-resistant pathogens.

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. The bacterial strains and plasmids used in this study are

listed in Table 1. Bacterial growth conditions are described in the supplemental material.
Constructions of plasmids and PA103 mutant strain. PA103 mutant strains and plasmids are listed

in Table 1, and the DNA primers used in this study are listed in Table S1 in the supplemental material.
For the detailed procedure for constructing each plasmid, see the supplemental material. The procedure
for PA103 mutant construction using the sacB-based sucrose counterselectable suicide vectors was simi-
lar to those in previous reports, with minor modifications (80, 81). Briefly, a ;1-kb flanking region of
each gene was assembled by overlapping PCR using the corresponding primers listed in Table S1 and
was individually cloned into the XbaI and SacI sites of pDMS197 (Tetr) (82) to generate the correspond-
ing gene deletion suicide vector, which was conjugated into the P. aeruginosa strain by allelic exchange.
The resulting mutant was confirmed by PCR.

OMV isolation, quantification, and cytotoxicity measurement. OMVs were isolated from P. aerugi-
nosa strains as described previously, with minor modifications (32). The detailed procedure is described
in the supplemental material. OMV cytotoxicity was assayed in vitro as reported previously (83), with
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minor modifications. Human THP-1 cells were seeded at a density of 2.5� 105 per well in a 48-well plate
and were treated with 10mg of different OMVs. PBS was used as a control. The release of lactate dehy-
drogenase (LDH) in the supernatants of OMV-treated cells was determined at 4, 8, and 24 h posttreat-
ment using a CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega). Cell death was expressed as
a percentage of maximum LDH release. The percentage of cytotoxicity was calculated as follows: (optical
density at 490 nm [OD490] of treated cells – OD490 of untreated cells)/(OD490 of lysed untreated cells –
OD490 of untreated cells) � 100%.

Stimulation assay in cell lines. To determine the stimulatory activity of OMVs via Toll-like receptor
4 (TLR4), HEK-Blue human TLR4 cells (InvivoGen, San Diego, CA, USA) were maintained at 37°C under 5%
CO2 in Dulbecco’s modified Eagle medium (DMEM; Gibco BRL, Grand Island, NY, USA) containing 10% fe-
tal bovine serum (FBS) supplemented with 100mg/ml penicillin, 100mg/ml streptomycin, and 100mg/ml
Normocin. Cells were seeded at a density of 5� 104 per well in 96-well tissue culture plates (Costar,
Washington, DC) and were stimulated with 20ml OMVs isolated from different strains (final concentra-
tion, 10mg/ml) for 8 h. Purified protein and PBS were used as negative controls. Relative NF-kB activity
was determined by measuring the secreted embryonic alkaline phosphatase (SEAP) activity in the cul-
ture supernatant according to the manufacturer’s instructions (InvivoGen).

Animal studies. Animal care and experimental protocols were conducted according to the NIH
Guide for the Care and Use of Laboratory Animals (84) and were approved by the Institutional Animal
Care and Use Committee at Albany Medical College (IACUC protocol 20-02001). Six-week-old male and
female BALB/c mice were purchased from Taconic (Germantown, NY) and were acclimated for 1 week af-
ter arrival. The groups of mice were intramuscularly (i.m.) immunized with 50mg OMVs in 100ml PBS
buffer, 10mg PcrV-HitAT–Alhydrogel in a 100-ml mixture as a subunit vaccine control, or 100ml PBS-
Alhydrogel as a negative control. Booster vaccinations were then administered 3weeks after the initial
vaccination. Blood samples were collected via submandibular veins at intervals of 2 weeks in order to
harvest sera for antibody analysis. At 42 days after the initial vaccination, the animals were anesthetized
with a 1:5 xylazine-ketamine mixture and were intranasally challenged with PA103 in 40ml PBS to mimic
pneumonic infection (23). All infected animals were observed over 15 days. The number of bacterial CFU
was determined by plating serial dilutions of the inoculum onto LB agar plates.

For determination of the bacterial burden, animals were euthanized with an overdose of sodium
pentobarbital at 36 h postinfection. Lungs, livers, and spleens were removed and homogenized in ice-
cold PBS (pH 7.4) using a bullet blender (Bullet Blender Blue; Next Advance, Inc., Troy, NY, USA) at power
7 for 2min. Serial dilutions of each organ homogenate were plated onto LB agar, and each count was
confirmed with duplicate plates to determine the titers of bacteria per gram of tissue. The experiments
were performed twice, and the data were combined for analysis.

Antibody responses, opsonophagocytic killing assay, and inhibition of P. aeruginosa cytotoxicity
assay. Antibody titers were measured using an enzyme-linked immunosorbent assay (ELISA) as
described in the supplemental material. The opsonophagocytic killing assay was carried out as described
previously (23). Briefly, HL-60 cells (ATCC; CCL-240) were differentiated into granulocyte-like cells in a
growth medium containing 100mM N9,N-dimethylformamide (Sigma) for 5 days. Serum samples from
immunized mice containing opsonic antibodies were heat inactivated (56°C, 30min) and serially diluted
with opsonization buffer (a mixture of 80ml of sterile water, 10ml of 10� Hanks’ balanced salt solution,
10ml of 1% gelatin, and 5.3ml of fetal bovine serum). We added the following components to each well
in a 96-well plate: 40ml of 4� 105 HL60 cells, 103 CFU of PA103 in 10ml of opsonophagocytic buffer,
20ml of serum, and 10ml of 1% infant rabbit serum as a complement source (Sigma). Blank wells with
the same system in the absence of mouse serum were used as negative controls. After a 2-h incubation,
10ml of each sample was plated onto LB agar medium. Each sample was performed in triplicate. The
opsonophagocytic killing ability was defined as a reduction in CFU compared with the CFU in the sera
from unimmunized mice. The assay of inhibition of P. aeruginosa cytotoxicity is described in the supple-
mental material.

Analysis of T-cell responses. Lungs and spleens were obtained aseptically from euthanized animals
and were dissociated with 70-mm strainers to obtain single cells. The-individual cell populations (2� 106)
derived from the lysis of red blood cells (RBC) were seeded in 12-well cell culture plates and were stimu-
lated in vitro for 48 h with 10mg/ml of recombinant PcrV-HitAT (rPcrV-HitAT). Four hours before the col-
lection of cells, the culture medium in each well was supplemented with brefeldin A and a monensin
cocktail (1:1 ratio) to block Golgi apparatus-mediated cytokine secretion. For the flow cytometric analysis
of the T-cell populations and their corresponding cytokines, the induced cells were harvested and resus-
pended in a fluorescence-activated cell sorter (FACS) staining buffer containing CD16/32 antibodies
(1:200) for 10min on ice. The T-cell-specific markers were stained using anti-mouse CD3 (with fluorescein
isothiocyanate [FITC]), CD4 (with phycoerythrin [PE]), and CD8 (with allophycocyanin [APC]) antibodies
(BioLegend, CA), followed by intracellular cytokine staining (for IFN-g, peridinin chlorophyll protein
[PerCP] Cy5.5; for TNF-a, BV510; for IL17A, APC-Cy7) according to the manufacturer’s protocol. The
events (50,000 cells) were acquired on BD flow cytometers (LSR II) and were analyzed using FlowJo, v.10.

Statistical analysis. The statistical analyses of the data and comparisons among the groups were
performed by one-way analysis of variance (ANOVA)/univariate or two-way ANOVA with Tukey post hoc
tests. The log rank (Mantel-Cox) test was used for survival analysis. All data were analyzed using
GraphPad Prism software (version 8.0). The data are represented as means 6 standard deviations (SD),
and levels of significance are indicated as follows: ns, no significance; *, P, 0.05; **, P, 0.01; ***,
P, 0.001; ****, P, 0.0001.
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