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INTRODUCTION

Glioblastoma multiforme (GBM) represents nearly half of all primary malignant brain 

tumors in adults, and malignant gliomas are a leading cause of cancer-related morbidity 

and mortality in children.1–3 Outcomes for patients with GBM are poor, and effective 

treatment options are limited with individuals having a median survival of approximately 15 

months.2,4 The current treatment protocol focuses on maximal safe resection, radiotherapy, 

and concurrent tumor-treating fields/chemotherapy with temozolomide (TMZ) with only 

a modest effect on outcomes.4–8 There are multiple factors that contribute to treatment 

resistance and recurrence of GBM. It is highly invasive, with glioma cells spreading widely 

within normal brain tissue at early stages.9–11 GBMs contain tumorigenic glioma stem 

cells that contribute to tumor initiation, therapeutic resistance, and recurrence.12 GBM also 

exhibits both intertumoral and intratumoral heterogeneity, which contributes to diagnostic 

complexity and limits the application of personalized, targeted therapies.12
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There is a substantial need for novel therapeutic approaches that address several of 

these challenges. Immunovirotherapy has emerged as a targeted approach for treatment 

of GBM and other malignant gliomas with promising results.5,13,14 Multiple viral vectors 

have been genetically altered and developed as oncolytic viruses and for targeted drug 

delivery. There are currently several ongoing clinical trials for the treatment of GBM 

with immunovirotherapy.12,15,16 In this review, we discuss the recent advances and current 

state of viral vectors developed for the targeted treatment of GBM and malignant gliomas 

including their mechanism of action and clinical applications.

HUMAN ONCOLYTIC VIRUS MODELS

Adenovirus

Adenovirus (Adv) is a double-stranded nonenveloped DNA virus causing mild upper 

respiratory symptoms in humans that typically self-resolve. Within the realm of 

immunovirotherapy, recombinants of Adv that show conditional replication are some of the 

most studied oncolytic viruses.16,17 The key to the multiple immunovirotherapy applications 

of the oncolytic Adv comes from its E1A gene, which is essential in its replication and is 

the first gene expressed on viral infection.18 The Ki67 promoter for E1A expression can 

be upregulated in conjunction with arming the oncolytic Adv with interleukin (IL)-15 gene 

expression against GBM cells with resultant enhanced anti-GBM efficacy via activation 

of microglial cells.18 Adenovirus can also be used to deliver suicide gene therapy.19 

These suicide genes have successfully induced apoptosis via conversion of the prodrug 

5-FC into 5-fluorouracil in the presence of Escherichia coli cytosine deaminase (CD) and 

have encoded proteins that terminate protein synthesis within tumor cells.19 Adenovirus, 

therefore, represents a multifaceted vector in the immunovirotherapy arsenal against GBM.

In 2018, Lang and colleagues20 published landmark results from a Phase I, dose-escalation, 

biologic-end-point study investigating Delta-24-RGD oncolytic virus. Participants were 

separated into 2 groups, with group A receiving a single intratumoral injection of 

the virus into biopsy-confirmed recurrent tumor and group B undergoing intratumoral 

injection through an implanted catheter followed by en bloc resection days postimplantation 

to evaluate posttreatment specimens. The study demonstrated quite promising clinical 

results, with 20% of group A patients surviving more than 3 years posttreatment 

and 12% of patients demonstrating greater than 95% enhancing tumor reduction with 

associated more than 3 years of progression-free survival. Analysis of group B specimens 

postresection demonstrated direct virus-induced oncolysis with tumor infiltration by CD8 

cells. Subsequent analyses of cell lines derived from these patients showed induction of 

immunogenic cell death after virus insertion into tumor cells. Overall, this Phase I study 

provided promising results demonstrating increased long-term survival in patients with 

recurrent high-grade gliomas due to the direct oncolytic effects of DNX-2401 adenovirus.20

A promising study recently published in Neuro-Oncology Advances found potentiating 

effects of the Adv Delta24-RGD on the response of a murine GBM model to anti-PD1 

therapy overcoming tumor-induced immune suppression via significant recruitment of 

dendritic cells resulting in a robust antitumor response and survival benefit, suggesting the 

potential benefit of combination therapy.21,22 Other mechanisms of action affect the function 

Estevez-Ordonez et al. Page 2

Neurosurg Clin N Am. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of T cells, specifically decreasing tumor-infiltrating T regulatory (Treg) cells and increasing 

interferon-gamma producing CD8 T cells. In addition, the oncolytic AdCMVdelta24 virus 

can augment systemic tumor antigen specific T cells and reprogram Treg cells to a 

stimulatory rather than immunosuppressive state.23

Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor 

and therapeutic gene in many human cancers, including malignant glioma with promising 

results with adenovirus oncolytic therapy.24 An adenovirus REIC vector was developed to 

increase REIC/Dkk-3 expression (Ad-SGE-REIC), which is currently undergoing a Phase 

I/IIa clinical trial for treatment of recurrent malignant glioma.25

Not only can the Adv vector be used to stimulate the antitumor immune response, but it also 

has possible applications to enhance intraoperative discernment of tumor tissue from normal 

brain. In 2015, Yano and colleagues26 reported the successful use of a green fluorescent 

protein expressing adenovirus OBP-401 to label GBM cells to allow fluorescence guided 

surgery techniques to resect the murine GBM with nearly undetectable residual macroscopic 

tumor in the surgical bed.

Herpes Simplex Virus Type-1

Genetically engineered oncolytic Herpes Simplex Virus type 1 (oHSV), in particular, has 

been the focus of extensive preclinical and clinical research, offering several advantages 

as a therapeutic vector.14 It is an enveloped icosahedral virus with double-stranded linear 

DNA that belongs to the Herpesviridae family. It is intrinsically neurotropic and does 

not integrate into the host cell DNA, making it an ideal vector for targeting primary 

brain tumors.27,28 The deletion of essential genes required for replication in normal cells 

in combination with replacement of nonessential genes with foreign DNA can provide 

therapeutic advantages.14,28 In addition, engineered oHSVs remain sensitive to antivirals, 

which contributes to its safety profile in the event of unanticipated adverse reactions.

The introduction of inactivating mutations in the γ134.5 neurovirulence gene, an essential 

gene for viral replication in normal cells in the central nervous system, has been extensively 

used in oncolytic viral models.29,30 In response to herpes simplex virus (HSV)-1 infection, 

normal cells activate the double-stranded RNA–dependent protein kinase R (PKR) system. 

This leads to phosphorylation of eukaryotic initiation factor (eIF) 2α inducing translational 

arrest and resulting in severe impairment of viral protein synthesis.29 Infected cell protein 

34.5 (ICP34.5), the product of γ134.5, reverses this process and is thus essential for 

successful viral replication in the central nervous system. Deletion of γ134.5 results in 

conditional viral replication within tumor cells that have low intrinsic PKR activity, such 

as human glioma.5,29,30 This prevents productive infection in normal cells in the brain 

through PKR-mediated translational arrest while still maintaining oncolytic activity against 

glioma cells, which have defective signaling pathways and/or activating RAS mutations 

that suppress antiviral responses.5,29,30 Clinical trials of γ134.5-deleted oHSV G207 (Table 

1) have demonstrated safety with evidence of efficacy in both adults and children (Table 

2).14,31–37 Markert and colleagues32 conducted a phase I trial on 21 adult patients and 

demonstrated safety at doses up to 3 × 109 pfu with 9 patients showing evidence of 

neuropathologic or radiographic response. A follow-up phase 1b trial on 6 patients with 
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recurrent GBM receiving 2 doses of G207 totaling 1.15 × 109 pfu, with 13% of this total 

dose injected before tumor resection via a catheter placed stereotactically into enhancing 

portion of the tumor, also demonstrated safety and confirmed viral replication.34 A third 

study demonstrated safety of vG207 in combination a single 5 Gy radiation dose in 9 

adults with recurrent high-grade gliomas to provide in vivo synergistic viral replication 

based on preclinical data.33 A clinical trial in pediatric supratentorial HGG trial is now 

complete and demonstrated safety of a controlled-rate infusion of intratumoral G207 up 

to 1 × 108 pfu (maximum planned dose) alone and combined with 5 Gy of radiation. 

Radiographic, neuropathologic, and/or clinical responses were seen in 11 of 12 patients. 

Matched pretreatment and posttreatment tissue in several patients demonstrated marked 

increase in tumor-infiltrating lymphocyte months after treatment with G207 (data not yet 

published).31 A first-in-human trial assessing the safety of G207 alone and combined with 

5 Gy of radiation in malignant cerebellar tumors, including malignant gliomas, is currently 

ongoing.37

Placing ICP34.5 or its human ortholog GADD34 under nestin promoter control 

(rQNestin34.5 and NG34) resulted in enhanced selectivity and efficacy compared with 

control virus in preclinical models.38,39 Nestin encodes for the intermediate filament, which 

is a protein expressed during neuronal embryogenesis but not in the adult brain and it has 

been shown to be upregulated in malignant glioma, resulting in selective production of 

ICP34.5.38,40 An ongoing Phase I clinical trial is currently ongoing to test the safety of these 

viral constructs (see Table 1). Another approach uses oHSV G47Δ constructed by deleting 

the α47 gene, responsible for inhibiting the transporter associated with antigen presentation, 

from γ34.5-deficient HSV-1 vectors; leading to increased MHC class I expression in 

infected human cells and enhanced viral replication. Ongoing phase I-IIa clinical trials in 

Japan are assessing the safety and efficacy of G47Δ for the treatment of GBM.41,42 Interim 

analysis of these showed that the 1-year survival rate of 13 patients was 92.3%.42

Pathophysiological hypoxia is a hallmark of high-grade gliomas. It fosters the glioma 

stemlike cell (GSC) phenotype and has been linked to tumor development, invasiveness, 

and resistance to chemotherapy and radiation. Although GSCs demonstrated no inherent 

resistance to oHSV, hypoxia may limit the oncolytic effect of some oHSVs.43–46 To 

improve replication in such hostile environments without increasing neurovirulence, 

chimeric HSV C134 was developed to express the human cytomegalovirus (HCMV) PKR­

evasion gene.43,47 C134 is able to evade PKR-mediated protein shutoff and maintain late 

viral protein synthesis to significantly enhance virus replication, including in hypoxic 

conditions.43 There is an ongoing clinical trial assessing the safety and therapeutic benefit of 

C134.48

In addition to direct oncolytic effects, oHSV can elicit a robust antitumor immune 

response.1 Viruses with insertion of proinflammatory cytokine genes have been described, 

such as IL-12, which results in intratumoral production of IL-12 during viral replication 

to enhance targeted immune destruction.13 IL-12 has potent antitumor properties that 

enhance the cytolytic activity of natural killer cells and cytotoxic T cells.49 It also 

promotes the development of TH-1 immune response, potentially eliciting a more durable 

antitumor effect.49 Treatment with oHSV models producing IL-12 in combination with 

Estevez-Ordonez et al. Page 4

Neurosurg Clin N Am. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immune checkpoints (CTLA-4 and PD-1) have also shown promising results.50 There are 

several completed and ongoing trials assessing the safety and therapeutic benefit of second­

generation oHSVs (eg, IL-12 producing oHSV M032) in adults.13,14

Measles Virus

Measles virus (MV) is a single-stranded, negative-sense, enveloped RNA virus within 

the Morbillivirus genera of the Paramyxoviridae family. MV expresses a glycoprotein 

hemagglutinin protein H that has a high affinity for CD46 receptors shown to be 

overexpressed in GBM cells.51,52 The MV Edmonston strain (MV-Edm), a well-known 

attenuated strain used to vaccinate humans against MV, has been further modified to express 

the carcinoembryonic antigen gene (MV-CEA).53

Phuong and colleagues54 were the first to show that intravenous MV-CEA resulted in 

significantly prolonged survival and regression of in vivo glioblastoma tumor in mice 

bearing subcutaneous and orthotopic U87 tumors MV-CEA treated mice had no neurologic 

or clinical toxicity, which sparked further investigation. In subsequent studies, MV 

specificity for GBM was increased by developing retargeted oncolytic measles strains that 

invade via different receptors: epidermal growth factor receptor (MV-EGFR), EGF receptor 

variant III (MV-EGFRvIII), and IL-13Rα2 receptor.55–58 Additional studies demonstrated 

that MV immunovirotherapy against GBMs can be enhanced with either adjuvant radiation 

therapy or anti-PD-1 antibody therapy.59,60 Recombinant oncolytic MV (MV-NIS) is another 

example that was designed to express human thyroidal sodium iodide symporter (NIS) 

gene. NIS can act as a reporter gene via radiotracers and can also be used as a therapeutic 

transgene via radiovirotherapy, by allowing intracellular uptake 131[I] potentially enhancing 

the therapeutic efficacy.61

A phase 1 clinical trial treated 23 measles immune patients who were candidates for gross 

total or subtotal tumor resection of recurrent GBM with intracranial injection of MV-CEA.62 

One group received a total dose of MV-CEA ranging from 105 to 2 × 107 TCID50 via 

injection into the resection cavity. The second group of patients received one intratumoral 

MV-CEA injection and subsequently underwent tumor resection 5 days following this 

first intratumoral injection–time for projected maximum viral replication to be achieved– 

with a second MV-CEA injection into the resection cavity before closure. Resected tumor 

specimens were analyzed with in situ hybridization and immunohistochemistry.63

Poliovirus

Poliovirus is a positive-sense, single-stranded RNA encapsulated virus belonging to the 

Picornaviridae family known for its neurotoxic effects.64 The prototype oncolytic poliovirus 

developed by Gromeier and colleagues,65 PVS-RIPO, is the live attenuated poliovirus type 

1 (Sabin) with its internal ribosome entry site (IRES) replaced by that of human rhinovirus 

type 2 (HRV2). Although this polio-rhinovirus chimera was found to possess neuronal 

incompetence, in vitro studies demonstrated its ability to infect and reduce glioma cell 

viability and trigger cytolysis of GBM primary cultures.66–71 In subsequent animal studies, 

PVSRIPO was able to arrest tumor growth in both murine GBM flank tumor models and 

improve survival after intracranial virus administration in mice.66,72 In addition, its efficacy 
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was found to be correlated with CD155 expression, known to be overexpressed in human 

GBM.73,74

Indeed, its moderate success in preclinical models paved the way for a phase II clinical trial 

involving inoculation of 61 patients with recurrent GBM with PVS-RIPO. The results were 

published in a landmark article in 2018, which not only corroborated safety of intratumoral 

viral administration in humans but demonstrated an increase in patient survival rate from 4% 

to 21% at 36 months when compared with historical control groups.75,76 Three other clinical 

trials on PVSRIPO are currently ongoing assessing safety in children and combination 

therapy with lomustine (CCNU) and pembrolizumab.76–78 Because clinical and radiographic 

responses were observed after the first cycle of chemotherapy administered for tumor 

progression in patients receiving PVSRIPO infusion, a second follow-up randomized trial of 

PVSRIPO alone or in combination with single-cycle CCNU in patients with recurrent World 

Health Organization grade IV malignant glioma is ongoing to further assess the potential of 

combination therapy CCNU.76

Reovirus

Another human virus that has shown oncolytic ability is the Respiratory Enteric Orphan 

virus or Reovirus, a segmented nonenveloped double-stranded RNA virus composed of 3 

size groups. This naturally occurring virus, which is commonly isolated in the respiratory 

and gastrointestinal tracts of humans but causes mild to no symptoms, preferentially targets 

the activated RAS pathway.79 The numerous downstream effectors induced by the RAS/

RalGEF/p38 pathway in particular, have been implicated in promoting the reovirus life cycle 

and leading to cell death.80–84

Animal studies in severe combined immunodeficient (SCID) mice containing subcutaneous 

MG cell lines U251 N and intracerebral cell lines U251 N and U87lacZ showed a reduction 

in tumor burden after infection with serotype 3 (strain Dearing) live virus.85,86 Lethality 

was also demonstrated in vitro in 83% of 24 established malignant glioma cell lines. 

The susceptibility of cells to reovirus may in part be attributed to the various ways 

reovirus circumvents cell defense mechanisms. For example, when 3-dimensional cultures 

of stem cell-like cells (GSC) from grade IV gliomas (glioblastoma) expressing junction 

adhesion molecule-A (JAM-A) were infected by the wild-type (wt) variant and the JAM-A 

independent jin-1 reovirus variant, viral entry and protein synthesis were similar.87 JAM-A 

is typically used by wt reovirus for cell entry and level of expression is correlated with 

infectivity. These results suggest that reovirus may use alternative entry pathways for 

infectivity that avoid the JAM-A adhesion route. Interestingly, reovirus has been found to 

also upregulate PD-L1 expression lending credence to its use as part of a multifaceted tumor 

killing strategy with the use of PD-1/PD-L1 inhibitors.88

The first clinical trial using reovirus in recurrent malignant glioma demonstrated that 

intratumoral injection was safe.89 Although the trial’s purpose was not to show efficacy, 

6 patients lived more than 6 months, 3 patients lived more than 1 year, and 1 continued 

to survive at 54 months. A subsequent study using convection-enhanced delivery also 

confirmed safety and noticed improved survival >2 years in select patients.90 Intravenous 
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administration of reovirus has also been evaluated in preclinical studies with promising 

results.91

ZOONOTIC ONCOLYTIC VIRUS MODELS

Newcastle Disease Virus

Newcastle disease virus (NDV) is a chicken pathogen with selective oncolytic properties 

applicable to various types of human cancer.92 Molecularly, NDV is an avian paramyxovirus 

with a negative-stranded RNA genome.17 Although the tumor-suppressive abilities of 

NDV have been extensively demonstrated through in vivo models and clinical trials, the 

exact mechanism is not fully understood. It is theorized that NDV achieves oncolysis via 

activation of a Ras pathway in addition to inducing secretion of tumor necrosis factor alpha 

(TNF-alpha) by mononuclear cells resulting in an enhanced antitumor immune response.17 

More recent studies suggest that the Ras-related C3 botulism toxin substrate 1 (Rac1) 

pathway may be the target of NDV.92 Rac1 is involved in proliferation signaling by 

regulating gene transcription and G1 cell cycle progression. In GBM, Rac1 is therefore 

a crucial contributor to cell survival. NDV interactions with Rac1 are believed to induce 

cell cycle arrest along with degradation of the actin cytoskeleton and ultimately cell 

death.92 Murine models have shown increased long-term survival after NDV injection due 

to cytotoxic T-cell infiltration.16 However, this long-term survival benefit was not seen 

in immunodeficient murine models with depleted CD8 cells, stressing the importance of 

an intact host immune system for maximal benefit.16 Type I interferon (IFN) expression 

in GBM cells also greatly impacts the effectiveness of NDV given the role of IFN in 

promoting an antiviral state and decreasing viral replication.93 Nonetheless, recombinant 

NDV expression of an IFN antagonistic protein can overcome this protective role of IFN in 

GBM cells.93

NDV delivery to GBM cells can be targeted via mesenchymal stem cells (MSCs). This 

technique takes advantage of the natural ability of MSCs to target sites of injury and 

inflammation, including tumors.94 Higher rates of apoptosis were demonstrated in glioma 

cells when MSCs were used as the vector for NDV delivery as compared with direct 

NDV infection with similar virus titers. Moreover, TNF-related apoptosis-inducing ligand 

(TRAIL) has been identified as a key mediator in the antitumor effects of these hybrid 

MSCs due to synergy between TRAIL and NDV in the induction of apoptosis.94 NDV can 

also potentiate the effects of TMZ. Bai and colleagues95 found that when combined with 

TMZ, NDV inhibits AKT and activates AMPK, ultimately resulting in enhanced antitumor 

effects of TMZ and extended survival in a murine model. Clinical trials have demonstrated 

therapeutic efficacy and safety of autologous NDV-modified cellular vaccines or oncolytic 

effects in clinical trials but larger clinical trials are necessary to confirm efficacy.96 In a 

phase I/II clinical trial, Freeman and colleagues97 showed that the toxicity of NDV strain 

(HUJ, lentogenic) was minimal and a maximal tolerated dose was not achieved when 

administered intravenously to 14 patients with GBM using intrapatient dose escalation (1–11 

billion infectious units) followed by 3 cycles of 55 billion infectious units with 1 patient 

achieving a complete response, and the others developed progressive disease.
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Rodent Parvovirus

Certain members of the Parvoviridae family, a group of nonenveloped icosahedral single­

stranded DNA viruses, can selectively kill malignant glioma cells while sparing normal 

cells in preclinical studies. These include rodent oncolytic viruses such as the Minute 

Virus of Mice and the more extensively studied rat parvovirus H-1PV.98 Intratumoral and 

intravenous injection of H-1PV into 12 immunodeficient rats containing the U87 human 

glioma cell line resulted in prolonged survival and decreased tumor burden compared with 

controls.99 The efficacy was in part due to a secondary viremia that resulted from progeny 

particles after initial tumor infection and boosted infection of remaining tumor cells. The 

lethality of H-1PV also extends to malignant gliomas resistant to death ligands such as 

TRAIL and DNA-damaging agents such as cisplatin.100 The virus triggers accumulation 

of lysosomal cathepsins and downregulating cathepsin inhibitors. The orientation of certain 

variable regions of the capsid protein of H-1PV has also been tied to its infectivity.101

Studies in short-term and low-passage cultures of human grade IV and gliosarcoma cell 

lines also showed increased susceptibility to H-1PV at low multiplicities of infection (MOI; 

1–5 infectious units per cell).102 These cell cultures more closely parallel clinically diseased 

cells than do cells from long-term in vitro cell cultures. Intranasal application of H-1PV 

has also been shown to prolong survival in immunodeficient rats containing U87 human 

glioma cells versus controls. A Phase I/IIa trial of H-1PV in 18 patients demonstrated 

no dose-limited toxicity and widespread distribution after intratumoral and intravenous 

injection.103,104

Other Viral Vectors

Several other potential viral vectors have been described, but have not been assessed in 

clinical trials for GBM. Pseudorabies virus (PRV) and the Seneca Valley Virus (SVV), 

2 viruses in which pigs are the natural host, have shown potential as oncolytic targets. 

However, intravenous infusion of PRV did not result in uptake within intracranial glioma 

cells.105,106 SVV improved survival in mice bearing GBM as well as medulloblastoma 

and retinoblastoma models, which led to phase 1 clinical trials in adults and children with 

neuroendocrine tumors, which demonstrated safety, but no clear antitumor responses, and 

all patients rapidly developed anti-SVV antibodies and cleared the virus.107,108 Vesicular 

Stomatitis Virus (VSV) and Sindbis Virus (SIN) are mosquito-borne viruses that have also 

shown oncolytic potential. Chimeric VSV-lymphocytic choriomeningitis virus, and VSV­

Chikungunya virus mutants with replacement of the VSV glycoprotein have demonstrated 

tumor lysis with decreased toxicity to normal cells in glioma and intracranial melanoma 

mouse models.109,110 SIN has tropism for neural cells and can cause encephalitis in mice.17 

Tropism for tumor cells is believed to be related to the high affinity laminin receptor, which 

is overexpressed in many tumors.111 SIN can be a vector for introduction of hyperfusogenic 

membrane glycoproteins that lead to formation of syncytia and apoptosis.112 Myxoma virus 

and Vaccinia virus (VV), within the Poxviridae family are the most promising candidates for 

malignant glioma virotherapy because they are highly immunogenic and capable of creating 

antitumor immunity.113–116
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NONONCOLYTIC VIRAL VECTORS FOR GENE THERAPY OR TARGETED 

DRUG DELIVERY

Gene therapy has emerged as a potential treatment for malignant gliomas, whereby a vector 

introduces tumor suppressing or growth regulating genes into malignant cells. Multiple 

approaches are used for gene therapy including suicide gene, oncolytic gene, and tumor 

suppressor gene therapies.117

Viruses are a prime candidate for the introduction of gene therapies. They create a 

potent cytotoxic effect and are easily modified to facilitate genetic engineering.19 Current 

approaches are attempting to target proteins commonly mutated or upregulated in GBM, 

including EGFR, PTEN, IDH-1, and p53.118 The most common viral vectors include 

neurotropic retrovirus and adenoviruses. Retroviral vectors were among the first studied, 

and the first trial began in 1992 with a retroviral HSV-thymidine kinase (HSV-tk) with 

ganciclovir. HSV-tk acts as a suicide gene and converts the prodrug ganciclovir into its 

active form to inhibit cell division and DNA replication. The efficacy of this treatment was 

limited to small tumor sizes given its poor transfection efficiency.119

Adenoviral vectors have been used in clinical trials. An early study of an adenoviral 

vector with wt p53 gene (Ad-p53) showed efficacious transfection of tumor cells with 

minimal toxicity; however, similar to retroviral vectors, Ad-p53 demonstrated poor ability 

to penetrate tumor tissue widely.120 Sandmair and colleagues121 demonstrated increased 

survival time in patients receiving ganciclovir with adenovirus-delivered HSV-tk as 

compared with retrovirus delivery, again demonstrating poor retroviral transfection and 

tumor penetrance. In addition, adenovirus and HSV vectors have been used to introduce 

CD, which convert the prodrug 5-fluorocytosine into 5-flurouracil, inducing apoptosis.122 

A phase I study in patients with recurrent glioma with aglatimagene besadenovec (AdV­

tk), which adenoviral vector engineered to express the HSV thymidine kinase (HSV-tk) 

gene in conjunction with a synthetic anti-herpetic prodrug acyclic guanosine analogue 

administration demonstrated a safe dose range with 3 of 13 patients surviving more than 24 

months.123 A subsequent phase I trial in children treated with AdV-tk as adjuvant to surgery 

and radiation for pediatric malignant glioma and recurrent ependymoma also showed safety 

and potential efficacy.124

Lentiviral vectors have been used to introduce small-hairpin RNA (shRNA) to silence sirtuin 

1 expression in GBM, which results in increased radiosensitivity with resultant increased 

tumor death.125 Similarly, lentiviral delivery of human orphan nuclear receptor tailless 

(TLX) shRNA resulted in tumor growth inhibition and decreased tumorigenicity.126,127

CHALLENGES, LIMITATIONS, AND FUTURE DIRECTIONS

Although clinical trials have been completed or are ongoing for several oncolytic viruses, 

only a few have moved beyond a Phase I clinical trial.16 Finding the ideal balance to achieve 

safety but also virulence to maximize efficacy remains a significant challenge.
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Moreover, viral delivery remains a significant challenge, as most clinical trials have 

focused on intratumoral delivery. Recent trials have used stereotactic techniques to place 

a localized catheter into the tumor to use for administration of virus.31,33,35,37,128 This 

requires a neurosurgical procedure and may limit additional doses. Thus, innovative routes 

of administration need to be devised, such as systemic, intrathecal, intracavitary, and 

intraventricular delivery. However, the challenges of systemic delivery are considerable due 

to the blood-brain-barrier and virus neutralizing antibodies, and the safety of these routes 

needs to be confirmed.16

Although the clinical results of several oncolytic viruses have been promising including 

HSV, poliovirus, and adenovirus, these studies have all been in recurrent, often heavily 

pretreated patients. Thus, it will be important to test immunovirotherapy in upfront 

regimens. Furthermore, future studies are needed to combine oncolytic viruses with other 

potentially synergistic approaches to maximize oncolysis an antitumor immune response 

such as immune checkpoint inhibitors, CAR-T therapy enhanced with bispecific T-cell 

engagers (BiTE), vaccines, and other immunotherapies.14,50,129–131 For example, Saha and 

colleagues129 demonstrated durable responses in an orthotopic GBM model by combining 

anti-PD-1 and anti-CTLA-4 antibodies with oHSV expressing IL-12. An alternate approach 

to systemic delivery of checkpoint inhibitors is by using oncolytic viruses carrying genetic 

material to express the immune checkpoint inhibitors locally.103,132,133 In addition, CAR­

T-cell therapy with bicistronic constructs can convert gliomas who have difficult-to-target 

surface topology to more familiar, targetable topology or help trigger enhanced immune 

responses with targeted, localized CD3 expression to facilitate local immunomodulation.130

SUMMARY

Immunovirotherapy has shown significant promise as a targeted therapy for malignant 

gliomas, and attempts to address several of the challenges often encountered in treatment, 

such as ability to treat unresectable lesions or addressing challenges encountered hypoxia, 

anti-inflammatory effects, and consequences of intratumoral and intertumoral heterogeneity 

in treatment. However, barriers related to therapeutic delivery, viral entry and replication, 

and immunosuppressed patients must be overcome. Strategies such as arming viral vectors 

with enhancements (therapeutic transgenes, checkpoint inhibition, host antiviral immune 

response, improved and selective replication) and combining viruses with synergistic agents 

must continue to be developed and tested in the clinics so that the great therapeutic potential 

of oncolytic immunovirotherapy can be realized.
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KEY POINTS

• Immunovirotherapy has emerged as a promising targeted approach for 

treatment of GBM and other malignant gliomas.

• There are multiple viral prototypes for targeted oncolytic virotherapy and 

targeted drug delivery in various stages of clinical development with 

promising results.

• Herpes Simplex Virus type 1 offers numerous advantages as an oncolytic 

virus with several genetic enhancements currently being tested in clinical 

trials in adults and children.
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CLINICS CARE POINTS

• To date, no oncolytic virus has been approved by the FDA for the treatment of 

malignant glioma and all remain investigational treatments.

• Multiple ongoing clinical trials are currently enrolling participants, most of 

them available for patients with recurrent malignant gliomas.

• Oncolytic viral models engineered to alter/modulate various cellular and 

inflammatory pathways leading to selective replication in tumor cells, 

enhanced immune response, impaired tumor angiogenesis, amongst others.

• Multiple non-oncolytic viral vectors have been studied as gene therapy 

vectors in glioma; these varied approaches include increasing radiosensitivity 

via gene silencing and induction of tumor cell apoptosis in conjunction with 

various prodrug administrations.

• Talimogene laherparepvec (T-VEC) is the first US Food and Drug 

Administration (FDA)-approved oncolytic virus; and is currently indicated 

for advanced melanoma. T-VEC is an oHSV that and expresses human 

granulocyte macrophage colony-stimulating factor (GM-CSF) to active the 

immune system and has specific genetic deletions that result in improved 

capacity for MHC presentation.
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Table 2

Summary viral constructs for the treatment of glioblastoma and other malignant gliomas

Viral Vector Mechanism/Pathway Involved Effect(s) on Tumor Cell

Adenovirus

 REIC/Dkk-3 + cRGD Activation caspase-9; reduced expression B­
catenin

Decreased proliferation rate

 Antisense MMP-9 Downregulation of MMP-9 activity Impaired tumor invasiveness

 DNX-2401 + 
pembrolizumab

Increased epitope presentation to CD8+ Tcells Induced antiglioma immune response

 AAV8 and AAV9 +IFN-B Increase in tumor-associated microglia Improved tumor sensitivity to chemoradiation; improved 
median survival

 dsAAV2 Downregulation of TGF-B Suppressed tumor growth; reduced tumor 
immunosuppressive effects

Herpes Virus

 G47Δ Deletion of the γ134.5and α47 genes and a 
disabling lacZ insertion within ICP6; Murine 
angiostatin insertion

Gain of function mutation leading to increased MHC class 
I expression in infected cells this resulting in enhanced 
viral replication

 HSVtk + Flt3L Release of HMGB1 Phagocytosis of tumor; activation of immune response

 HSV-M032 Deletion in both copies of γ134.5 gene; 
Insertion of Human IL-12

Selective glioma cell replication and expression of IL-12 
in infected glioma cells resulting in enhanced immune 
response and tumor cell lysis

 HSV-G207 Deletion in both copies of γ134.5 gene and 
disabling lacZ insertion in UL39

Selective glioma cell replication

 HSV-C134 Deletion in both copies of γ134.5 gene, 
expression of the HCMVTRS1 gene product

Selective and enhanced glioma cell replication

 rQNestin34.5v.2 Deletion in γ134.5 gene and UL39; ICP-34.5 
under control of synthetic nestin promoter

Selective and enhanced glioma cell replication

Lentivirus

 Sh-SirT1 Downregulation SirT1 Increased tumor sensitivity to radiotherapy

 Sh-TLX Downregulation TLX; expression of TET3 Impaired tumor growth and tumorigenicity of stem cells

 GAS1 + PTEN Decreased AKT and ERK 1/2 expression Impaired tumor growth

Paramoxyvirus

 Measles (MV-CEA) Attenuated strain modified to express the 
carcinoembryonic antigen gene

Designed to track viral gene expression in vivo via serum 
analysis to optimize dosing and administration schedule 
without resorting to histologic tissue analysis

 Measles (MV-NIS) Attenuated strain modified to express human 
thyroidal sodium iodide symporter (NIS) gene

NIS can act as a reporter gene that enables the non­
invasive tracking of viral localization, spread, gene 
expression and replication over time. NIS may also be 
used as a therapeutic transgene by allowing intracellular 
uptake of isotopes, such as131 [I] (radiovirotherapy)

Picornavirus

 Poliovirus (PVSRIPO) Enhanced immune cell infiltration; reduction of 
TIM-3 expression

Promote immune response and tumor inflammation

Retrovirus

 Toca 511 Increased delivery of 5-FC to tumor Increased tumor sensitivity to radiotherapy
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