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Accelerated discovery of 3D printing materials using 
data-driven multiobjective optimization
Timothy Erps1†, Michael Foshey1*†, Mina Konaković Luković1, Wan Shou1*,  
Hanns Hagen Goetzke2, Herve Dietsch2, Klaus Stoll2, Bernhard von Vacano2,3, Wojciech Matusik1

Additive manufacturing has become one of the forefront technologies in fabrication, enabling products impossi-
ble to manufacture before. Although many materials exist for additive manufacturing, most suffer from perform-
ance trade-offs. Current materials are designed with inefficient human-driven intuition-based methods, leaving 
them short of optimal solutions. We propose a machine learning approach to accelerating the discovery of addi-
tive manufacturing materials with optimal trade-offs in mechanical performance. A multiobjective optimization 
algorithm automatically guides the experimental design by proposing how to mix primary formulations to create 
better performing materials. The algorithm is coupled with a semiautonomous fabrication platform to substantially 
reduce the number of performed experiments and overall time to solution. Without prior knowledge of the 
primary formulations, the proposed methodology autonomously uncovers 12 optimal formulations and enlarges 
the discovered performance space 288 times after only 30 experimental iterations. This methodology could be 
easily generalized to other material design systems and enable automated discovery.

INTRODUCTION
Additive manufacturing is an emerging technique to manufacture 
objects with complex structures and functions (1, 2). Recently, glass 
(3), batteries (4–6), high-temperature ceramics (7), and artificial or-
gans (8) have been successfully three-dimensional (3D) printed. Among 
various polymer printing methods, stereolithography and material 
jetting 3D printing have shown promising applications such as ro-
botic assemblies (9), prosthetics (10), biologic scaffolds (11), and 
customized goods (e.g., footwear) (12). However, the development 
of new 3D printing materials currently relies on domain knowledge 
of polymer chemistry and extensive experimental trials, constrain-
ing the efficiency and scalability of material development. Further-
more, 3D printing materials are typically designed and optimized 
using one factor at a time (13). This approach often requires testing 
an excessive number of samples, generating large waste and unde-
sirable environmental impact, while not always finding the most 
optimal solutions. To make additive manufacturing a more widely 
adopted manufacturing approach, it is critical to accelerate the de-
velopment of materials with optimized performance. In addition, to 
address the challenges of diverse application domains, such as bio-
engineering and aerospace engineering, material performance needs 
to be optimized for a specific application.

Different autonomous systems have been recently proposed to 
accelerate material development and substantially reduce human 
labor (8, 14–24). For example, Gongora et al. (14) reported an 
automated 3D printing and testing platform assisted by Bayesian 
optimization to explore high-compression toughness structures. 
Rizkin et al. (15) developed a microfluidic reactor to screen zirconocene 
catalysts combined with a Latin hypercube algorithm for catalytic 
productivity. A mobile robotic chemist was also developed to search 

for improved photocatalysts for hydrogen production, driven by a 
batched Bayesian algorithm (16). Coupled with modern optimiza-
tion techniques, automated systems can simplify the process of op-
timizing materials for given performances (17). However, many of 
these reports focused on single-object optimization. Recently, an 
autonomous quantum dot synthesis bot was developed (8), which 
integrated a machine learning–based experiment selection and flow 
chemistry to explore multiobjective performance. However, the whole 
process was conducted in liquid, which may not be able to cover 
other more complex formulation-processing-property relationships. 
Regardless of this progress, it should be noticed that the cost and 
time per experiment are often high, material supply might be limited, 
and collecting large amounts of data is impractical. Thus, data- 
efficient optimization algorithms are preferred. In addition, for 
many real-world applications, multiple performance criteria should 
be met. Satisfying multiple objectives simultaneously increases the 
complexity of performance space search and the ability to find an 
optimal solution. In this scenario, a multiobjective optimization ap-
proach that guides the sampling of design space can be used to effi-
ciently reduce the number of performed experiments (25).

In this work, we propose a semiautomated data-driven workflow 
(summarized in Fig. 1) for finding new photocurable inks for addi-
tive manufacturing. The semiautomated pipeline is developed to be 
cost-effective and efficient for finding 3D printing materials; how-
ever, a completely autonomous system is possible with certain ro-
botic manipulators (14, 16). The aim of the workflow is to find a set 
of best composite formulations composed of six primary formula-
tions of photocurable inks to improve the mechanical properties 
beyond the performance levels of primary formulations designed by 
hand. These composite formulations are automatically optimized 
for multiple performance objectives with a limited amount of ex-
periments performed.

The proposed workflow starts by dispensing the primary formu-
lations on demand in a specific ratio (Fig. 1A) and then thoroughly 
mixing them (Fig.  1B) to prepare a composite formulation. Each 
composite formulation is then transferred into a jet valve 3D printer 
for sample fabrication (Fig. 1C and fig. S2), followed by postprocessing 
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(Fig. 1D) to complete the sample preparation. The samples are then 
tested to extract their multiple quantitative mechanical performance 
parameters (i.e., toughness, compression modulus, and maximum 
compression strength) (Fig.  1E and fig. S4). To minimize the re-
sources spent on testing different formulations and rapidly find bet-
ter performance designs, we use a data-driven approach based on 
Bayesian optimization (Fig. 1F). This optimization approach auto-
matically learns from prior experiments to inform future decisions 
on which formulations to test next. A key insight in decision- 
making lies in balancing between exploiting the most promising 
formulations and exploring the uncertain regions of the design 
space. We iterate through the workflow until the experimental budget 
is reached.

We demonstrate the rapid performance space improvement and 
discovery of 12 3D printing materials with optimal trade-offs after 
only 30 algorithm iterations. Our method can be easily generalized 
to other formulation design problems, such as optimization of 
tough hydrogels (26), surgical sealants (27), or nanocomposite 
coatings (28).

RESULTS
Base ingredients and material formulations
We begin by generating a set of photocurable primary formulations 
that are compatible with each other to mix and have diverse me-
chanical properties. As key materials for 3D printing, photocurable 
monomers and oligomers are widely used in light- and ink-based 
printing (29, 30). Thus, the development of photopolymers’ formu-
lation libraries would be a substantial step to meet customized 

printing requirements. Instead of developing printing materials 
from scratch, we start by identifying eight commercially available 
formulation ingredients (one photoinitiator, three diluents, and 
four oligomers), as illustrated in Fig. 2 (details can be found in 
Materials and Methods). Then, six primary formulations (A to F) 
are made up of the eight formulation ingredients in the library. To 
ensure that all possible combinations of formulation ingredients are 
3D printable, the primaries are designed to be within a printable 
regime of viscosities. Surfactant is also added to adjust the surface 
tension, increasing compatibility with the printer. The photoinitiator 
is set as a constant across all formulation primaries to avoid its in-
fluence on sample performance. Primary formulations are prese-
lected for their ease of printability, print viscosity, and uniqueness 
of mechanical properties and chemical composition compared to 
others in the initial screening. However, the selection of materials 
can be easily expanded depending on the printing method and 
specific application.

A composite formulation is created by mixing the six primary 
formulations in a desired ratio. These primary formulations are au-
tomatically dispensed by a six-channel syringe pump system (de-
tails can be found in Materials and Methods) and subsequently 
homogenized in a dual asymmetric centrifuge mixer. These two 
steps reduce the time and variation for sample preparation, result-
ing in a set of inks with different formulations that are suggested by 
the optimization algorithm.

Jet valve 3D printing
To increase the variety of inks that can be printed and to reduce the 
printing setup time, we use a 3D printing process based on the jet 

A  Formulation dispensing

B  Mixing

C  Sample fabrication

D  Sample postprocessing

UV

Heat

E  Data extraction

F  Optimization algorithm

Fig. 1. Schematic workflow of the accelerated material discovery system. (A) Primary ink dispenser for dispensing desired formulations. (B) Speed mixer for formula-
tion homogenization. (C) Jet valve 3D printer for sample fabrication. (D) Sample postprocessing with ultraviolet (UV) curing and heating. (E) Compression test for performance 
data extraction. (F) Bayesian optimization algorithm for formulation and performance evaluation, as well as suggestion for which new formulations to test.
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valve dispensing technique. When compared to other types of 3D 
printing techniques, jet valve has the ability to dispense inks with a 
larger variety of fluid properties (31). Furthermore, jet valve dis-
pensing requires less tuning of process parameters to attain reliable 
printing. These traits increased ink variety that could be tested and 
reduced the time for sample fabrication and data collection. To 
reduce unnecessary variations in geometry and degree of polymer-
ization caused by 3D printing, samples are postprocessed via 
ultraviolet (UV) curing and heating to ensure complete reaction of 
components and are flattened via a machining process to eliminate 
variations in cylinder height (details can be found in Materials 
and Methods).

Because of the layer-by-layer fashion of 3D printing, processing 
introduces a number of features, such as layer-to-layer adhesion 
and uniform curing throughout the thickness, which can affect the 
resulting mechanical properties of the printed material (32). Hence, 
testing 3D printed composite formulations rather than casting bulk 
material ensures that the processing effects on mechanical performance 
are included in the optimization. Fine-tuning process parameters 
while optimizing the chemical composition of the formulations may 
also lead to other optimal solutions. In an extended optimization 
scheme, 3D printing parameters could also explicitly be included 
for optimization but are not in this work. Last, to extract the perform-
ance data from each formulation, the 3D printed and postprocessed 
samples are compression-tested using a universal tester.

Multiobjective optimization with batch evaluations
Composite formulations with high degrees of primary C (consisting 
of hexafunctional aliphatic urethane acrylate, expectedly yielding the 
highest possible cross-linking density in cured materials by weight 
and acrylic acid ester) turned out to be too brittle to flatten for 

compression testing. Therefore, we imposed a maximum fraction of 
50% of C in a formulation, leading to the following constraints on 
the formulation design: (i) a, b, d, e, f ∈ [0,1]; (ii) c ∈ [0,0.5]; and (iii) 
a + b + c + d + e + f = 1, where a, b, c, d, e, and f refer to the amounts 
of each of six primaries, scaled to be between 0 and 1 in the ratio of 
the sample weight. We further use a to f as variables in our optimi-
zation system (indicated in Fig. 3).

The goal of the optimization algorithm is to navigate the 6D de-
sign space of primary formulation ratios a to f and quickly uncover 
the best performance designs with respect to three objectives: tough-
ness, compression modulus, and maximum strength. These perform-
ance objectives are chosen because they are mechanical properties 
that are important for designing and selecting structural materials 
in engineering applications (33). Typically, all three of these materi-
al properties need to be maximized for many engineering applica-
tions. However, these objectives can often be conflicting (34); hence, 
there is no single optimal solution, but rather a set of best perform-
ance designs with different trade-offs. Depending on the applica-
tion, the higher performance of one of these properties can be more 
important than others. The set of such solutions is formally called 
the Pareto set, and their corresponding values in the performance 
space are called the Pareto front. A point is considered to be Pareto 
optimal if improvements in one objective can only be achieved if at 
least one other objective value is decreased. The quality of the Pareto 
front is measured with a hypervolume indicator, i.e., a volume of 
the region of the performance space dominated by the points on the 
Pareto front (see fig. S5). Here, our goal is to find the Pareto front 
with the largest possible hypervolume indicator.

The design space is a 6D space with five parameters that can take 
real values between 0 and 1, and the sixth parameter varies between 
0 and 0.5 (due to the limitation imposed on C; a detailed description 
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Fig. 2. Primary formulations A, B, C, D, E, and F used in our system. (A) Primary formulations are made up of eight formulation ingredients (one photoinitiator, three 
diluents, and four oligomers). (B) Primary formulation performance. The primary formulations are designed to cover a broad range of mechanical properties. Formulation 
C was too brittle to postprocess and test.
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of the design space is available in Materials and Methods). Randomly 
or intuitively sampling this design space may take months or years 
to gain enough knowledge of the samples’ performance and uncover 
optimal regions of the space. To make the optimization more time- 
and cost-efficient, we use a data-driven approach. The approach 
learns to predict the performance of untested samples and guides 
the sampling of the design space to quickly find better performance 
designs. More specifically, we follow the Bayesian optimization 
strategy that has proven effective for applications with black-box 
objective functions and a limited budget of tested samples (35). Our 
approach adapts the algorithm proposed by Bradford et al. (25) that 
solves a multiobjective Bayesian optimization problem, as we aim to 
optimize three objectives simultaneously. The optimization algo-
rithm consists of four main parts, summarized in Fig. 3. More de-
tails on the algorithm are available in Materials and Methods. To 
further reduce the experimental time, in each algorithm iteration, 
we evaluate a batch of four different samples in parallel.

Discovered materials with optimal trade-offs
To test the proposed material development workflow, we conduct 
30 algorithm iterations in total, as our budget is fixed to 120 samples 
in addition to the initial dataset. In each algorithm iteration, to re-
duce time, four samples are tested in parallel, giving a total of 120 
tested samples during the optimization. After testing a total of 150 
samples (30 initial samples and 120 proposed by the algorithm), the 
system was able to identify a set of 12 formulations that had optimal 
trade-offs in the three mechanical properties of compression mod-
ulus, maximum compression strength, and toughness, as shown in 
Fig. 4. The Pareto set includes formulations that increase the maxi-
mum compression strength by 70.8% and toughness by 50.8% over 
the performance of the initial six primaries. With the increasing 
number of samples, it is noticeable that the Gaussian process (GP) 
model gains its prediction capability, showing a lower relative error 
from iteration 2 to iteration 30 (fig. S7). In circumstances where 

only sparse data are available for model training, the model’s 
prediction capability is relatively low and is not recommended for 
prediction; however, these models are still helpful for optimiza-
tion problems.

The optimization found the final points on the Pareto set at iter-
ations 0 (as the primary formulation F is Pareto optimal), 10, 18, 20 
(two points), 21, 23, 24, 25, 27, 28, and 30. The formulations with 
the highest performance compression strength and toughness are 
found at iterations 28 and 23, respectively. Furthermore, the hyper-
volume did not attain a steady-state value before the budget was 
reached. By further optimizing, more formulations could be at-
tained. After 30 iterations, the optimization algorithm increased the 
hypervolume indicator of the performance space by a factor of 1.65, 
while our pipeline gave an overall improvement by a factor of 3.25 
(see Fig. 4B). The hypervolume of the formulation primaries, initial 
dataset, and final Pareto front are 2.86 × 107, 5.64 × 107, and 9.32 × 
107, respectively. This improvement means that by further optimiz-
ing the current set of formulation primaries, a much broader set of 
performance parameters can be attained. The formulations in the 
Pareto set vary in compression strength from 308 to 697 MPa. The 
highest compression strength of the initial six primary formulations 
was 435 MPa of primary B. Compression modulus of optimal solutions 
spans from 1.1 to 2.93 MPa. The optimization yielded no composite 
formulation with a higher compression modulus than primary F; 
hence, the pure primary F formulation lies on the final Pareto set. 
Pareto set toughness varies from 68.6 GPa of pure primary F to 
103.6 GPa.

Aside from finding the set of optimal solutions, our algorithm 
that guides the design search also rapidly expands the span of the 
discovered performance space (see Fig. 5). The algorithm encourages 
exploration of unknown regions of the performance space and finds 
materials with a larger variability in properties. When monitor-
ing the compression strength and compression modulus perform-
ance of primary formulations and all evaluated samples, the 
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Fig. 3. Overview of the optimization algorithm used to find optimal 3D printing material formulations. (A) The information needed for input that are the variables 
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algorithm after it has finished optimization.
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performance space is enlarged by 250%. The enlargement in compres-
sion strength and toughness is larger and rises by 399%. In the view of 
compression modulus and toughness, the performance space is im-
proved by 584%. The convex hull, a measure of the performance space 
volume enclosed inside all tested samples, increased 288 times from 
the performance space volume of the initial five primary formulations. 
This improvement could be important for applications where a specific 
property range is required and cannot be easily found manually.

DISCUSSION
The discovered formulations in the Pareto set are useful materials in 
the design of compliant structures where material with an application- 
tailored modulus must be selected to attain the desired outcome 
(36, 37). Compliant and metamaterial mechanisms that require an 
actuation force can be tailored by changing the modulus of the mate-
rials. To increase the required actuation force, higher modulus mate-
rials can be used. Tunable toughness properties are also important for 
aerospace, packaging, and medical applications to reduce mechanical 
failure and ensure design usability.

The dataset produced by the optimization also provides interest-
ing observations about the chemical composition’s effect on the re-
sulting mechanical performance of the material, discussed below and 
graphically presented in Fig. 6. Urethane dimethacrylate (UDMA), 
the main component in base mixture F, is seen to have a large 
contribution to materials with a high modulus. This contribution is 

likely due to its high conversion rate and tendency to form hydro-
gen bonds (38). In addition, we see the tendency of the optimization 
engine to minimize the contribution of hexafunctional aliphatic 
urethane acrylate, a highly cross-link reagent that leans toward brit-
tle prints. High toughness performance is attained by having for-
mulations with oligomers of urethane-modified acrylate in the amount 
of 24 to 37%, aliphatic urethane diacrylate in the amount up to 26%, 
and UDMA in the amount up to 40%. High toughness formulations 
also have diluents acrylic acid amide and acrylic acid ester in the 
range of 14 to 18% and 1 to 19%, respectively. The highest perform-
ance compression strength composite formulations included oligomers, 
urethane-modified acrylate at 34%, aliphatic urethane diarylate at 
26%, and UDMA at 6%. They also include diluents, acrylic acid amide 
at 15% and acrylic acid ester at 19%.

The system presented in this paper provides an automation- 
ready pipeline for improving the performance characteristics of a 
mixed polymer system. The process is designed for automation with 
the initial base compositions having a much lower viscosity range to 
handle than starting from pure polymers. In addition, automated 
equipment exists at all steps of the pipeline, from mixing to sample 
machining; every step of the process can be fully automated. This pro-
vides a template for a process that can be adapted to various optimiza-
tions, such as coatings or molding, via alteration of the base materials 
used in the experiments.

While this study presents many advances in multiobjective opti-
mization for 3D printing, it is not without limitation. When defining 
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the design space, base compositions were limited to human-chosen 
inks that were known to print. This provides an improvement in 
efficiency as all possible combinations are printable; however, it 
may miss some combinations that lie outside of the combination of 
base inks. Similarly, an improvement could be made to the initial 
choosing of base compositions via an algorithmic selection mechanic 
or an expansion to compose using individual chemicals instead of base 
compositions. The selection of jet valve dispensing as the printing 

process allows for a large range of materials to be considered and, 
however, prevents the direct application of the results to commer-
cial printing processes. The same study could be performed on a 
commercial printing platform to develop application-ready inks.

In summary, the material discovery system described here pro-
vides a new way of optimizing photopolymer formulations for addi-
tive manufacturing. Using this system allowed us to find a set of 
3D printing material formulations with optimal trade-offs in the 

Fig. 5. Performance space coverage. For each pair of performance objectives, initial coverage of the performance space is shown in green (spanned by the primary 
formulations), and the coverage after 30 algorithm iterations is shown in red.
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mechanical properties of compression modulus, compression 
strength, and toughness. Although this study focuses on the opti-
mization formulations for 3D printing photopolymers, this sys-
tem can be applied to optimizing materials for other performance 
objectives, as well as optimizing materials for other manufactur-
ing processes. Our material discovery system lays a foundation for 
a new tool for material engineers and polymer chemists to find 
and optimize material formulations for a variety of performance 
objectives and applications.

MATERIALS AND METHODS
Materials
Modified urethane diacrylate, aliphatic urethane diacrylate, and 
polyoxyethyleneamine as well as bis(2,4,6-trimethylbenzoyl)- 
phenylphosphineoxide are provided by BASF. Aliphatic urethane 
hexaacrylate is acquired from Sartometer. Acrylic acid amide and 
acrylic acid ester are provided by Rahn AG. Tween 20 (polysorbate 
20) and UDMA are purchased from Sigma-Aldrich.

Making 3D printable primary inks
Both viscosity and surface tension limit the compatibility of poten-
tial formulations with mixing equipment. Using a jet valve–based 
3D printing technology also encounters limitations on both viscos-
ity and surface tension. Lower limitations are imposed by the ten-
dency of the ink to leak from the valve or spread substantially upon 
contacting the print platform, yielding low print quality. An upper 
bound on these properties is formed by the inability of the ink to 
properly separate from the printhead, preventing droplets from 
forming and causing the printhead to clog. Studies are performed to 
ensure that the rheology of the inks remains stable while mixing 
across the design space.

Formulation ink compositions
Six primary formulations are composed to form the basis for the 
design space. The primary formulations consist of four main com-
ponents, oligomer, a reactive diluent, photoinitiator, and surfactant. 
The primary formulations A to F are given in table S2. The oligomer 
is the main component of each primary ink, transferring most phys-
ical properties to the final printed sample. The reactive diluent serves 
to reduce the viscosity of the ink to bring it to a printable level. The 
diluent also factors into the final material properties, as it becomes 
integrated into the final material structure. The photoinitiator com-
ponent turns UV light into free radicals to polymerize the material 
and cross-link the oligomer and reactive diluent together. Surfactant 
components are added to reduce the surface tension, which aids in 
droplet formation during the printing process.

Handling and experimental cost
The sample fabrication pipeline operates in a semiautomated manner, 
where many of the steps can be completed without human input. 
The dispensing, mixing, 3D printing, postprocessing, and testing 
steps can be completed without human input. Labor is needed to 
transfer materials between different steps of the sample fabrica-
tion pipeline.

The advantage of using the sample fabrication pipeline is to pro-
duce and test formulations at a minimal cost. To do this, the sample 
fabrication pipeline design has been optimized. The duration of 
each step of the sample fabrication pipeline is listed in table S1.

Dispensing
Dispensing of the primary formulation is performed using a custom 
syringe pump–based system. Using a positive displacement syringe 
pump system gives a viscosity and surface tension agnostic method 
to dispense precise material amounts. The system was constructed 
using stepper motors driving linear rails to compress 100-ml glass 
syringes. Syringe outputs are all routed to a manifold that directs 
the primary formulations into a single mixing cup. The system is 
controlled using a microcontroller (Arduino Mega 2560, Turin, 
Italy) with six-axis stepper control software (GRBL, open-source 
software). This software synchronizes all of the movement com-
mands, so primary formulations can be simultaneously dispensed 
at varying speeds. To dispense a specific primary formulation, the 
displacement of each syringe is calculated to be proportional to the 
primary formulation’s contribution to the composite formulation. 
This six-axis command is then issued to the controller. Gathering 
only the steady-state flow from the dispenser allows for differences 
in the surface tension and viscosity of the different primary formu-
lations to be circumvented.

Mixing
Mixing components together takes a substantial amount of the total 
time used for preparing formulations for 3D printing. The mixing 
process is designed to mitigate the amount of time it takes to mix a 
formulation during processing while ensuring that each formula-
tion was homogenous. To reduce the mixing time down to a more 
acceptable range, a SpeedMixer (FlackTek, Landrum, SC, USA) is 
used to mix the components together and is shown in fig. S1. This 
instrument is a dual-axis centrifuge, causing materials within the 
mixing vessel to flow into themselves, rapidly mixing them together 
(39, 40). To ensure that each formulation reaches a homogenous 
solution, the overall mixing time is 64.7 s (30 s of mixing and 34.7 s 
of handling) at 3000 rpm for each formulation mixed.

3D printing
To print 3D printing inks with a wide variety of fluid properties, we 
designed a hardware setup based on a piezo-actuated jet valve. The 
jetting head consists of a nozzle with a diameter of 300 m, a spring- 
loaded needle valve, a pressurized ink reservoir, a valve body, and a 
piezoelectric actuator as shown in fig. S2. To create a droplet, first, 
the piezoelectric actuator releases the force holding the needle valve 
in the closed position. The spring forces the needle valve into its 
open state. The pressurized ink is forced through the nozzle open-
ing dispensing fluid. Last, the piezoelectric actuator closes the needle 
valve into the closed position, cutting off the flow of ink. The amount 
of formulation that is dispensed is a function of the opening time of 
the nozzle, the backpressure of the ink, and the ink’s fluid properties.

The jet valve 3D printer is composed of two jet valve dispensers 
(PICO Plse from Nordson EFD, Providence, RI, USA), a 365-nm 
UV light-emitting diode (LED) (Phoseon Technology, Hillsboro, OR, 
USA), a Cartesian robot (Hiwin Mikrosystems, Taichung, Taiwan), 
a gantry, a build platform, and a controller. The jet valve dispensers 
are used to dispense two materials in parallel. The UV LED is used 
to cure the ink after it is dispensed by the dispensers (41). The Car-
tesian robot is used to change the position of the jet valve dispensers 
and UV LED with respect to the build platform. The movement of 
the Cartesian robot and the actuation of the dispensers and UV 
LED are controlled by a G-code file that is interpreted by the 
controller (42).
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The controller uses the same g-code file for each formulation. To 
create a layer of the 3D printed sample, the dispenser follows a vec-
tor path and deposits droplets of ink to create a continuous line of 
material. It follows a vector path until an entire layer of material is 
deposited. After the layer is finished, the UV LED is turned on and 
rasters over the entire deposited layer to cure the ink. After curing, 
the dispensers and UV LED are incremented upward by the thick-
ness of one layer, and the process repeats until the prescribed 3D 
object has been dispensed.

G-code instructions are produced using slicing software (Slic3r, 
open-source software), which generates printing instructions for a 
fused deposition modeling process. This code is then postprocessed 
further to insert UV LED steps at the end of layers and to change 
dispensing instructions to communicate properly with the jet valve 
dispensers. Four 8 mm by 8 mm cylinders in a grid array are im-
ported into the slicing software. Droplet spacing of 0.5 mm was se-
lected to ensure that no voids were present between droplets. The 
exact g-code print instructions were used for each sample printed, 
ensuring that droplet spacing, UV curing, and printing path were 
constant across all samples.

To ensure that the droplet mass was constant across all samples, 
adjustment of printhead parameters was needed to ensure print-
ability and consistency in droplet mass across ink formulations. The 
temperature of the printhead was kept at a steady 60°C for all prints, 
and the close voltage of the valve was also kept at the maximum 
possible value. Values for syringe pressure, valve opening percent-
age, and valve opening time were adjusted per print to normalize 
the mass of an individual droplet. Changing these dispensing pa-
rameters result in changes in droplet diameter as shown in fig. S3. 
As valve opening percentage, syringe pressure, and valve opening 
time increase, the size of the droplet increases. These parameters 
must be over a threshold that ensures that a droplet is jetted proper-
ly. If jetting parameters are set too high, then splashing can occur 
when the formulation hits the substrate. Jetting parameters were 
selected manually for each formulation.

Postprocessing of printed samples
To ensure consistency across all printed samples with different for-
mulations, we use a postcuring step after printing to complete the 
polymerization process. This accounts for any reaction rate–based 
differences in the printing process due to differing ink compositions, 
which could be accounted for in printing process optimization. Typi-
cally, 1 hour of baking at 60°C and flooding in 365/405-nm UV light 
in a postcuring oven (Wicked Engineering, East Windsor, CT, USA) 
is used to complete polymerization. Further, to remove variations in 
the height of the compression samples caused by printing and post-
processing (43), the samples are flattened with a machining process.

Mechanical performance testing of printed samples
Physical characteristics of maximum stress, maximum toughness, 
and modulus are chosen for the performance space. ASTM D638 
standard was initially chosen for measuring these properties, using 
the smallest possible dog bone (standard V) allowed in the docu-
mentation. This provided for a dog bone of 63.5 mm by 9.5 mm and 
an overall volume of approximately 1580 mm3. While useful for ini-
tial testing and verification of our method against material data, 
these samples require precise positioning in a universal testing sys-
tem (Instron, 68SC-1) taking approximately 3 min per replicate and 
12 min per sample to complete testing.

An alternative testing methodology is desired to increase through-
put and reduce material requirements. Compression testing (44) cir-
cumvents the precision positioning step required in tensile testing, 
reducing testing time. In addition, the sample size has been shrunk to 
8 mm in diameter, with an overall volume of approximately 400 mm3. 
This allows for more samples to be printed on each print platform, 
reducing printing time and reducing the amount of raw materials to 
complete optimization.

Compression testing is completed on the Instron 5984 Universal 
Tester. Multiple compression rates were tested on these instruments, 
finding a maximum compression rate of 3 mm/min while maintain-
ing consistency in testing data. In addition to optimizing the rate of 
compression, a machining step was added to the process to remove 
inconsistencies on the top of the printed samples. These inconsisten-
cies arise from differences in surface tensions between inks, resulting 
in differing degrees of doming between prints. By roughly machining 
the printed samples while still attached to the print platform, consistent 
surfaces on the top and bottom can be achieved in an automation- 
friendly format in less than 2 min per composition. These samples 
are then measured in both diameter and height via a caliper to ac-
count for dimensional differences. All the samples are measured 
three times to obtain a reliable result. Mechanical properties are then 
computed from the stress-strain curve of each sample, averaged, and 
inputted to the optimization algorithm.

Performance data analysis
To complement the highly automated process of manufacturing sam-
ples, an analysis pipeline is also introduced, which, without any hu-
man intervention, is able to produce performance parameters from 
raw stress-strain data as shown in fig. S4. Initial data were first trans-
formed into engineering stress by dividing the measured force by the 
surface area of the sample. Engineering strain was normalized by di-
viding the displacement of the tester by the original height of the sam-
ple. Once converted to engineering values, the stress-strain data are 
then trimmed, allowing for excess data in the initial loading cycle of 
the tester to be removed along with data after the failure point of the 
sample. The initial loading segment is trimmed via careful monitor-
ing of the slope of the stress-strain data, looking for the slope to in-
crease to at least 0.1, all data before this point is discarded as noise in 
initial loading. To find the failure point, the second derivative of the 
engineering data was rank-ordered and filtered for points with at least 
three consecutive negative slopes following. Additional filtering on 
this list of potential failure points was applied, removing points that 
occurred within the first 30% of the data series. These two methodol-
ogies were developed using initial datasets, comparing against how a 
human mechanical engineer would process the stress-strain data.

Once the initial data were preprocessed, transformation into per-
formance parameters could occur. The modulus was determined by 
calculating a linear fit on the engineering stress-strain data for all 
points less than 100 MPa with a sliding window of 20 data points. 
The median modulus is then calculated from these values, and a 
filter for all moduli within 60% of the median is applied. Using the 
values within 60% deviation from the median, a final linear fit is 
applied across the entire range and classified as the modulus for the 
sample. Similar to the trimming of the stress-strain data, these cal-
culated values are compared to human calculated values from a me-
chanical engineer for the initial dataset. The maximal values for 
both engineering stress and strain are taken from the trimmed data 
and used for performance values.
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Design space and initial samples
The design space is 6D, where five parameters can take real contin-
uous values from 0 to 1, and one parameter is constrained from 0 to 
0.5. To simplify the fabrication, we limit the parameters to values 
with two decimals due to resolution limitations in dispensing. In 
that case, five parameters can take 101 different values, and the sixth 
parameter can take 51 different values. Furthermore, these parame-
ters need to sum up to 1 because each of the parameters represents 
a part in the ratio of the resulting formulation. All valid combina-
tions of these parameters then lie on a standard five simplex, a 5D 
polytope that is a convex hull of its six vertices. The total number of 
possible designs is 82,622,991.

The set of 25 initial samples is generated to uniformly cover the 
design. We get uniformly distributed points on the standard sim-
plex by generating a random vector of five values from the symmet-
ric Dirichlet distribution.

Multiobjective optimization algorithm
We start by evaluating 25 randomly generated samples that try to 
cover the design space as uniformly as possible and five primary 
formulations, having 30 initial samples in total. The first part of the 
algorithm fits a GP for each objective independently. The GPs are 
trained on the evaluated data points and are used as a surrogate 
model for black-box objective functions. The Thompson sampling 
of the GPs is then used to balance the trade-offs of exploiting the 
best performance regions and exploring unseen regions of the de-
sign space (45). The third part of the algorithm solves a multiobjec-
tive optimization problem on the previously sampled functions. This 
part extracts a predicted Pareto front and Pareto set. The final stage 
of the algorithm proposes which samples to evaluate in the next it-
eration. To further reduce the experimental time, we propose a 
batch of four samples to be evaluated in parallel. Four samples with 
the largest expected hypervolume improvement from the predicted 
Pareto front are chosen. We then evaluate the proposed samples, 
add them to the currently available dataset, and iterate through the 
algorithm.

Algorithm parameters
More details on each part of the algorithm and general hyperpa-
rameters can be found by Bradford et al. (25). Here, we list hyperpa-
rameters and algorithm alterations used in our implementation.

In each iteration of the algorithm, a GP is fitted for each objec-
tive independently. To train the hyperparameters of GP, the maxi-
mum a posteriori estimate is used, as proposed by Bradford et al. 
(25). We use a Matérn kernel 5/2, as it can support the most general 
and complex function types.

To solve the multiobjective optimization problem on objective 
functions extracted with Thompson sampling from GPs, a standard 
NSGA-II solver (46) is used. In each iteration, we use a population 
size of 100 and a total number of 100 generations. Handling the 
linear equality constraint a + b + c + d + e + f = 1 is performed by 
adding two inequality constraints to the solver, a + b + c + d + e + f − 1 
0 and a + b + c + d + e + f − 1 0, making sure that mutation points 
that do not satisfy these constraints are not proposed.

To monitor the hypervolume improvement over iterations, we 
use a fixed reference point [1.36 × 102, 0.0378, 2.22 × 104] through-
out the performance space. This point is chosen because it has a 
minimal value for each of the three objectives of evaluated points in 
the initial dataset.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abf7435
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