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INTRODUCTION
Breast cancer has become the second leading cause of death 
among females all over the world1–3 and some patients 
exhibit locally advanced breast cancer (LABC) that is either 
inoperable or requires extended radical resection which 
may eliminate the opportunity for breast-conserving or 
general surgery. Neoadjuvant chemotherapy (NAC) has 
been established as the standard treatment for patients 
with LABCs and can reduce the tumor burden, determine 
drug sensitivity and increase the rate of breast-conserving 
surgery.4–8 These effects all contribute to the possibility 

of using surgical treatment for advanced-stage cancer. 
Currently, it has been identified that the majority of patients 
would benefit from NAC and some may even achieve patho-
logical complete responses (pCR) due to NAC.9 Previous 
studies have demonstrated that achieving pCR is associated 
with improved disease-free survival.10 However, success 
rates for NAC vary based on the molecular subtype of the 
breast cancer and are highest in HER2 over expression and 
triple negative breast cancers.11 The overall response rate 
to NAC ranges from 69 to 100% and approximately 30% 
of all patients do not respond to NAC. Furthermore, it is 
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Objectives: To investigate the ability of radiomic signa-
tures based on MRI to evaluate the response and effi-
ciency of neoadjuvant chemotherapy (NAC) for treating 
breast cancers.
Methods: 152 patients were included in this study at our 
institution between March 2017 and September 2019. 
All patients with breast cancer underwent a preoper-
ative breast MRI and the Miller–Payne grading system 
was applied to evaluate response to NAC. Quantitative 
parameters were compared between patients with sensi-
tive and insensitive responses to NAC and between those 
with pathological complete responses (pCR) and non-
pCR. Four radiomic signatures were built based on T2W 
imaging, diffusion-weighted imaging, dynamic contrast-
enhanced imaging and their combination, and radiomics 
scores (Rad-score) were calculated. The combination of 
the clinical factors and Rad-scores created a nomogram 
model. Multivariate logistic regression was performed to 
assess the association between MRI features and inde-
pendent clinical risk factors.

Results: 20 features and 18 features were selected to 
build the radiomic signature for evaluating sensitivity 
and the possibility of pCR, respectively. The combined 
radiomic signature and nomogram model showed a 
similar discrimination in the training (AUC 0.91, 0.92, 
95% confidence interval [CI], 0.85–0.96, 0.86–0.98) and 
validation (AUC 0.93, 0.91, 95% CI, 0.86–1.00, 0.82–1.00) 
sets. The clinical factor model exhibited reduced perfor-
mance (AUC 0.74, 0.64, 95% CI, 0.64–0.84, 0.46–0.82) in 
terms of NAC sensitivity and pCR.
Conclusions: The combined radiomic signature and 
nomogram model exhibited potential predictive power 
for predicting effective NAC treatment which can aid in 
the prognosis and guidance of treatment regimens.
Advances in knowledge: Identifying a means of 
assessing the efficacy of NAC before surgery can guide 
follow-up treatment and avoid chemotherapy-induced 
toxicity.
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estimated that up to 5% of patients experience disease progres-
sion after NAC and must bear the burden of various side-effects 
and the expensive cost of NAC with little benefit.12,13 For these 
patients, NAC often simply delays surgical treatment rather than 
providing therapeutic value. In effect, the accurate evaluation of 
treatment efficacy and prognosis is essential in clinical practice 
for individualized medicine. It is therefore paramount to iden-
tify a means of assessing the efficacy of NAC that would facilitate 
the guidance of treatment regimens and avoid chemotherapy-
induced toxicity.

Magnetic resonance imaging (MRI) is recommended by most 
experts for assessing the response to high-grade HER2 over 
expression and triple negative breast cancers as the accuracy for 
these subtypes is high, whereas accuracy is much lower when 
assessing the response to low-grade tumors and luminal cancers.14 
Significant advancements in medical image analysis and data 
mining have drawn attention to radiomics as an emerging tech-
nology for non-invasively profiling tumors within the field of 
oncology.15–17 Radiomics relies on the extraction of mathemat-
ical patterns hidden in medical images and the conversion of 
these patterns into high-dimensional, quantitative features that 
represent underlying characteristics about the tumor.18,19 Several 
prior studies have demonstrated that the response to NAC is 
associated with radiomic signatures derived from pre-treatment 
MRI; however, these studies used a small clinical sample size or 
focused on a particular MRI sequence or certain state of NAC 
response, such as pCR or insensitivity.20 Hence, further valida-
tion is required to determine whether radiomics can provide 
sufficient evidence for the accurate estimation of NAC treatment 
benefit, risk of local recurrence, distant metastasis and predic-
tion of prognosis. In our study, we utilized a large dataset that 
allowed for the comprehensive evaluation of various aspects of 
the MRI, including the size, shape, intensity, and enhancement 
of the tumor, changes to the texture of the surrounding tissue as 
well as the status of axillary lymph nodes.

Overall, the purpose of our study was to investigate the associ-
ation between NAC treatment benefits and radiomic signatures 
from pre-treatment MR images and to estimate the clinical value 
of such signatures for the accurate prediction of the NAC treat-
ment response.

METHODS AND MATERIALS
This retrospective study was approved by the Institutional 
Review Board of the Affiliated Hospital of Our University and 
written informed consent was provided by all individuals before 
participation.

Patients
We enrolled 247 patients who underwent MRI examinations 
between March 2017 and September 2019 at our institution. 
The study inclusion criteria were as follows: (1) biopsy-proven 
initial invasive breast cancer; (2) pre-treatment breast MRI 
examinations performed at our institution; (3) completion of 
the whole course of NAC treatment without any other treatment 
before surgery; (4) post-operative pathological evaluation using 
the Miller-Payne grading system. The exclusion criteria were 

as follows: (1) malignancy found in other organs, regardless of 
metastasis of the primary tumor; (2) lack of complete MR images 
before biopsy and NAC treatment; (3) any other treatment except 
for NAC before surgery; (4) missing surgical record or patholog-
ical evaluation at our institution. After the application of these 
criteria, 152 patients (mean age: 49 years, range: 28 to 69 years) 
were included in our study. We then randomly divided these 
patients into two cohorts; 107 patients were randomly allocated 
to the primary cohort and 45 were allocated to the validation 
cohort according to seed points set when programming. There 
was no significant difference between the training data and vali-
dation data.

MR imaging
For each patient, a pre-treatment breast MR examination and 
final pre-surgery MR examination were performed using a 3.0T 
(Signa HDxt, GE Healthcare) scanner equipped with a dedi-
cated 8-channel or 16-channel breast coil. Patients were oriented 
in the prone position. MRI protocols consisted of an axial fat-
suppressed T2W sequence (T2WI) by using an efficient method 
of water fat separation, a diffusion-weighted sequence (DWI), 
and a dynamic contrast-enhanced (DCE) fat-suppressed T1W 
sequence, consisting of earlier- and late-enhanced sequences. 
DWI images were obtained using 2 b-values (0 and 1000 s/
m2), while DCE images were collected with an i.v. injection of 
0.2 ml/kg of Gadolinum-DTPA. The first post-contrast images 
were collected 60 s later when the injection of gadolinum-DTPA 
was initiated, and then seven subsequent scans were acquired. 
The temporal resolution of the DCE sequence was 65 s. Various 
parameters of different sequences of MRI are shown in Supple-
mentary Material 1.

Conventional MRI evaluation and immunochemistry
All pre-treatment MR images were retrospectively analyzed by 
two board-certified radiologists with 6 and 30 years of experi-
ence in breast imaging according to the American College of 
Radiology Breast Imaging Reporting and Data System (ACR 
BI-RADS). Both radiologists were blinded to the patholog-
ical outcomes and assessed the following characteristics of 
each tumorous mass: shape (oval, round or irregular), margin 
(circumscribed, irregular or speculated), and internal enhance-
ment characteristics (homogeneous, heterogeneous or rim) of 
each mass and the surrounding tissue. In addition, the minimum 
diameter of the lymph nodes was also assessed by the radiologists.

The gold standard is a histopathological assessment of the 
response to NAC treatment. Histochemical results of biopsy 
tissue were obtained to evaluate the concentration of estrogen 
receptor (ER), progesterone receptor (PR), Ki67 and human 
epidermal growth factor receptor2 (HER2). <1% of positive 
tumor cells with stained nuclei were considered ER/PR negative, 
while ≥1% were considered ER/PR positive. The cut-off value for 
Ki67 was set at 20%. For HER2, immunohistochemistry (IHC) 
scores of 3 + were considered HER2 positive, while scores of 0 
and 1 + were considered HER2 negative. When the HER2 IHC 
score was 2+, further confirmation using fluorescence in situ 
hybridization (FISH) tests was required. Amplified results were 

http://birpublications.org/bjr
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defined as HER2 positive and non-amplified results were defined 
as HER2 negative.

Construction of the clinical factor model
We combined age and MRI findings to create a clinical factor 
model. Univariate logistic regression analysis was used to 
compare the differences among such relative factors as age and 
MRI findings (tumor size, number of tumors, morphology of 
tumor, time intensity curve (TIC), the minimum diameter of axil-
lary lymph node). TIC analysis was performed using the image 
processing workstations. The clinical prediction model was then 
constructed and evaluated via multiple logistic regression using 
optimal variables from the individual univariate analyses.

NAC treatment regimen and pathological 
assessment of response
All patients received six or eight cycles of NAC treatment before 
surgery. Different NAC treatment regimens were used according 
to their immunohistochemistry results. All protocols and time-
lines abided by the National Comprehensive Cancer Network 
(NCCN) guidelines. 87 patients (57.2%) received taxane-based 
regimens of six cycles and 65 patients (42.8%) received anthra-
cycline- and taxane-based regimens of eight cycles. Patients with 
HER2 over expression also received trastuzumab (Herceptin; 
8 mg/kg loading dose, 6 mg/kg maintenance dose). All patients 

underwent surgical resection 2–3 weeks after NAC treatment. A 
sentinel lymph node biopsy was performed for all patients using 
a fluorescent labeling method, whereas axillary nodal clearance 
was performed only for those with sentinel-node involvement.

All surgically resected specimens and lymph nodes were 
processed for standard histopathological assessment of response 
to NAC treatment. Two pathologists who were blinded to the 
outcomes of MRI and other patient characteristics evaluated 
the results. We assessed the benefit of NAC according to the 
Miller-Payne grading system. Grade one represents a patho-
logical non-response to NAC with no overall reduction in the 
number of tumor cells (some minor alterations may be found 
in individual malignant cells). Grade two indicates a partial 
pathological response with the loss of less than 30% of tumor 
cells. Grade three indicates that more than 30% but less than 
90% of the tumor cells are lost. Grade four indicates a loss of 
more than 90% of tumor cells. Grade five suggests pCR which 
was defined as the absence of residual invasive carcinoma in the 
specimen and the absence of invasive lesions in the lymph nodes, 
including the ipsilateral sentinel node and those from axillary 
dissections. Nevertheless, residual ductal carcinoma in situ can 
still be present. Overall, Grades 1–4 were classified as non-pCR, 
Grades 1–2 as insensitive to NAC and Grades 3–5 as sensitive 
to NAC, which suggested that those patients with Grades 1–2 
would benefit less from NAC and would alternatively likely need 
surgery as a primary treatment.

Preparation for radiomics and feature extraction
MR images of DICOM format were loaded into the ITK-SNAP 
software (v., 3.4, www.​itksnap.​org) for further radiomics anal-
ysis. A region of interest (ROI), which was drawn separately 
for all sequences, was segmented manually in the largest cross-
sectional area of the lesion and included the cystic components 
of the tumor (Figure  1). The ROIs were defined on the initial 
(Phase I) and delayed (lag Phase) enhanced sequences. The ROI 
was drawn as large as possible but did not include edge voxels 
to avoid partial volume effects. The mean intensity of the ROI 
was 31.60 (range: 23.44–44.83). Feature extraction was then 
performed using the AK platform (GE healthcare, v. 3.2.0). 
Intra- and inter-class correlation coefficients (ICCs) were used 
to assess the reproducibility and reliability of intra-observer 
results for feature extraction. Every radiologist repeated the same 
procedure 1 month later to evaluate the agreement between the 
features that were extracted at the two time points. The agree-
ment was considered good with an ICC greater than 0.75. A total 
of 396 radiomics features were extracted based on ROIs.

Construction of radiomic signatures
Hundreds of features were extracted from the images and 
dimension reduction was performed on the feature set before 
constructing the radiomic signature. Redundant features were 
removed and the most meaningful features were identified 
to avoid overfitting. We used two feature selection methods, 
minimum redundancy maximum relevance (mRMR) and least 
absolute shrinkage and selection operator (LASSO), to select the 
feature. First, mRMR was performed to remove redundant and 
irrelevant features and effectively reduced the feature set down 

Figure 1. The radiomics feature selection using the least abso-
lute shrinkage and selection operator (LASSO) regression 
model. (a) Selection of tuning parameter (λ) for NAC sen-
sitivity in the LASSO model via a ten-fold cross-validation 
based on a minimizing criterion. The vertical black lines 
define the optimal values of λ; a λ value of 0.067 with log 
(λ)= - 4.999 was selected. (b) LASSO coefficient profiles for 
texture features. The vertical line is plotted with 20 radiomics 
features versus the selected log(λ) value via a ten-fold cross-
validation. (c) Selection of the tuning parameter (λ) for the 
probability of achieving pCR in the LASSO model via a ten-
fold cross-validation based on minimizing criteria. The vertical 
black lines define the optimal value of λ, a value λ of 0.021 with 
log (λ)= - 3.880 was selected. (d) LASSO coefficient profiles 
of texture features. The vertical line is plotted with 17 radi-
omics features versus the selected log(λ) value via a ten-fold 
cross-validation.

http://birpublications.org/bjr
www.itksnap.org


4 of 13 birpublications.org/bjr Br J Radiol;93:20200287

BJR  Bian et al
Ta

b
le

 1
. 

C
lin

ic
al

 a
nd

 p
at

ho
lo

g
ic

al
 c

ha
ra

ct
er

is
ti

cs
 o

f 
p

C
R

 a
nd

 n
o

n-
p

C
R

 p
at

ie
nt

s 
in

 t
he

 t
es

t 
an

d
 t

ra
in

in
g

 c
o

ho
rt

Te
st

 co
ho

rt
p

Tr
ai

ni
ng

 co
ho

rt
p

 
pC

R
N

on
-p

C
R

pC
R

N
on

-p
C

R
A

m
ou

nt
11

34
27

80

A
ge

 (y
ea

rs
) m

ea
n 

± 
SD

, y
ea

rs
42

.9
1 

± 
10

.2
6

50
.0

9 
± 

11
.0

0
0.

06
3

52
.1

5 
± 

9.
42

48
.7

0 
± 

10
.4

0
0.

13
1

C
lin

ic
al

 st
ag

e(
%

)

I
1 

(9
.1

%
)

0 
(0

.0
%

)
0.

06
1

1 
(3

.7
%

)
0 

(0
.0

%
)

0.
11

9

II
7 

(6
3.

6%
)

14
 (4

1.
2%

)
16

 (5
9.

3%
)

39
 (4

8.
8%

)

II
I

3 
(2

7.
3%

)
20

 (5
8.

8%
)

10
 (3

7.
0%

)
41

 (5
1.

2%
)

H
ist

op
at

ho
lo

gi
ca

l s
ub

ty
pe

(%
)

ID
C

10
 (9

0.
9%

)
30

 (8
8.

2%
)

0.
43

1
26

 (9
6.

3%
)

69
 (8

6.
2%

)
0.

23
1

ID
C

 +
 IL

C
/+

IM
PC

/+
M

uc
in

ou
s c

an
ce

r
1 

(9
.1

%
)

1 
(3

.0
%

)
0(

(0
.0

%
)

8 
(1

0%
)

IL
C

/I
M

PC
/M

uc
in

ou
s c

an
ce

r
0 

(0
.0

%
)

3 
(8

.8
%

)
1 

(3
.7

%
)

3 
(3

.8
%

)

M
ol

ec
ul

ar
 su

bt
yp

e(
%

)

Lu
m

in
al

 A
2 

(1
8.

1%
)

6 
(1

7.
6%

)
0.

42
3

3 
(1

1.
1%

)
18

 (2
2.

5%
)

0.
30

9

Lu
m

in
al

 B
3 

(2
7.

3%
)

11
 (3

2.
4%

)
9 

(3
3.

3%
)

33
 (4

1.
3%

)

Tr
ip

le
 n

eg
at

iv
e

4 
(3

6.
4%

)
5 

(1
4.

7%
)

4 
(1

4.
8%

)
9 

(1
1.

2%
)

H
ER

2 
ov

er
ex

pr
es

sio
n

2 
(1

8.
1%

)
12

 (3
5.

3%
)

11
 (4

0.
7%

)
20

 (2
5%

)

ER
 st

at
us

(%
)

Po
sit

iv
e

6 
(5

4.
5%

)
17

 (5
0.

0%
)

0.
79

3
12

 (4
4.

4%
)

51
 (6

3.
7%

)
0.

07
8

N
eg

at
iv

e
5 

(4
5.

5%
)

17
 (5

0.
0%

)
15

 (5
5.

6%
)

29
 (3

6.
3%

)

PR
 st

at
us

(%
)

Po
sit

iv
e

6 
(5

4.
5%

)
16

 (4
7.

1%
)

0.
66

6
11

 (4
0.

7%
)

41
 (5

1.
3%

)
0.

34
5

N
eg

at
iv

e
5 

(4
5.

5%
)

18
 (5

2.
9%

)
16

 (5
9.

3%
)

39
 (4

8.
7%

)

H
ER

2 
st

at
us

(%
)

Po
sit

iv
e

7 
(6

3.
6%

)
20

 (5
8.

8%
)

0.
77

7
15

 (5
5.

6%
)

39
 (4

8.
7%

)
0.

54
1

N
eg

at
iv

e
4 

(3
6.

4%
)

14
 (4

1.
2%

)
12

 (4
4.

4%
)

41
 (5

1.
3%

)

K
i6

7(
%

)

H
ig

h
3 

(2
7.

3%
)

21
 (6

1.
8%

)
0.

04
6a

11
 (4

0.
7%

)
52

 (6
5%

)
0.

02
7a

Lo
w

8 
(7

2.
7%

)
13

 (3
8.

2%
)

16
 (5

9.
3%

)
28

 (3
5%

)

E
R

, e
st

ro
g

en
 re

ce
p

to
r;

 H
E

R
2,

 h
um

an
 e

p
id

er
m

al
 g

ro
w

th
 fa

ct
o

r 
re

ce
p

to
r 

2;
ID

C
, i

nv
as

iv
e 

d
uc

ta
l c

ar
ci

no
m

a;
 IL

C
, i

nv
as

iv
e 

lo
b

ul
ar

 c
ar

ci
no

m
a;

 IM
P

C
, i

nv
as

iv
e 

m
ic

ro
p

ap
ill

ar
y 

ca
rc

in
o

m
a;

 P
R

, p
ro

g
es

te
ro

ne
 

re
ce

p
to

r.
a
p

‹0
.0

5

http://birpublications.org/bjr


5 of 13 birpublications.org/bjr Br J Radiol;93:20200287

BJRPrediction of NAC by Radiomic Signatures
Ta

b
le

 2
. 

C
lin

ic
al

 a
nd

 p
at

ho
lo

g
ic

al
 c

ha
ra

ct
er

is
ti

cs
 o

f 
se

ns
it

iv
e 

an
d

 in
se

ns
it

iv
e 

p
at

ie
nt

s 
in

 t
he

 t
es

t 
an

d
 t

ra
in

in
g

 c
o

ho
rt

Te
st

 co
ho

rt
p

Tr
ai

ni
ng

 co
ho

rt
p

 
Se

ns
iti

ve
In

se
ns

iti
ve

Se
ns

iti
ve

In
se

ns
iti

ve
A

m
ou

nt
32

13
77

30

A
ge

 (y
ea

rs
) m

ea
n 

± 
SD

, y
ea

rs
47

.5
3 

± 
11

.4
4

48
.6

2 
± 

9.
37

0.
76

4
48

.8
3 

± 
10

.5
6

50
.0

7 
± 

10
.8

3
0.

59
1

C
lin

ic
al

 st
ag

e(
%

)

I
0 

(0
.0

%
)

0 
(0

.0
%

)
0.

89
3

2 
(2

.6
%

)
0 

(0
.0

%
)

0.
55

4

II
19

 (5
9.

4%
)

8 
(6

1.
5%

)
35

 (4
5.

5%
)

16
 (5

3.
3%

)

II
I

13
 (4

0.
6%

)
5 

(3
8.

5%
)

40
 (5

1.
9%

)
14

 (4
6.

7%
)

H
ist

op
at

ho
lo

gi
ca

l s
ub

ty
pe

(%
)

ID
C

29
 (9

0.
6%

)
11

 (8
4.

6%
)

0.
51

9
72

 (9
3.

5%
)

23
 (7

6.
7%

)
0.

04
6a

ID
C

 +
 IL

C
/+

IM
PC

/+
M

uc
in

ou
s c

an
ce

r
1 

(3
.1

%
)

0 
(0

.0
%

)
3 

(3
.9

%
)

4 
(1

3.
3%

)

IL
C

/I
M

PC
/M

uc
in

ou
s c

an
ce

r
2 

(6
.3

%
)

2 
(1

5.
4%

)
2 

(2
.6

%
)

3 
(1

0%
)

M
ol

ec
ul

ar
 su

bt
yp

e(
%

)

Lu
m

in
al

 A
1 

(3
.1

%
)

6 
(4

6.
2%

)
0.

00
2a

10
 (1

3.
0%

)
12

 (4
0.

0%
)

0.
00

4a

Lu
m

in
al

 B
11

 (3
4.

4%
)

2 
(1

5.
4%

)
36

 (4
6.

8%
)

7 
(2

3.
3%

)

Tr
ip

le
 n

eg
at

iv
e

5 
(1

5.
6%

)
3 

(2
3.

0%
)

8 
(1

0.
4%

)
6 

(2
0.

0%
)

H
ER

2 
ov

er
ex

pr
es

sio
n

15
 (4

6.
9%

)
2 

(1
5.

4%
)

23
 (2

9.
8%

)
5 

(1
6.

7%
)

ER
 st

at
us

(%
)

Po
sit

iv
e

12
 (3

7.
5%

)
8 

(6
1.

5%
)

0.
14

1
46

 (5
9.

7%
)

19
 (6

3.
3%

)
0.

73
2

N
eg

at
iv

e
20

 (6
2.

5%
)

5 
(3

8.
5%

)
31

 (4
0.

3%
)

11
 (3

6.
7%

)

PR
 st

at
us

(%
)

Po
sit

iv
e

10
 (3

1.
2%

)
8 

(6
1.

5%
)

0.
06

0
39

 (5
0.

6%
)

16
 (5

3.
3%

)
0.

80
3

N
eg

at
iv

e
22

 (6
8.

8%
)

5 
(3

8.
5%

)
38

 (4
9.

4%
)

14
 (4

6.
7%

)

H
ER

2 
st

at
us

(%
)

Po
sit

iv
e

22
 (6

8.
8%

)
3 

(2
3.

1%
)

0.
00

5a
30

 (3
9.

0%
)

22
 (7

3.
3%

)
0.

00
1a

N
eg

at
iv

e
10

 (3
1.

2%
)

10
 (7

6.
9%

)
47

 (6
1.

0%
)

8 
(2

6.
7%

)

K
i6

7(
%

)

H
ig

h
11

 (3
4.

4%
)

9 
(6

9.
2%

)
0.

03
3a

36
 (4

6.
8%

)
12

 (4
0.

0%
)

0.
04

9a

Lo
w

21
 (6

5.
6%

)
4 

(3
0.

8%
)

41
 (5

3.
2%

)
18

 (6
0.

0%
)

E
R

, e
st

ro
g

en
 re

ce
p

to
r;

 H
E

R
2,

 h
um

an
 e

p
id

er
m

al
 g

ro
w

th
 fa

ct
o

r 
re

ce
p

to
r 

2;
ID

C
, i

nv
as

iv
e 

d
uc

ta
l c

ar
ci

no
m

a;
 IL

C
, i

nv
as

iv
e 

lo
b

ul
ar

 c
ar

ci
no

m
a;

 IM
P

C
, i

nv
as

iv
e 

m
ic

ro
p

ap
ill

ar
y 

ca
rc

in
o

m
a;

 P
R

, p
ro

g
es

te
ro

ne
 

re
ce

p
to

r.
a
p

‹0
.0

5

http://birpublications.org/bjr


6 of 13 birpublications.org/bjr Br J Radiol;93:20200287

BJR  Bian et al

to 30. LASSO was then employed to identify the optimal subset 
of features to construct the final model. In consideration of the 
data imbalance, in the training group, we used the “SMOTE” 
method to oversample small data sets and obtain balanced data. 
Finally, these optimal features were used to build the radiomic 
signatures. In short, the radiomics score (Rad-score) was then 
calculated for each patient based on the linear combination of 
the selected features, weighted by their coefficients.

Construction of the nomogram model
The radiomic nomogram model was built by incorporating the 
optimal clinical factors and radiomic signatures into a multivar-
iate logistic regression model. The nomogram is the visualiza-
tion of the multivariate logistic regression where each parameter 
in the nomogram represents a risk factor for predicting pCR or 
sensitivity. The risk level of each parameter can then be estimated 
alone and in conjunction with other risk factors to obtain a total 
risk value. This total risk value represents the probability that the 
patient will be sensitive to or achieve pCR.

Assessment of the performance of various models 
and statistical analysis
The calibration of the nomogram was evaluated with a cali-
bration curve. The Hosmer-Lemeshow test was used to assess 
the goodness-of-fit of a model and the area under the curve 
(AUC) was calculated for both the training set and validation 
set to quantify the discrimination performance of the nomogram 
model. The radiomic nomogram score was calculated for each 
patient in both sets as well. A decision curve analysis (DCA) was 
then performed to assess the clinical utility of the nomogram.

Statistical analysis was performed using the R statistical software 
v. 3.5.1. The “Caret” package was used to preprocess the data and 
divide it into the training and test groups. The “Glmnet” package 
was used to perform the LASSO logistic regression model anal-
ysis and receiver operating curves (ROCs) were plotted using the 
“pROC” package. The calibration curve analysis was performed 
using the “ModelGood” package. Nomogram calibration and 
construction plots were performed using the “rms” package, 

Table 3. Risk factors for the prediction of NAC sensitivity

Variables

Univariate Logistic Multivariate Logistic

OR(95% CI) p OR(95% CI) p
Age 0.984 (0.945–1.025) 0.448 NA NA

Maximum_diameter_of_tumor 1.295 (0.549–3.162) 0.559 NA NA

Numbers_of_tumor 1.191 (0.326–5.671) 0.804 NA NA

Mass_NME 1.477 (0.879–2.864) 0.184 NA NA

Spiculated_margin 0.5 (0.210–1.173) 0.112 NA NA

Enhancement_kinetics_of_delayed_phase 0.881 (0.401–1.897) 0.748 NA NA

Minimum_diameter_of_lymph_node 2.8 (1.166–7.170) 0.025a 2.8 (1.166–7.710) 0.025a

rad_score NA NA 2.069 (1.570–2.920) 3.56E-06

CI, confidence interval;;NA, not available.
These variables were removed and the OR3 and P values were not available.
aP <0.05.

Table 4. Risk factors for the prediction of pCR

Variables

Univariate Logistic Multivariate Logistic

OR(95% CI) p OR(95% CI) p
Age 0.989 (0.947–1.031)) 0.597 NA NA

Maximum_diameter_of_tumor 0.221 (0.068–0.603) 0.006 0.207 0.032

Numbers_of_tumor 0.592 (0.087–2.450) 0.517 NA NA

Mass_NME 1.111 (0.691–1.716) 0.643 NA NA

Spiculated_margin 0.329 (0.102–0.901) 0.042 0.191 (0.043–0.804) 0.021

Enhancement_kinetics_of_delayed_phase 0.684 (0.296–1.563) 0.367 NA NA

Minimum_diameter_of_lymph_node 0.570 (0.220–1.403) 0.230 NA NA

rad_score NA NA 8.955 (3.827–27.638) 1.01E-05

CI, confidence interval;;NA, not available.
These variables were removed, and the OR and P values were not available. ＊P <0.05.
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the Hosmer-Lemeshow test was performed using the “gener-
alhoslem” package and DCA was conducted using the “dca.R” 
package. A p value < 0.05 was considered statistically significant.

RESULTS
Optimal clinical factors and the construction of the 
clinical factor model
The clinical and pathological characteristics of the patients 
used for pCR and non-pCR, and for sensitivity and insensitivity 
comparisons are shown in Tables  1 and 2, respectively. Differ-
ences in clinical and pathological characteristics between pCR 
and non-pCR patients were not significant except for Ki67 in 
the test and training cohort, while differences between sensitive 
and insensitive patients were not significant except for molecular 
subtype, Ki67 and HER2 over expression. Multivariate logistic 
regression analysis demonstrated that only the minimum diam-
eter of the lymph node was an independent clinical predictor 
for NAC sensitivity (Table 3, p = 0.025), and that the maximum 
diameter of the tumor and speculated margin were independent 
clinical predictors for the possibility of pCR (Table 4, p = 0.032, 
0.021, respectively).

The construction of radiomic signatures and the 
nomogram model and evaluation of performance 
of various models
396 radiomic features were extracted from each of the T2WI, 
DWI, DCE-MRI images and were enrolled in the “mRMR” 
procedure, after which 30 features related to the categorical 

variable (with minimized redundancy) were retained. The 
LASSO logistic regression model was then performed on these 
30 features to further select the optimal features (Figure 2). The 
selected features are shown in Supplementary Material 1. Four 
radiomic signatures were constructed based on the T2WI, DWI, 
DCE-MRI images and their combination to assess the response 
to NAC treatment. Four other signatures were built to eval-
uate the benefit of NAC. The selected clinical factors were used 
to construct the nomogram model. The combined radiomic 
signature and nomogram model displayed a stronger predic-
tive efficacy in the training (AUC 0.91, 0.92, 95% CI, 0.85–0.96, 
0.86–0.98) and validation set (AUC 0.93, 0.91, 95% CI, 0.86–1.00, 
0.82–1.00) compared to clinical factor model (AUC 0.74, 0.64, 
95% CI, 0.64–0.84, 0.46–0.82) for NAC sensitivity and possibility 
of pCR (Figures  3 and 4). The clinical factor model exhibited 
very poor diagnostic performance between the radiomics signa-
ture and nomogram model and revealed no significant differ-
ence (Tables  5 and 6). Rad-scores were calculated by adding 
the selected features, weighted by their coefficients. The clinical 
utility of the Rad-scores were confirmed by the DCA (Figure 5) 
which showed that the radiomics nomogram model exhibited a 
better overall net benefit in the prediction of NAC sensitivity and 
pCR probability.

DISCUSSION
The results presented here confirm that most patients can benefit 
from NAC treatment to various degrees and that NAC has 
gained importance for the standard treatment of breast cancer. 

Figure 2. (a) Radiomics nomogram for the prediction of NAC sensitivity. Calibration curves of the nomogram model for the 
training set (b) and validation set (c). Calibration curves indicate the goodness-of fit of the nomogram. The 45 degree gray line 
indicates the ideal prediction and the dotted lines indicate the predictive performance of the nomogram. A better prediction accu-
racy of the nomogram is represented as the dotted lines approach the ideal line. ROC curves of various models in the training set 
(d) and the validation set (e). The nomogram and radiomics signatures show similar performance for prediction while the clinical 
model shows a poor performance.

http://birpublications.org/bjr
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Therapeutic assessment is a key factor in the determination of 
treatment decisions.21–23 Finding an appropriate method for 
predicting the sensitivity to NAC and whether patients could 
achieve pCR before surgery would facilitate the following 
treatment decision: undergo NAC without surgery or undergo 
surgery without NAC. For example, patients who are predicted 
to achieve pCR may avoid surgery in the future if such findings 
are supported by big data or clinical trials, while those who are 
predicted to be insensitive to NAC should prefer surgical treat-
ments as they would benefit less from NAC compared with 
toxicity. Additionally, the sensitivity to NAC could guide the 
selection of subsequent adjuvant chemotherapy drugs as it can 
be considered a drug-sensitivity test before surgery. The effi-
cacy of NAC was clinically estimated through imaging analyses 
according to the RECIST v. 1.1 toolbox before surgery without 

radiomics and was ultimately confirmed via pathological eval-
uation according to the Miller-Payne grading system.24–26 With 
radiomics we can predict the treatment response using only 
the pre-treatment MRI images, which is a major advantage 
compared to other methods. Therefore, it is crucial to identify 
whether radiomics signatures and/or a nomogram model based 
on non-invasive pre-treatment MR images can yield a more 
accurate prediction of the benefits of NAC treatment.

In the current study, we explored the association between the 
response and benefit of NAC treatment with pre-treatment 
MRI markers. Specifically, we automatically extracted quantita-
tive features from various MRI scans and constructed different 
machine learning models based on the selected clinical factors 
and multiparametric MRI radiomic signatures. We evaluated 

Figure 3. (a) Radiomics nomogram for the prediction of the probability of achieving pCR. Calibration curves of the nomogram in 
the training set (b) and the validation set (c). Calibration curves indicate the goodness-of fit of the nomogram. The 45 degree gray 
line indicates the ideal prediction, and the dotted lines indicate the predictive performance of the nomogram. A better prediction 
accuracy of the nomogram is represented as the dotted lines approach the ideal line. ROC curves of various models in the training 
set (d) and the validation set (e). The nomogram and radiomics signatures show similar performance for prediction while the 
clinical model shows a poor performance.
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the ability of radiomic signatures, based on pre-treatment MRI, 
to predict the response to NAC instead of simply analyzing the 
characteristics of MRI images before and after NAC, which 
follows the RECIST 1.1 criteria. We assessed the performance 
of these models in an independent validation set and obtained 
an AUC of more than 0.90 for identifying, before surgery, which 
patient would be sensitive or insensitive to NAC and which 
patient would reach pCR.

Unlike previous studies that have explored radiomics signa-
tures based on only one imaging scan/modality, we utilized 
four radiomics signatures and compared the performance of 
all of them.21,27–30 The results of our study demonstrated that 
among the radiomics signatures based on T2WI, DWI, DCE-
MRI and the combination of these three, the combined signature 
performed best for predicting NAC sensitivity and the possi-
bility of achieving pCR. Clinical and pathological characteristics 

of patients showed no significance differences except for Ki67 
between pCR and non-pCR patients, and molecular subtype, 
Ki67 and HER2 overexpression between sensitive and insensitive 
patients, which is consistent with a previous study. In particular, 
molecular subtype and Ki67 have been proven to be associated 
with the prognosis of breast cancer.25 Clinical factors were then 
added to the combined radiomics signature to build the nomo-
gram model. Only the minimum diameter of the lymph node, 
the maximum diameter of the tumor and the speculated margin 
were included in the multivariate logistic regression model for 
the prediction of NAC sensitivity and possibility of achieving 
pCR. The radiomics signature and nomogram model displayed a 
strong predictive ability with an AUC reaching greater than 0.90. 
This is in contrast to the model comprised of only clinical factors 
that displayed a weaker predictive ability and produced an AUC 
of less than 0.70, which is consistent with previous studies.31–34 
Nevertheless, the clinical factors model performed so poorly, 

Figure 4. Decision curve analysis of various models for NAC sensitivity (a) and probability of achieving pCR (b), respectively. The 
x-axis indicates the threshold probability and the y-axis indicates the net benefit. The red and green lines represent the net benefit 
of the nomogram and clinical factor models, respectively. The radiomics model shows the highest net benefit.
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likely due to the variability across molecular subtypes, that the 
combined radiomics signature and nomogram model produced 
almost the same accuracy, sensitivity, specificity, PPV, and NPV 
values. This could have been caused by the difference in the 
selection of clinical factors and small sample size. Therefore, a 
bigger cohort and a more comprehensive study is needed to vali-
date our results.

Our study has various limitations. Firstly, this study was a single-
center retrospective study and may not be consistent with or able 
to be applied to data/patients from other institutions. Secondly, 
further independent validation is required due to the relatively 
limited MR protocols and small cohort size. Furthermore, we 

excluded those patients with multi focal lesions which made the 
study less representative of the full patient population. In addi-
tion, ROIs were drawn on a selected section of two-dimensional 
images for simplicity and consistency rather than on more 
complicated three-dimensional images which could be more 
accurate but also much more variable. Finally, there is no defi-
nite standard for the drawing of ROIs of non-mass-like lesions. 
It is therefore difficult to mark the margin of these lesions and 
reduces the reproducibility and reliability of intra-observer 
results. In the future, multi-center and multi-focal studies with 
larger cohort size and more abundant information is needed to 
confirm our results.

Figure 5. The T2WI (a), DWI (b), initial enhanced (c) and delayed enhanced (d) images for radiomic analysis in a 56-year-old 
patient with a luminal A invasive ductal carcinoma in the left breast with manual region of interest (ROI) placement.

http://birpublications.org/bjr
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CONCLUSION
In conclusion, our study demonstrates that radiomic signatures 
and a nomogram model are non-invasive predictive tools that 
show much more favorable predictive accuracies for the response 
type and benefit of NAC treatment before surgery compared 
with clinical factors and simple imaging features. These tools 
have been gradually used for the differential diagnosis of benign 
and malignant tumors and can also provide guidance of subse-
quent treatment. In the future, this technique can be used for 
the prediction of prognoses and molecular subtypes. Radiomics 
is an emerging field that is believed to bring us more benefits in 
the future.
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