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Abstract

High-dimensional modelling of post-stroke deficits from structural brain imaging is

highly relevant to basic cognitive neuroscience and bears the potential to be trans-

lationally used to guide individual rehabilitation measures. One strategy to optimise

model performance is well-informed feature selection and representation. However,

different feature representation strategies were so far used, and it is not known what

strategy is best for modelling purposes. The present study compared the three com-

mon main strategies: voxel-wise representation, lesion-anatomical componential fea-

ture reduction and region-wise atlas-based feature representation. We used

multivariate, machine-learning-based lesion-deficit models to predict post-stroke def-

icits based on structural lesion data. Support vector regression was tuned by nested

cross-validation techniques and tested on held-out validation data to estimate model

performance. While we consistently found the numerically best models for lower-

dimensional, featurised data and almost always for principal components extracted

from lesion maps, our results indicate only minor, non-significant differences

between different feature representation styles. Hence, our findings demonstrate the

general suitability of all three commonly applied feature representations in lesion-

deficit modelling. Likewise, model performance between qualitatively different popu-

lar brain atlases was not significantly different. Our findings also highlight potential

minor benefits in individual fine-tuning of feature representations and the challenge

posed by the high, multifaceted complexity of lesion data, where lesion-anatomical

and functional criteria might suggest opposing solutions to feature reduction.
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1 | INTRODUCTION

In cognitive neuroscience, mathematical models of the relation

between post-stroke deficits and structural brain imaging data are

crucial both in basic and translational research. In basic research,

lesion-deficit models are used to map the functional architecture of

Abbreviations: CoC, centre of cancellation; CV, cross-validation; PCA, principal component

analysis; RBF, radial basis function; ROI, region of interest; SVR, support vector regression;

MSE, mean squared error.
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the human brain. The most popular method to date, voxel-based

lesion-behaviour mapping (Bates et al., 2003; Rorden & Karnath, 2004),

maps the neural correlates of post-stroke behavioural abnormalities

using mass-univariate models for each voxel individually. Recently, mul-

tivariate modelling of stroke imaging data became popular, either

applied on voxel-wise imaging data (e.g., Ivanova, Herron, Dronkers, &

Baldo, 2020; Pustina, Avants, Faseyitan, Medaglia, & Coslett, 2018;

Sperber, Wiesen, & Karnath, 2019; Xu, Rolf Jäger, Husain, Rees, &

Nachev, 2018; Zhang, Kimberg, Coslett, Schwartz, & Wang, 2014), or

region-wise data (e.g., Achilles et al., 2017; Smith, Clithero, Rorden, &

Karnath, 2013; Yourganov, Smith, Fridriksson, & Rorden, 2015). In

translational research, lesion behaviour models have the potential to

predict post-stroke outcome and guide individualised rehabilitation and

care. For this application, univariate models are only rarely used

(e.g., Feng et al., 2015), and multivariate algorithms dominate the field

(e.g., Hillis et al., 2018; Hope, Seghier, Leff, & Price, 2013; Loughnan

et al., 2019; Rondina, Filippone, Girolami, & Ward, 2016; Rondina,

Park, & Ward, 2017; Siegel et al., 2016; Xu et al., 2018).

Structural imaging data in lesion-deficit modelling are commonly

either binary maps identifying lesioned tissue or continuous maps

indicating a voxel's probability of being lesioned. In the process of spa-

tial normalisation, these data are warped to a common imaging space

(see de Haan & Karnath, 2018), resulting in voxel-wise lesion images.

In the commonly used 1 � 1 � 1 mm3 imaging space, the cerebrum

makes up more than a million voxels. Neighbouring voxels in this

high-dimensional data space often carry similar or even the same

information, that is, pairs of voxels might exist that are always dam-

aged together in a given population of stroke patients. This vast

amount of highly correlated input features poses a challenge to any

high-dimensional modelling algorithm, exacerbated by the typically

small sample sizes in the field, which rarely exceed 200 patients.

While it is common in the field to use voxel-wise data, two fea-

ture extraction strategies to handle such high-dimensional imaging

data exist. Voxel-wise data is often either merged into (i) atlas-based

region-wise data or (ii) data-driven feature-reduced, componential

data. Both approaches aim to transform the imaging data into a

lower-dimensional data space. This is achieved ideally by meaningfully

merging voxels with similar information into a new feature.

Following the region-wise strategy, brain regions are defined by a

brain atlas located in the same imaging space as the lesion map. The

overlap of the lesion map with each atlas-defined region is then

utilised as a new feature, for example, by computing for each atlas

region and patient the so-called lesion load, the proportion of lesioned

voxels. This approach has been widely used, especially with morpho-

logical brain atlases (e.g., Achilles et al., 2017; Hope et al., 2013;

Rondina et al., 2016; Smith et al., 2013; Toba et al., 2017; Yourganov

et al., 2015). Merging voxels in a neurobiologically meaningful way is a

critical aspect of feature reduction. It allows us to capture the avail-

able information better and enhance our understanding of the brain

(Eickhoff, Constable, & Yeo, 2018). Consequently, it might be advan-

tageous to use a functional instead of a morphological brain

parcellation when predicting impairments in normal function from

lesion topography. Recent state-of-the-art brain atlases provide brain

parcellations based on different functional criteria (e.g., Fan et al., 2016;

Glasser et al., 2016; Joliot et al., 2015). These allow merging informa-

tion of all voxels that are part of the same functional area meaningfully

into a single feature.

Following the data-driven feature reduction strategy, the dimen-

sionality of voxel-wise lesion data is reduced by unsupervised learning

algorithms such as principal component analysis (PCA; e.g., Siegel

et al., 2016; Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut de

Schotten, & Corbetta, 2020; Zhao, Halai, & Lambon Ralph, 2020;

Ivanova et al., 2020). The underlying rationale is that voxel-wise lesion

information is highly correlated between voxels due to the typical

anatomy of lesions (Sperber, 2020; Zhao et al., 2020). In other words,

many voxels in the brain are systematically damaged together by brain

lesions and their informational content is highly similar. Hence, these

voxels might be merged into a single feature without sacrificing infor-

mation. In summary, data-driven feature reduction allows integrating

features according to their lesion-anatomical information.

Both region-wise functional and lesion-anatomical componential

feature reduction strategies bear the potential to counter the burden

of dimensionality in lesion-deficit models and improve a model's pre-

dictive power. However, both approaches can lead to conflicting fea-

ture reduction solutions, for example, if two voxels are functionally

highly correlated (i.e., they are both parts of the same functional mod-

ule), but their lesion-anatomical similarity is low, or vice versa

(Sperber, 2020). To date, a systematic comparison of both approaches

is still missing.

To our knowledge, so far, only region-wise lesion load models and

voxel-wise models were directly compared in a study that predicted

post-stroke motor outcome from imaging data (Rondina et al., 2016).

They found voxel-wise models to outperform any region-wise model

markedly. However, they did not utilise a brain parcellation of func-

tional regions but a morphological atlas, which might have limited

region-wise modelling performance.

In the current study, we systematically compared voxel-wise,

atlas-based region-wise and data-driven dimensionality reducing strat-

egies to represent structural lesion data in modelling post-stroke defi-

cits. We modelled acute behavioural post-stroke measures of spatial

neglect and paresis of the upper limb with high-dimensional, machine-

learning-based algorithms. The study's main objective was to identify

the data representation strategy that provided the best predictive

model performance. A secondary, exploratory objective was to com-

pare different brain atlases' suitability in lesion-deficit modelling.

2 | METHODS

2.1 | Study design—general overview

The study included multiple steps (see Figure 1 for schematic illustra-

tion), which can be outlined as follows: Two common post-stroke

symptoms were assessed in two different samples. We created

normalised binary lesion maps from structural imaging and extracted

features either as region-wise lesion load using five different brain
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F IGURE 1 Study design. (a) Datasets and distributions of behavioural scores. The mean CoC was root-mean-square-transformed to obtain a
more even distribution. (b) Extraction of features from binary lesion maps. (c) An epsilon—SVR with radial basis kernel (RBF ε-SVR) was used to
model the relation between features and behavioural scores. The plot shows the repeated nested cross-validation procedure schematically: the
inner loop serves for hyperparameter optimisation on a validation set (Val) and the outer loop for testing the model performance of a trained
model (on the training data, “Train”) on held-out test sets (Test). (d) We assessed model performance using the squared correlation coefficient of
predicted and measured behavioural scores and compared models with non-parametric tests on squared errors. For more information, see
Section 2.1. Histograms represent the real distributions of behavioural scores. The other graphs shown are exemplary and based on
simulated data
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atlases or by data-driven feature reduction via PCA. To provide a level

playing field for comparisons, we compared all feature representation

strategies (voxel vs. region vs. PCA components) for the same voxels,

that is, voxel-wise data and derived PCA components always included

only voxels that were labelled in the brain atlas, but not voxels in

unlabelled areas. We fit support vector regression models to predict

behavioural scores based on the three different feature representa-

tions and used a repeated six-fold nested cross-validation (CV) to

assess model performances. Furthermore, we calculated the permuta-

tion importance for principal components and ROIs and eliminated

the least important features within the inner loop of the CV proce-

dure. Generally, high-dimensional datasets usually include many fea-

tures that carry non-relevant information. Models might be overfitted

to non-relevant features, decreasing model performance. Therefore,

this condition allowed an evaluation of different feature representa-

tion strategies in a potentially more effective way more relevant to

clinical applications. Last, model performance was compared across

conditions with non-parametric statistical tests on the individual

squared errors.

2.2 | Patient recruitment and behavioural
assessment

Neurological patients with first-ever cerebral, unilateral stroke were

recruited at the Centre of Neurology at the University Clinics

Tübingen. Only patients with a confirmed stroke and a clearly demar-

cated, non-diffuse lesion visible in CT or MRI were included. The

recruitment involved two different samples: a sample of 203 acute

right-hemisphere stroke patients tested for spatial neglect

(as reported in Wiesen, Sperber, Yourganov, Rorden, & Karnath, 2019)

and a sample of 102 acute unilateral stroke patients tested for

hemiparesis of the contralesional upper limb. For demographic data, see

Tables S1 and S2. The study was performed in accordance with the

revised declaration of Helsinki and was approved by the local ethics

committee. All patients or their relatives consented to the scientific use

of collected data.

In the first sample, spatial neglect was assessed with the letter

cancellation task (Weintraub & Mesulam, 1985) and the bells test

(Gauthier, Dehaut, & Joanette, 1989) on average 4.4 days (SD = 4.0)

after stroke onset. Both tasks are pen and paper tests that consist of

target items scattered among distractors on a horizontal sheet

of paper. They were presented on a table in front of the patient and

centred along the patient's sagittal midline. The patient was instructed

to mark all target items, and tasks were continued until the patient

had confirmed their completion twice. Task performance was evalu-

ated by calculating the centre of cancellation (CoC; Rorden &

Karnath, 2010), a continuous measure of the egocentric bias in spatial

neglect. CoC scores of both tests were averaged to generate the

study's final target variable. Any sub-threshold negative mean CoC

scores were set to 0 to obtain a linear scale representing neglect

severity from 0 to 1. No patient suffered from a pathological supra-

threshold ipsilesional egocentric spatial bias. Additionally, CoC scores

were square-root transformed to yield a more uniform distribution, as

piloting tests in another sample suggested that better model fits could

be yielded when the target variable was transformed.

In the second sample, acute and chronic paresis of the contra-

lesional upper limb was assessed with the British Medical Research

Council scale on average 1.0 days (SD = 2.2; acute) and at least 50 and

on average 423 days (SD = 440; chronic) after stroke onset. The British

Medical Research Council scale ranges from 0 to 5 (0: no movement, 1:

palpable flicker, 2: movement without gravity, 3: movement against

gravity, 4: movement against resistance and 5: normal movement), and

intermediate steps of 0.5 points were included. The final target variable

was the average of distal and proximal ratings for the upper limb. Note

that we found models on chronic hemiparesis scores to provide low

quality with marked systematic biases in predictions. We judged com-

parisons between featurisation strategies for this measure not to be

reliable and only report them in the Supporting Information.

2.3 | Imaging and lesion delineation

Structural CT or MRI was obtained as part of clinical stroke protocols

on average 3.5 days (SD = 4.6) after stroke onset in the sample tested

for spatial neglect, and on average 2.1 days (SD = 2.7) in the sample

tested for hemiparesis. In the case of multiple available imaging ses-

sions, scans were chosen to be as acute as possible while clearly

depicting lesion borders. For patients with MRI, areas of acute dam-

age were visualised using diffusion-weighted imaging in the first 48 hr

after stroke onset and T2 fluid-attenuated inversion recovery imaging

later. If possible, these images were co-registered with a high-

resolution T1 MRI to be used in the normalisation process.

Lesions were delineated on axial slices of the scans semi-

automatically using Clusterize (de Haan, Clas, Juenger, Wilke, &

Karnath, 2015) or manually using MRIcron (https://www.nitrc.org/

projects/mricron). Scans were warped into 1 � 1 � 1 mm3 MNI space

using age-specific templates from the Clinical Toolbox (Rorden, Bon-

ilha, Fridriksson, Bender, & Karnath, 2012) and normalisation algo-

rithms in SPM 12 (www.fil.ion.ucl.ac.uk/spm). Situation-dependently

we used either cost-function masking or enantiomorphic

normalisation to control for the lesioned area. Normalisation parame-

ters were then applied to the lesion maps to obtain normalised binary

lesion maps. Patients tested for spatial neglect all suffered from unilat-

eral right hemispheric lesions; patients tested for hemiparesis had a

unilateral stroke to either the left or the right hemisphere. In the pre-

sent study, we did not aim to investigate possible hemisphere-specific

contributions to primary motor skills and, on the other hand, required

a large sample with considerable informational content in the imaging

features. Therefore, lesion maps of left hemispheric lesions in the sec-

ond patient sample were flipped along the sagittal mid-plane so that

all lesions were depicted in the right hemisphere. This step reduces

variability between subjects' lesion locations and increases the usable

variance in individual imaging features. Overlap topographies of all
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lesions are shown in Figure S1 and the online materials at https://doi.

org/10.17632/34rwd5vb2h.2.

2.4 | Brain atlases

We chose five brain atlases, each parcellated based on different mor-

phological or functional criteria. (a) The AAL3, the most recent version

of the popular automated anatomical labelling atlas (Rolls, Huang, Lin,

Feng, & Joliot, 2020), a single-subject morphological atlas with

166 areas; (b) the AALnbl, a combination of the AAL3 with the

natbrainlab white matter atlas (32 white matter tracts; Catani &

Thiebaut de Schotten, 2008); (c) the atlas of intrinsic connectivity of

homotopic areas (AICHA), containing 192 homotopic functional region

pairs (Joliot et al., 2015); (d) the Brainnetome atlas BN246 (Fan

et al., 2016), a multimodal atlas containing cortical and subcortical

grey matter (246 areas), and (e) a multimodal parcellation (MMP) as

created and described in Pustina et al. (2018). The latter atlas was

based on the multimodal surface-based parcellation by Glasser

et al. (2016). Pustina et al. (2018) transferred this atlas to volumetric

MNI space, dilated parcels to include small portions of subcortical

white matter below each parcel, and extended the atlas by

subcortical regions taken from the BN246 (Fan et al., 2016) and the

white matter JHU atlas (Hua et al., 2008). Left-hemispheric and cere-

bellar brain regions were excluded from all atlases. We also provide a

parcellation-free analysis of our data in the Supporting Information.

2.5 | Feature extraction

We extracted three different types of features from each patient's

binary lesion image subsequently referred to as lesion load, voxels and

principal components. Importantly, in each analysis iteration, we first

chose an atlas and identified all voxels covered by the atlas, excluding

all unlabelled voxels (e.g., subcortical white matter areas in a purely

cortical atlas). Accordingly, the underlying data was the same for all

three feature types (all voxels contained in the parcellation), which

makes feature representations comparable to each other. Lesion load

is the proportion of damaged voxels within each atlas region, resulting

in a scalar between 0 and 1 per atlas region of interest (ROI). In the

AALnbl atlas, we extracted the lesion load of all areas delineated by

each atlas, disregarding potential overlaps of ROIs. Lesion load was

calculated per atlas ROI and entered into a matrix of patients � ROIs

per atlas. Additionally, we ensured that the included ROIs carried a

usable amount of variance and removed those not damaged in at least

5% of all lesions. Correcting for minimal lesion affection closely

resembles procedures in lesion-behaviour mapping, where such

criteria are commonly utilised to remove areas that can be considered

outliers regarding their anatomical information (Sperber &

Karnath, 2017).

Voxel-wise features 0 (normal) and 1 (lesion) were then extracted

from all retained atlas regions and entered into an m-by-n matrix

(without considering any region label), where m is the number of

patients and n the total number of voxels within a particular atlas.

Voxels from overlapping areas in the AALnbl atlas were only extracted

once. The resulting voxel matrix underwent PCA. In PCA, the features'

covariance matrix is calculated, and a singular value decomposition is

performed to find the subspace that explains the largest variance in

the data. To assess the number of principal components that should

be retained from the data, we implemented Horn's Parallel Analysis

(Horn, 1965). Following this objective strategy to identify significantly

relevant components, we resampled and diagonalised 1,000 random

correlation matrices of the same dimensions as the original data. This

yielded a distribution of eigenvalues, from which we estimated a 95%

confidence interval and retained those eigenvalues that exceeded the

upper confidence limit. See Figure S2 for an example scree plot and

the online materials for the complete set of scree plots.

2.6 | Data modelling—support vector regression
and hyperparameter optimisation

We used high-dimensional machine-learning models to predict contin-

uous behavioural scores from features extracted from the patients'

MRI or CT images. Epsilon—support vector regression (ε-SVR; Smola &

Schölkopf, 2004) is such a supervised learning algorithm suited for

predicting continuous dependent variables. Its goal is to obtain a func-

tion under the condition that the predicted values are within a set

accuracy ε from the true score. In other words, we do not accept

errors larger than ε but disregard deviations that are smaller than this.

We fit an ε-SVR with a radial basis function (RBF) kernel for each atlas

and feature type in a repeated six-fold nested CV regime. The non-

linear RBF kernel was reported to outperform linear kernels in lesion

behaviour modelling (Hope, Leff, & Price, 2018; Zhang et al., 2014).

We used functions provided by libSVM Version 3.24 (Chang &

Lin, 2011; https://www.csie.ntu.edu.tw/�cjlin/libsvm/) running in a

MATLAB R2020a environment.

Following the recommendations by Hsu, Chang, and Lin (2003),

we first linearly rescaled all the features to the range [0, 1] before

fitting models. We used the default ε of 0.1 in all models concerning

the hemiparesis data and ε = 0.01 in the neglect sample to adapt to

the scaling of the outcome variable. We generated six random folds of

approximately equal size where one was held out as a test set in each

outer loop iteration, whereas the model was fit on the remaining five

folds (which together comprised the training set). The inner loop

served for soptimising hyperparameters cost (C) and γ on each training

set in an automatic grid search with a five-fold CV.

Each model was evaluated within the inner loop in terms of its

mean squared error (MSE) and mean squared correlation coefficient

(R2) across all five folds. The squared correlation coefficient is derived

from the Pearson correlation coefficient between the values predicted

by the model and the observed values in the test set (see formula 1 in

the Supporting Information). We chose C- and γ-ranges according to

suggestions by Hsu et al. (2003), with C = [2�5, 2�3, …, 215] and

γ = 2�15, 2�13, ..., 23]. We repeated the five-fold CV with every possi-

ble parameter combination to find the combination that sminimised
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MSE. If several equally small MSEs were found within the grid, we

consulted R2 and extracted the combination that additionally

smaximised this metric among the potential candidates.

The optimal hyperparameters were used to re-train the model,

and predictions were made on the held-out test set. The outer loop

was iterated six times to obtain a prediction for every patient in the

set. The whole nested CV procedure was repeated five times with a

random re-shuffle of folds at each repetition. In total, this yielded five

predictions per patient, which were averaged to mitigate the variance

induced by random shuffling (Arlot & Celisse, 2010; James, Witten,

Hastie, & Tibshirani, 2013; Varoquaux et al., 2017). We calculated the

squared correlation coefficient between predicted and true behav-

ioural scores and the squared error for each observation based on

these averaged predictions. Importantly, repeated random splits were

generated with the same random seeds for all models to ensure com-

parable models.

2.7 | Data modelling—additional feature
elimination

In lesion-behaviour mapping, models including all (whole brain) data

are common (e.g., Zhang et al., 2014). However, in translational appli-

cations, feature elimination, that is, only including highly informational

features, could improve the model fit of clinically relevant predictions

(Rondina et al., 2016). We assumed that training an SVR with only the

most relevant features would improve the model's prediction accuracy

and thus provide better means to evaluate the algorithm's real-world

application. Such endeavour is computationally demanding in high

dimensional data, especially within a nested CV framework. Hence,

we restricted feature elimination to lesion load and PCA representa-

tions, where a few dozen features were present each, compared to

voxel-wise data that contained up to over 700.000 features.

In a first step, we assessed the importance of individual features

using a permutation approach originally formulated for random forests

(Breiman, 2001) but can be similarly applied to other classification and

regression problems (Fisher, Rudin, & Dominici, 2018; see Figure 2 for

an illustration). It relies on disrupting an individual feature's associa-

tion with the target variable by randomly shuffling it while leaving the

other variables intact. Consequently, the loss of model performance

induced by the permutation can be quantified in terms of the vari-

able's permutation importance. This can be repeated for every

variable in the data set. We calculated the variable importance of any

given feature i as the ratio of the MSE under permutation of feature i

versus the MSE of the model when all variables were left intact

(Fisher et al., 2018; see Formula (2) in Supporting Information). A

value above 1 indicates that the model relies on the variable for its

predictions. However, there is no established threshold as to when to

consider a variable ‘important enough’. Consequently, we sorted the

variables according to their permutation importance and defined three

subsets of different sizes, including only the variables with the largest

importances.

F IGURE 2 Schematic of the permutation-based feature elimination. The left panel shows how variable permutation importance was
calculated: for each feature, we assessed how permuting this feature would affect model performance compared to leaving the feature intact.
Each variable was shuffled five times. The right panel shows an exemplary variable importance plot of 16 principal components that were labelled
according to their occurrence in the original feature matrix. A feature can be regarded as important if variable importance is above 1. In the
absence of a valid threshold for when to consider features ‘important enough’, three different subsets of features were retained, containing
25, 50 or 75% of the most important features. Graphs show exemplary simulated data
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To implement this additional feature selection step in the six-fold

nested CV, we split the outer loop training set into two subsets con-

taining two thirds and one-third of training set observations, where the

smaller sample served as a validation set. Hyperparameters were

optimised for the larger set in a five-fold CV grid search as described

above, and a model with optimised C and γ was fit on the two-thirds

sample. Then, the reference loss (no shuffling) was obtained from the

predictions made on the validation set. We consecutively resampled

each feature without replacement and tested the model on the valida-

tion set after every permutation. We shuffled each feature five times

and used the average MSE to calculate feature permutation importance.

In a second step, we sorted the variables in descending order

according to their permutation importances and selected sets

retaining 75, 50 or 25% of the most important features. Then, we re-

fit the model on the entire outer loop training set for each of the

reduced feature sets. As a change of the feature set effectively results

in a new model, we also re-defined the model hyperparameters.

Model performance was assessed on held-out test sets in a repeated

six-fold CV, as described in the previous section.

2.8 | Model comparisons

The principal aim of this study was to compare the predictive capacity

of different feature representations extracted from brain lesion imaging

data. Thus, we compared models based on voxel, lesion load and princi-

pal component representations separately within each atlas using a

dependent-samples Friedman test on individual squared errors. Addi-

tionally, we evaluated the benefit of feature reduction using pairwise

Wilcoxon signed-rank tests on squared errors to compare models

before and after feature elimination and PCA and lesion load represen-

tations after feature elimination. Here, we only selected the numerically

best model from the three feature sets after elimination (retaining

25, 50 or 75% of the most important features) for comparison. p-values

were corrected for multiple comparisons sequentially according to the

Bonferroni-Holm procedure (Holm, 1979).

Furthermore, we explored to what extent models based on differ-

ent atlases diverged in their predictions. To this end, we performed a

Friedman test on the squared errors obtained for the lesion load

models on the AAL, AALnbl, BN246, AICHA and MMP parcellations.

An additional descriptive analysis was added as atlases might cover

different functional areas to different extents and include different

proportions of the lesion. We calculated the number of voxels

included in each model and the average lesion affection per atlas com-

pared to a whole-brain mask.

3 | RESULTS

3.1 | Feature extraction

After removing all left-hemisphere and cerebellar atlas regions, we

obtained 69 ROIs from the AAL3, 123 ROIs from the BN246 atlas,

203 ROIs from the MMP, 192 ROIs from the AICHA atlas, and 86 ROIs

for the combined AALnbl atlas. The correction for minimal lesion

affection resulted in the removal of additional regions, yielding

60 ROIs for the AAL3, 113 ROIs for the BN246, 180 ROIs for the

MMP, 176 ROIs for the AICHA and 74 ROIs for the AALnbl atlas,

respectively. Binary full-voxel data extracted from these ROIs under-

went PCA, and the number of principal components to keep was

determined via Horn's Parallel Analysis. Their numbers ranged from

16 to 34. Table 1 reports the number of principal components found

for each atlas.

3.2 | Results—comparisons of feature
representations

Models predicting spatial neglect from lesion information yielded per-

formances between R2 = .192 and R2 = .269 (Table 2). The numeri-

cally best model emerged from a principal component representation

based on the AALnbl atlas, where only 25% of the most important

features were retained. However, no significant differences were

found. Figure 3 gives an overview of the model performances yielded

with the three feature representations under each atlas. We observed

that the componential representation performed numerically (but not

statistically; Table 3) better than voxel-wise or lesion load representa-

tions in all atlases but the MMP. For the MMP atlas, maintaining the

full set of ROIs within the lesion load approach yielded the numeri-

cally best predictions. However, feature elimination could not signifi-

cantly improve model performances, as shown by Wilcoxon

signed-rank tests on squared errors (Table 4).

Modelling acute upper limb paresis provided the best cross-

validated model performances overall (Table 2), maxing out at

R2 = .316 for a model based on 75% of the most important principal

components extracted from voxels contained in the MMP atlas. Over-

all, model performances for this data set ranged between 0.219 and

0.316, where models based on a principal component representation

of the data consistently performed numerically better than models

based on patterns of binary voxels or lesion load. However, no

TABLE 1 Number of principal components obtained for each
atlas

Dataset Atlas Principal components

Neglect AAL 34

BN246 34

MMP 34

AICHA 34

AALnbl 34

Hemiparesis AAL 18

BN246 18

MMP 16

AICHA 17

AALnbl 17
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significant differences remained after correction for multiple compari-

sons. Figure 4 gives an overview of the model performances yielded

with the three feature representations under each atlas. The numeri-

cally least successful models tended to be based on region-wise lesion

load representations. This pattern emerged irrespective of whether

we performed backwards elimination of features. Interestingly, before

correction for multiple comparisons, there was a significant difference

between featurisation strategies for two out of the five parcellations

according to the Friedman test (see Table 3). However, after correc-

tion for multiple comparisons, no significant results remained and thus

we refrained from statistical posthoc comparisons. Again, feature

elimination only induced no or, at best, small, non-significant improve-

ments in model performance (Table 4).

In summary, we observed that models using a feature representa-

tion style that exploits lesion-anatomical information tended to per-

form numerically better than those based on region-wise,

TABLE 2 Model fits of spatial neglect and motor score
predictions

Feature type

Spatial neglect Hemiparesis

R2 MSE R2 MSE

AAL Voxels .208 0.067 .265 2.638

Lesion load 100% .205 0.070 .236 2.865

Lesion load 75% .214 0.069 .228 2.908

Lesion load 50% .220 0.068 .219 2.933

Lesion load 25% .220 0.068 .222 2.911

Principal comp. 100% .228 0.067 .292 2.645

Principal comp. 75% .233 0.067 .297 2.628

Principal comp. 50% .233 0.067 .309 2.581

Principal comp. 25% .222 0.068 .228 2.908

BN246 Voxels .202 0.067 .278 2.594

Lesion load 100% .200 0.070 .231 2.862

Lesion load 75% .216 0.069 .245 2.781

Lesion load 50% .216 0.068 .256 2.761

Lesion load 25% .217 0.068 .239 2.804

Principal comp. 100% .225 0.068 .280 2.695

Principal comp. 75% .226 0.068 .292 2.646

Principal comp. 50% .214 0.069 .258 2.801

Principal comp. 25% .192 0.071 .283 2.657

MMP Voxels .226 0.065 .263 2.654

Lesion load 100% .263 0.065 .256 2.774

Lesion load 75% .262 0.064 .265 2.714

Lesion load 50% .251 0.065 .260 2.760

Lesion load 25% .256 0.065 .280 2.664

Principal comp. 100% .248 0.065 .314 2.580

Principal comp. 75% .241 0.066 .316 2.540

Principal comp. 50% .239 0.067 .308 2.594

Principal comp. 25% .226 0.068 .303 2.637

AICHA Voxels .206 0.067 .261 2.649

Lesion load 100% .222 0.068 .256 2.747

Lesion load 75% .215 0.069 .249 2.783

Lesion load 50% .198 0.070 .245 2.788

Lesion load 25% .194 0.070 .236 2.825

Principal comp. 100% .227 0.067 .292 2.648

Principal comp. 75% .217 0.068 .278 2.700

Principal comp. 50% .198 0.070 .271 2.737

Principal comp. 25% .203 0.070 .278 2.700

AALnbl Voxels .219 0.066 .263 2.648

Lesion load 100% .220 0.068 .252 2.831

Lesion load 75% .204 0.070 .258 2.798

Lesion load 50% .211 0.069 .269 2.738

Lesion load 25% .213 0.069 .248 2.810

Principal comp. 100% .248 0.065 .309 2.597

Principal comp. 75% .252 0.065 .296 2.645

TABLE 2 (Continued)

Feature type

Spatial neglect Hemiparesis

R2 MSE R2 MSE

Principal comp. 50% .258 0.064 .298 2.660

Principal comp. 25% .269 0.063 .282 2.728

Note: We report average R2 and MSE across five nested six-fold cross-

validation repetitions for spatial neglect and acute hemiparesis. Samples of

25, 50 and 75% of most important features were determined based on

each feature's permutation importance. Numerically best performing

lesion representations for each atlas, as determined by maximal R2, are

indicated in bold.

F IGURE 3 Comparison of feature representations in acute spatial
neglect. Boxplots show median and interquartile range of cross-
validation squared errors produced by the model. Whiskers extend to
maximally 2.5-times the interquartile range, and any point beyond
that is labelled as an outlier (dots). Numbers indicate each model's R2
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parcellation-dependent information. Furthermore, feature elimination

yielded mixed results in terms of model improvement. However, the

observed numerical differences did not reach statistical significance.

3.3 | Results—comparison of atlases

Across all symptoms, the best CV model performances for lesion load

were found for the multimodal parcellation (MMP), which accounted

for 25–28% of explained variance. Model performances under the

popular morphological AAL atlas tended to be numerically inferior

compared to functional parcellations. At the same time, we yielded

slight improvements for the predictions of motor scores when we

added the white matter tracts from the natbrainlab atlas (see Table 2).

To explore the effect of the five different parcellations on model

loss, we conducted a Friedman test on the sample squared errors

under models based on lesion load representations of the AAL3,

BN246, MMP, AICHA and AALnbl atlases. Results showed that the

type of parcellation did not significantly impact model performance

neither for neglect (Chi-square = 8.33, p = .080) nor for hemiparesis

(Chi-square = 1.56, p = .816). For visual descriptive comparison,

boxplots of squared errors of lesion load models yielded under differ-

ent parcellations are shown in Figure S3.

4 | DISCUSSION

The current study investigated the suitability of different strategies

for feature reduction. We generated and compared structural lesion

imaging features based on normalised lesion maps either (i) on a full

voxel-wise level, (ii) transformed into principal components, merging

and reducing data following lesion-anatomical criteria or

(iii) transformed into atlas-based lesion load, merging and reducing

data following functional and/or morphological criteria according to

the atlases. We found data-driven principal component-wise feature

representation to provide the numerically best models in almost all

conditions. However, we only found minor, non-significant differ-

ences between feature representation strategies, which highlights the

TABLE 3 Main results

Dataset Atlas Chi-square p

Neglect AAL 0.90 .6387

BN246 0.62 .7332

MMP 0.80 .6710

AICHA 0.42 .8091

AALnbl 0.48 .7855

Hemiparesis AAL 2.73 .2560

BN246 2.90 .2343

MMP 4.47 .1070

AICHA 6.53 .0382

AALnbl 6.61 .0367

Note: The table reports results of Friedman tests on prediction residuals

between models with the three different lesion representations. We

report uncorrected p-values; no test remained significant after correction

for multiple comparisons by the Bonferroni-Holm procedure. Therefore,

no post-hoc tests were performed.

TABLE 4 Wilcoxon tests comparing full models and models after
feature elimination

Comparison

Neglect Hemiparesis

Z p Z p

AAL LL full vs. red 1.04 .300 0.32 .750

PCA full vs. red 1.57 .117 1.06 .289

LL red vs. PCA red 0.63 .527 1.87 .061

BN246 LL full vs. red 1.67 .095 1.11 .267

PCA full vs. red 0.67 .500 0.69 .491

LL red vs. PCA red 0.71 .477 1.97 .049

MMP LL full vs. red 0.04 .968 0.96 .339

PCA full vs. red �0.13 .899 �0.27 .786

LL red vs. PCA red 0.21 .836 0.72 .472

AICHA LL full vs. red 0.13 .896 �0.14 .890

PCA full vs. red �0.84 .400 0.41 .683

LL red vs. PCA red �0.40 .692 1.71 .087

AALnbl LL full vs. red 0.84 .402 2.03 .042

PCA full vs. red 1.01 .313 0.13 .900

LL red vs. PCA red 2.26 .024 0.93 .353

Note: Comparison of full feature sets with the numerically best models

after feature elimination, retaining 75, 50 or 25% of the most important

features assessed by their permutation importance. ‘red.’ indicates these
feature reduced data. Hence, comparisons (a) between full and reduced

datasets for all atlases and both lesion load representation and

componential representation, and (b) between best feature-reduced

models for all atlases between lesion load representation and

componential representation are shown. We report uncorrected p-values;

no test remained significant after correction for multiple comparisons by

the Bonferroni-Holm procedure.

F IGURE 4 Comparison of feature representations in acute
hemiparesis. See the description of Figure 3 for additional information
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general suitability of all feature representations in lesion-deficit

modelling.

While feature representation and feature reduction are central

steps in any computer vision algorithm, it has not been a major topic

in the field of lesion-deficit modelling based on structural brain imag-

ing. While all three feature representation strategies that we investi-

gated can be found in previous studies, it often appears as if they

have been chosen without elaborated theoretical considerations. Our

findings imply that this does not seem to have invalidated these stud-

ies. However, these studies might have missed a minor opportunity to

potentially maximise model quality by not considering different fea-

ture representation strategies.

In many situations in the present study, lesion-anatomical, com-

ponential feature reduction brought forth the numerically best

models. Still, numerical differences were relatively minor and not sig-

nificant. Surprisingly, neither functional, region-wise feature reduction

nor lesion-anatomical, componential feature reduction allowed signifi-

cantly better model performance. A voxel-wise feature representation

without any reduction of the high-dimensional feature space still

appears to be a viable option, even though it might be computation-

ally far more demanding. The explanation for this finding might be

rooted in the structure of lesion-deficit data. From a theoretical per-

spective, there are compelling arguments for both lesion-anatomical

and functional feature reduction. However, both strategies can lead

to different and even diametrical solutions (Sperber, 2020). Why this

is the case becomes apparent from the granularity of lesions after

componential analysis (Zhao et al., 2020). To a large degree, it corre-

sponds to the brain's vasculature underlying the anatomy of stroke,

which markedly differs from functional parcellations of the brain (see

Zhao et al., 2020). Thus, if we merge voxel-wise information into two

different functional parcels, we might, at the same time, tear apart

homogeneous features based on lesion-anatomical criteria. In other

words, two voxels might be frequently damaged together but belong

to two separate functional units or, vice versa, might be dissimilar in

their lesion status but belong to the same functional module. This also

means that, compared to the criteria to subdivide the brain into corti-

cal areas (Eickhoff et al., 2018), stroke imaging adds another poten-

tially conflicting criterion. To conclude, it appears that lesion-deficit

modelling per se suffers from a handicap due to the multifaceted data

structure of lesion data.

4.1 | Which atlas is best suited to parcellate brain
lesions?

For several methodological reasons, a comparison between atlases

can only be done with caution and does not allow strong conclusions.

First, the overall extent of the atlases differs. An atlas that covers

more voxels in the brain can potentially include important brain areas

that are highly predictive for a deficit or more irrelevant areas. Sec-

ond, atlases differ in fine-graininess by sub-dividing regions further.

Third, popular atlases can be based on either groups or individual sub-

jects, making them differently representative of the average human

brain. The Automatic Anatomical Labelling atlas (Rolls et al., 2020),

which is often used in lesion-deficit modelling, is such a single-subject

atlas. More recent brain atlases were often created with large subject

groups and multimodal imaging data, including imaging functional and

connectomic imaging data. Nonetheless, lesion load representation by

the morphological parcellation still allowed comparable lesion-deficit

models, often with only minor differences to multimodal or

connectomic parcellations. Thus, the present study does not object to

the use of morphological atlases in lesion-deficit modelling. On the

other hand, there are compelling theoretical reasons for the use of

state-of-the-art multimodal atlases. Brain parcellations according to

morphological criteria do not correspond to the functional organisa-

tion of the brain (Eickhoff et al., 2018; Fan et al., 2016; Glasser

et al., 2016), while, at the same time, this functional organisation of

the brain is often the very topic of our scientific work in cognitive

neuroscience. Additionally, the MMP combines information from mul-

timodal neuroimaging from 278 participants and thus allows to

account for inter-subject variability in location and volume of func-

tional modules. A single-subject atlas like the AAL might not be as

generalisable as multi-subject atlases. Our findings suggest that not

modelling performance, but rather such theoretical considerations

should be the central factor when choosing a parcellation.

4.2 | Implications for lesion-behaviour mapping

While modelling approaches in post-stroke outcome prediction and

lesion behaviour mapping can be highly similar, there are still pivotal

discrepancies between both implied by the purpose of the modelling

procedure (Bzdok, Engemann, & Thirion, 2020; Shmueli, 2010). The

only purpose of mathematical models in post-stroke outcome predic-

tion is to make accurate predictions. Hence, explained variance in out-

of-sample prediction—as the major outcome variable R2 in the present

study—is the main criterion to judge a model's success. In lesion-

behaviour mapping, a model's purpose is to identify the neural

correlates of behaviour and cognition. This requires some kind of

feature-wise inference, which constitutes a major challenge with very

different possible solutions (compare, e.g., Ivanova et al., 2020;

Pustina et al., 2018; Zhang et al., 2014). Out-of-sample model perfor-

mance is still of relevance here, but there are more criteria to account

for, such as reproducibility of feature weights (Rasmussen, Hansen,

Madsen, Churchill, & Strother, 2012). Nonetheless, out-of-sample

model performance is one of the main criteria for the evaluation of

multivariate lesion-behaviour mapping methods (e.g., Mah, Husain,

Rees, & Nachev, 2014; Zhang et al., 2014). Its maximisation with opti-

mal featurisation strategies might improve statistical power in such

mapping approaches. An additional challenge arises in lesion-

behaviour modelling as the feature-wise inferential process puts clear

limitations on the way data are modelled. For example, feature elimi-

nation is not an option in several approaches that first model data on

a whole-brain level and then access each feature's contribution indi-

vidually (e.g., Yourganov et al., 2015; Zhang et al., 2014). With respect

to the data representation strategies investigated in the present study,
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voxel-wise data representation appears to be the most common

(e.g., Bates et al., 2003; Pustina et al., 2018; Zhang et al., 2014), yet

region-wise data representation is likewise popular (e.g., Achilles

et al., 2017; Smith et al., 2013; Yourganov et al., 2015). The current

study suggests that both representations are viable options to create

models that capture a decent amount of variance. Hence, region-wise

lesion load models are especially useful in approaches that require a

lower-dimensional representation for computational or mathematical

reasons (e.g., Smith et al., 2013; Toba et al., 2017).

But what about componential data after data-driven feature

reduction in lesion-behaviour mapping? Componential structural

lesion imaging data have indeed been used in lesion behaviour map-

ping (Ivanova et al., 2020; Salvalaggio et al., 2020; Zhao et al., 2020),

but they are a rare sight to behold in brain mapping. The main reason

for this might be that principal components are difficult to interpret

anatomically, which is a crucial final step in the lesion mapping pipe-

line (de Haan & Karnath, 2018). A single principal component can

relate to many widely dispersed voxels to varying degrees. Therefore,

a principal component that significantly relates to a deficit cannot be

simply assigned to a brain structure. However, principal components

can be back-projected into original voxel-wise brain space and, under

certain conditions, anatomically interpreted.

As we have seen in the present study, the use of componential

lesion data only makes a minor, non-significant difference in out-of-

sample prediction performance. Still, as discussed above, model per-

formance is only one of several possible criteria in the evaluation of

lesion-behaviour mapping methods (Sperber, 2020; Sperber &

Karnath, 2018). A previous methodological validation study assessed

several other, more relevant validity criteria in lesion-behaviour map-

ping (Ivanova et al., 2020). This study found that multivariate models

based on componential lesion data can be beneficial in identifying

multi-regional neural correlates of functions. Importantly, this study

also utilised componential feature reduction to make lesion data

usable by low-dimensional multivariate models. This highlights the

potential of componential data as an alternative to region-wise lesion

load in mapping methods that are limited in the number of input fea-

tures (e.g., Smith et al., 2013; Toba et al., 2017). In the current study,

we were able to reduce full brain voxel data with over a million fea-

tures to low-dimensional datasets of 16–34 components. Such

feature reduction can drastically decrease the computational burden

of multivariate modelling.

Another argument in favour of using componential data in lesion-

behaviour mapping can be made from a theoretical side. Presenting

results of lesion-behaviour mapping analyses on a voxel level suggests

a spatial resolution that simply is not present in the data. With the

1 � 1 � 1 mm3 image resolution utilised in the present study, more

than two-thirds of all voxels can carry information that is perfectly

redundant, resulting in much fewer informational ‘unique patches’
than voxels in the dataset (Pustina et al., 2018). Further, both univari-

ate and multivariate lesion mapping are unable to disentangle the con-

tribution of voxels with highly correlated lesion information

(Sperber, 2020), and lesion mapping will be unable to differentiate

between the role of such voxels. The resolution of lesion behaviour

mapping is limited by the informational granularity of lesions (Zhao

et al., 2020), which closely follows the vasculature of the brain. There-

fore, componential lesion data appears to be a more honest and com-

putationally efficient option in lesion-behaviour mapping to be

considered in future software.

A still open question is if other decompositional algorithms might

be better suited to process structural lesion data. We utilised PCA in

line with numerous previous studies (e.g., Siegel et al., 2016;

Salvalaggio et al., 2020; Zhao et al., 2020). However, other approaches

might be better suited to decompose structural lesion data. For exam-

ple, logistic PCA (Landgraf & Lee, 2020) might be better suited for

binary lesion data, and non-negative matrix factorisation might be a

potential approach that refrains from creating negative factors, which

do not bear a directly plausible meaning in the context of lesion data.

4.3 | How to further improve lesion-deficit
predictions

The variance explained by our models peaked at 32%, a model quality

that does not allow clinically relevant predictions. Feature engineering

by optimisation of the feature representation is only one possible

strategy to optimise lesion-deficit models. As the current study has

shown, this strategy only plays a minor role. However, it is part of a

huge arsenal of strategies that have the potential to improve predic-

tions, maybe even up to a critical range where they are applicable in

individualised therapy and patient care.

Elimination of irrelevant features might potentially benefit many

high-dimensional modelling algorithms. In the current study, this

strategy did not improve model performance significantly. Feature

elimination constitutes a difficult challenge in high-dimensional data.

The approach used in our study might not be optimal and could be

further optimised. The choice of modelling algorithms might also

improve predictions. Support vector regression is only one popular

high-dimensional modelling algorithm out of many. Only a few stud-

ies compared different algorithms (e.g., Hope et al., 2018; Rondina

et al., 2016), and it might even be the case that no single optimal

algorithm exists, but that we require deficit-specific individual

solutions.

The maximisation of lesion-behaviour model performance is lim-

ited by the informational content of the input data. No matter how

sophisticated feature engineering and modelling algorithms are, they

cannot be better than the information provided by the input data

allow. This limits predictions made by lesion-deficit models based on

structural imaging data alone (Sperber, 2020). Many other variables

partially explain post-stroke outcome and a patient's ability to recover,

including brain reserve, education, co-morbidities or intervention (for

review, see Price, Hope, & Seghier, 2017). Model performance might

suffer from large interpatient variability in time after stroke, as neural

plasticity and functional reorganisation might be different in every

individual (Price et al., 2017). Hence, the combination of other vari-

ables – e.g., demographic data, other imaging data, and non-imaging

biomarkers—will be relevant to obtain highly predictive models.

KASTIES ET AL. 5419



Further, structural lesion imaging is limited in assessing brain pathol-

ogy, and other imaging modalities assessing connectivity, perfusion or

functional activity can—at least for some post-stroke deficits—

complement or replace structural lesion data regarding its informa-

tional value (Salvalaggio et al., 2020; Siegel et al., 2016).

4.4 | Limitations

In the current study, we encountered several pitfalls that limit model

performance and are often encountered in lesion-behaviour model-

ling. First, although our sample sizes were relatively large compared to

many studies in the field, they were still much smaller than what is

often assumed to be optimal for high-dimensional, multivariate algo-

rithms (see e.g., Mah et al., 2014). Model performance can likely be

improved with larger sample sizes. In a previous study, we have

shown that voxel-wise lesion-behaviour model performance using

support vector regression approaches a plateau already with the given

sample sizes of �100 patients (Sperber et al., 2019), albeit small

improvements were still present with incremental increases of sample

size at this point, and small improvements might well continue even

much further. We cannot guarantee that the present findings still hold

in much larger samples. Still, we expect that the three investigated

featurisation strategies suffered equally from potentially too small

samples, and hence allowed valid comparisons. Second, we observed

a systematic bias in out-of-sample predictions of chronic hemiparesis

scores. This partially resulted in models with exceptionally low and

uninformative model performances, for which we ultimately removed

chronic hemiparesis from the main analysis into the supplementary.

Systematic prediction biases were already observed in previous stud-

ies (e.g., Loughnan et al., 2019) and can be attributed, to some extent,

to the variance and distribution of the target variable. For example, if

only a few patients suffer from a deficit, a model might be tuned

unintentionally to underestimate the deficit's severity and still perform

well in most cases. Hence, the question remains if strategies such as

data transformation or the composition of balanced training samples

can improve model performance.

From the points discussed in the previous section, some more

general limitations of the present study become apparent. We used

one single modelling algorithm—support vector regression. Generally,

support vector machines and regressions are highly popular in model-

ling lesion-behaviour data (e.g., Hope et al., 2018; Mah et al., 2014;

Rondina et al., 2016; Rondina et al., 2017; Smith et al., 2013; Zhang

et al., 2014). However, Gaussian process regression, regression trees,

neural networks and more algorithms are also applicable (e.g., Hope

et al., 2013, 2018; Pustina et al., 2018; Rondina et al., 2016). The cur-

rent study cannot guarantee that the current findings fully apply to

the latter algorithms as well. Further, some algorithms such as ridge

regression, least absolute shrinkage and selection operator (LASSO)

regression and partial least squares regression intrinsically perform

dimensionality reduction on underdetermined data. In such a setting,

a priori feature reduction might not be as effective as retaining all

voxel-wise features for prediction. In doubt, we suggest including an

additional analysis to optimise the feature representation for usage in

the designated modelling algorithm. Further, one should be aware

that, by using these algorithms on voxel-wise representations, data

are featurised following lesion-anatomical criteria. Should a better

suited functional parcellation for a given deficit exist, such an

approach might perform suboptimally. The inclusion of white matter

connectivity data was not systematically investigated in the current

study. A prominent role of white matter disconnection is assumed for

many post-stroke symptoms (Catani et al., 2012; Griffis, Metcalf, Cor-

betta, & Shulman, 2019), and numerous complex measures of struc-

tural disconnection have been introduced and used in lesion-

(disconnection-)deficit modelling (e.g., Foulon et al., 2018; Griffis,

Metcalf, Corbetta, & Shulman, 2020; Kuceyeski et al., 2016). Notably,

these methods are also based on the patients' structural lesion data,

which are referred to as healthy controls' connectome data. Thus,

these connectome-based representations also constitute a feature

representation of structural lesion data. In the present study, only

some of the utilised atlas parcellations included white matter regions.

Further, consider a white matter tract whose cross-section is lesioned,

causing complete disconnection. In this case, lesion load is small rela-

tive to the whole volume, underestimating the severity of the discon-

nection. Where the two measures of lesion load and tract

disconnection diverge, analyses based on lesion load can mask a real

relationship between tract damage and the severity of some deficit of

interest (Hope, Seghier, Prejawa, Leff, & Price, 2016). We currently

view the optimisation of feature representation strategies for struc-

tural disconnection as another major challenge, which goes beyond

the scope of the current study and requires separate extensive empiri-

cal studies.

5 | CONCLUSIONS

Feature representation strategies have the potential to improve

lesion-deficit modelling. Yet, it is only one of many methodological

strategies to improve models, with only minor benefits if applied

alone. The present study found data-driven component-wise feature

representation to provide the numerically best performing models in

most situations, while voxel-based and atlas-based lesion load repre-

sentation was found to be non-significantly inferior. Thus, if methodo-

logical or theoretical considerations suggest a lesion-load data

representation, such can be used. We suggest that if a study intends

to maximise a model's predictive power, feature representation strate-

gies are taken into consideration and compared.
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