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Summary

The ‘heritability’ of a phenotype measures the proportion of trait variance due to genetic factors 

in a population. In the past 50 years, studies with monozygotic and dizygotic twins have estimated 

heritability for 17,804 traits1; thus twin studies are popular for estimating heritability. Researchers 

are often interested in estimating heritability for non-normally distributed outcomes such as 

binary, counts, skewed or heavy-tailed continuous traits. In these settings, the traditional normal 

ACE model (NACE) and Falconer’s method can produce poor coverage of the true heritability. 

Therefore, we propose a robust generalized estimating equations (GEE2) framework for estimating 

the heritability of non-normally distributed outcomes. The traditional NACE and Falconer’s 

method are derived within this unified GEE2 framework, which additionally provides robust 

standard errors. Although the traditional Falconer’s method cannot adjust for covariates, the 

corresponding ‘GEE2-Falconer’ can incorporate mean and variance-level covariate effects (e.g. let 

heritability vary by sex or age). Given a non-normally distributed outcome, the GEE2 models are 

shown to attain better coverage of the true heritability compared to traditional methods. Finally, 

a scenario is demonstrated where NACE produces biased estimates of heritability while Falconer 

remains unbiased. Therefore, we recommend GEE2-Falconer for estimating the heritability of 

non-normally distributed outcomes in twin studies.

Keywords

Heritability; Twin studies; Generalized Estimating Equations

* Correspondence: saonli@umn.edu . 

SUPPLEMENTAL MATERIAL
Supplemental Material Section 1 includes one figure and one table: Supp. Figure S1 shows histograms of the longitudinal alcohol 
use phenotype from Section 3.6.1. Supp. Table S1 gives additional results for Section 3.2. Supp. Table S2 gives additional results for 
Section 3.6.1. Lastly, Supp. Material Section 2 shows that the NACE and GEE2-NACE estimating equations are identical.

DECLARATION OF INTERESTS
The authors declare no competing interests.

WEB RESOURCES
R code for fitting GEE2-Falconer and GEE2-NACE models is available at https://github.com/arbet003/GEE2-Heritability-Twins.

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2021 November 30.

Published in final edited form as:
Stat Med. 2020 November 30; 39(27): 3897–3913. doi:10.1002/sim.8564.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/arbet003/GEE2-Heritability-Twins


1 ∣ INTRODUCTION

Twins and family studies have proven to be powerful instruments for understanding the 

inheritance of complex phenotypes.2 The ‘inheritance’ or ‘heritability’ of a quantitative trait 

measures the proportion of total trait variance due to genetic factors in a given population. 

The accurate estimation of heritability is important, as it gives us a basic understanding 

of the genetic vs. environmental contribution to developing a particular human trait or 

disease. See3,4 for a review of various concepts and methods for estimating heritability. 

In this paper, we focus on the twin ACE model2,5,1 which compares the resemblance 

among monozygotic (MZ) and dizygotic (DZ) twins in order to estimate heritability. 

Specifically, the trait covariance of each twin pair is partitioned into additive genetic 

(A), common shared family environment (C), and non-shared environmental (E) variance 

components. The parameters of this twin ACE model are estimated using simple method of 

moment estimators called ‘Falconer’s equations’5,1,6, structural equation models (SEM)2,5, 

or likelihood based approaches assuming normality of the trait; henceforth referred to as the 

‘normal ACE model’ or “NACE”.7,8,9,10.

Although commonly used to estimate heritability in twin studies, the NACE model assumes 

the trait is normally distributed, and results in Section 3 demonstrate that when the 

assumption of normality is violated, the NACE model can lead to poor coverage of 

the true heritability parameter. Moreover, the NACE model assumes the ACE variance 

parameters are equal for both MZ and DZ twin types, an assumption that is often 

criticized for twin studies.5 For example, several studies have reported apparent sibling 

contrast effects in analyses of twin resemblance, which could produce higher DZ than MZ 

variance.11 As an alternative to NACE, one can use Falconer’s distribution-free method 

of moment estimators.6,5 Unlike the NACE model, Falconer’s method allows the ACE 

variance parameters to differ between MZs and DZs and only assumes the proportion of 

total variance explained by genetic and environmental effects to be the same for both 

twin types. In doing so, Falconer’s method makes less stringent assumptions about the 

twin population. In Section 3.3, we demonstrate that Falconer’s method can generate valid 

estimates of heritability when the ACE variance parameters differ between MZ and DZ 

twins, while NACE is biased in such settings.

Researchers are often interested in estimating heritability for highly non-normal traits such 

as binary, discrete counts, and skewed or heavy-tailed continuous data. Moreover, often the 

trait of interest doesn’t appear to follow any standard parametric distribution (see Figure 2 

for examples). Existing approaches to estimating heritability for non-normal traits include 

generalized linear mixed effect models.12,13,14 Recently Kirkpatrick and Neale15 developed 

three parametric models for estimating ACE variance components in count phenotypes. 

However, in practice, the estimation and inferences from these models may be sensitive to 

departures from the parametric distributional assumptions. In addition, often one will fit 

several different parametric models and then use model selection criteria to pick the ‘best 

fitting’ parametric model. This may lead to biased results if the model selection procedure 

is not accounted for while conducting inferences.1 Thus a more flexible semi-parametric 

(or non-parametric) approach to estimating heritability may be desirable for non-normally 

distributed outcomes, which we attempt to develop in this paper.
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In summary, we propose a robust, unified framework for estimating heritability in twin 

studies using second-order generalized estimating equations (“GEE2”). The semi-parametric 

GEE2 models require only the first two moments to be correctly specified, and thus can be 

used to estimate heritability in a wide variety of phenotypes, without explicitly modeling the 

underlying true parametric distribution. We show that two traditional methods for estimating 

heritability (NACE and Falconer’s method) can both be fit within the GEE2 framework, 

which additionally provides robust standard errors. Although the traditional Falconer’s 

method cannot directly adjust for covariates, we show that the corresponding GEE2 version 

(‘GEE2-Falconer’) can accommodate covariate effects for both mean and variance-level 

parameters (e.g. let heritability vary by sex or age). Given a non-normal trait, we show that 

the robust GEE2 models produce significantly better coverage rates of the true heritability 

compared to the traditional NACE and Falconer’s methods. Finally, we demonstrate that if 

the ACE variance parameters differ between MZ and DZ twins, then the NACE produces 

biased estimates of heritability, while Falconer’s method remains unbiased under weaker 

assumptions and therefore should be preferred. All methods are compared via simulations 

and with an application to the Minnesota Center for Twin and Family Research study.16

2 ∣ METHODS

An outline of the Methods section is as follows: in Sections 2.1-2.2, we review the 

traditional NACE and Falconer’s method for estimating heritability in twin studies. Then 

in Section 2.3 we develop robust GEE2 versions of both models, and show how the GEE2 

framework can allow heritability to vary as a function of covariates (e.g. sex or age).

For all methods, assume a study with NMZ and NDZ pairs of monozygotic and dizygotic 

twins, and let N = NMZ + NDZ be the total number of twin pairs. Let yz = (yz1, yz2)⊤ be a 

quantitative response measured on both twins (1 and 2) for a given twin pair, with zygosity 

“z” equal to “MZ” or “DZ”; and xz
⊺ is a 2 × P matrix of P covariates for both twins. Then the 

twin ACE model for a given pair of twins of type z is defined as:

yz = xz
⊺β + Az + Cz + Ez, (1)

where E(yz) = xz
⊺β and cov(yz) = Σz = cov(Az)+cov(Cz)+cov(Ez). The ACE random effects 

are defined to have the following mean and covariance structures:

Az ∼ (0, σAz
2 Kz), Cz ∼ (0, σCz

2 J), Ez ∼ (0, σEz
2 I)

where I is a 2×2 identity matrix, J is a 2×2 matrix of ones, and Kz =
1 wz

wz 1  is the 

“genomic relationship matrix”. Note wz = 1 for MZ twins and wz = 0.5 for DZ twins, 

since MZ twins share 100% of their inherited genome while DZ twins share only 50% on 

average. The parameters σAz
2 , σCz

2 , and σEz
2  represent additive genetic, shared and non-shared 

variance parameters for twin type z. The primary interest for this ‘ACE’ model is to estimate 
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heritability, which is defined as the proportion of total trait variance due to additive genetic 

effects:

ℎ2 =
σAMZ

2

σAMZ
2 + σCMZ

2 + σEMZ
2 =

σADZ
2

σADZ
2 + σCDZ

2 + σEDZ
2

Often we are also interested in estimating the proportion of trait variance due to shared 

environmental effects:

c2 =
σCMZ

2

σAMZ
2 + σCMZ

2 + σEMZ
2 =

σCDZ
2

σADZ
2 + σCDZ

2 + σEDZ
2

Finally, the proportion of trait variance due to non-shared environmental effects is defined 

as: e2 = 1 − h2 − c2. Note that equation (1) allows distinct variance parameters for the 

different twin types (z = “MZ” or “DZ”). However, all these distinct variance parameters are 

not estimable in a standard twin study with MZ and DZ twins. Hence the different methods 

to estimate heritability make certain assumptions about the underlying MZ, DZ populations 

to generate a valid identifiable model. Below we describe two such common approaches to 

estimate heritability.

Without loss of generality, for the remainder of this paper we assume the response is 

centered such that E(yz) = 0. Given that our primary focus in on variance parameters, 

fixing the mean equal to zero will greatly simplify formulas and thus help build intuitive 

connections between the various models considered in this paper. However, in practice, both 

the NACE and GEE2 models described below can incorporate both mean and variance-level 

covariate effects.

2.1 ∣ Normal ACE Model for Twin Studies

The NACE model assumes the random effects are normally distributed such that yz has the 

following log-likelihood function:

log f(yz ∣ α) = − 0.5 log( ∣ Σz ∣ ) + yz
⊺Σz−1yz + 2 log(2π),

where Σz =
σA

2 + σC
2 + σE

2 wzσA
2 + σC

2

wzσA
2 + σC

2 σA
2 + σC

2 + σE
2  and α = (σA

2 , σC
2 , σE

2 ). The NACE makes a few 

simplifying assumptions to the model in equation (1), such as σAz
2 = σA

2 , σCz
2 = σC

2  and 

σEz
2 = σE

2 . Hence under the NACE model, cov(yz) = Σz = σA
2 Kz + σC

2 J + σE
2 I, for z = “MZ” 

or “DZ”. The parameters of interest are jointly estimated over the MZ and DZ families. 

See7,8,9,10 for a review of the NACE model.

For a given twin pair, the estimating equations for α can be derived as:
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u(α)NACE = ∂
∂α logf(yz ∣ α) = ∂

∂σA
2 logf, ∂

∂σC
2 logf, ∂

∂σE
2 logf

⊺
= 0

Assuming the multivariate-normal distribution log f(yz∣α) is correct, then under the 

regularity conditions of maximum likelihood estimation17:

N(α − α) D MV N(0, V −1), V = − E ∂2

∂α∂α⊺ log f(yz ∣ α) ,

Cov(α) = 1
N V −1 = 1

N
−1
N ∑

1

N ∂2

∂α∂α⊺ logf(yz ∣ α)
α = α

−1 (2)

where the summation in Cov(α) is taken with respect to all N twin pairs. After obtaining 

α and Cov(α), we used the delta-method to construct approximate Wald tests and 95% 

confidence intervals for h2 and c2 (e.g. ℎ2 ± 1.96SE(ℎ2)). It is worth noting that if the 

assumed multivariate-normal likelihood function is misspecified (as is often the case in 

practice), then in general, equation (2) will not hold. Finally, we used the twinlm() function 

from the mets R package18 to implement the NACE model.

2.2 ∣ Falconer’s Method of Moment Estimators

“Falconer’s equations” use method of moments to estimate heritability in twin studies.6,5 

Falconer’s estimators for h2 and c2 are defined as:

ℎFalc
2 = 2(rMZ − rDZ), cFalc

2 = 2rDZ − rMZ, (3)

where rMZ and rDZ are Pearson’s sample correlation coefficients for the MZ and DZ twins 

respectively. Following the notation of equation (1), Falconer’s estimators are derived as 

follows:

ρMZ = Corr(yMZ1, yMZ2) =
CovMZ

V ar(yMZ) =
σAMZ

2 + σCMZ
2

σAMZ
2 + σCMZ

2 + σEMZ
2 = ℎ2 + c2

ρDZ = Corr(yDZ1, yDZ2) =
CovDZ

V ar(yDZ) =
0.5σADZ

2 + σCDZ
2

σADZ
2 + σCDZ

2 + σEDZ
2 = 0.5ℎ2 + c2

2(ρMZ − ρDZ) = ℎ2, 2ρDZ − ρMZ = c2,

where ρMZ and ρDZ are the population correlation coefficients between MZ and DZ twins 

respectively, and V ar(yz) is the variance of both twins for a given zygosity type z. Unlike 

the NACE, Falconer’s method only requires the variance proportions (h2, c2, e2) to be equal 

for both MZ and DZ twins, but allows the magnitude of the ACE variance components 

(σAz
2 , σCz

2 , σEz
2 ) to differ between MZs and DZs. In Section 3.3, we demonstrate that when 

the population variance differs between MZ and DZ twins (but the proportions h2, c2, e2 are 
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equal between twins), then NACE produces biased estimates of heritability while Falconer’s 

method remains unbiased.

However, Falconer’s approach is often criticized for being unable to directly adjust for 

covariates and there is no straightforward way to estimate the standard errors of the 

estimators. One could potentially derive the standard errors of the estimators based on 

asymptotic results of Pearson’s sample correlation coefficient19:

SE(ℎFalc
2 ) ≈ 4 V ar(rMZ) + V ar(rDZ) = 4

(1 − rMZ
2 )2

NMZ
+

(1 − rDZ
2 )2

NDZ

SE(cFalc
2 ) ≈ 4V ar(rDZ) + V ar(rMZ) = 4

(1 − rDZ
2 )2

NDZ
+

(1 − rMZ
2 )2

NMZ

Then using the estimated standard errors, we can construct approximate 95% Wald-type 

confidence intervals for h2 and c2. However, we demonstrate through simulations that the 

aforementioned standard errors can produce poor coverage rates of the true heritability 

parameter. On the otherhand, our proposed GEE2-Falconer approach gives robust standard 

error estimates for the estimated heritability parameter. Additionally, although the traditional 

Falconer’s method cannot adjust for covariate effects, we show that the GEE2 version 

of Falconer’s method can incorporate covariate effects for both mean and variance-level 

parameters.

In the following section, we develop a unified framework for fitting both the NACE 

and Falconer’s methods using a “GEE2” approach. Our proposed approach provides the 

flexibility to adjust for covariates (in both mean or variance-level parameters) and can 

accommodate inference of heritability for non-normal traits by generating robust standard 

error estimates.

2.3 ∣ GEE2 ACE Model for Twin Studies

Liang and Zeger20 originally proposed the “GEE1” estimating equations which allow valid 

large-sample estimation and inferences on first order moment parameters (e.g. mean-level 

parameters “β”), while allowing all higher-order moments to be misspecified. The essential 

assumption of GEE1 is that the trait is some member of the linear exponential family 

with only the first-moment structure required to be correctly specified, e.g. E(yz) = xz
⊺β (or 

g−1(xz
⊺β) if using a link function).

However, in applications where one is interested in conducting inference on both mean 

and variance-level parameters, GEE1 is no longer applicable. Prentice and Zhao21 extended 

GEE1 by proposing the “GEE2” estimating equations which allow for valid inference on 

both mean and variance level-parameters with minimal distributional assumptions. The 

key assumption of GEE2 is that y is a member of the quadratic exponential family with 

the first two moments correctly specified (i.e. E(yz) and Cov(yz)); while all higher-order 

moments are allowed to be misspecified. If the aforementioned assumptions of GEE2 are 

satisfied, then GEE2 can consistently jointly estimate both mean-level parameters (β) and 
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variance-level parameters (α), as well as provide valid Wald tests and confidence intervals 

for all parameters. See21,22,23 for a complete review of GEE2. We show that both the NACE 

and Falconer’s method can be fit within a unified GEE2 framework.

2.3.1 ∣ GEE2-NACE—We will first derive the NACE model under GEE2 framework, 

where we use the same notation and assumptions from Section 2.1 (e.g. assume the 

individual ACE variance component parameters are the same for both MZ and DZ twins). 

Let the outcome for a given pair of twins yz = (yz1, yz2) be an arbitrary member of the 

quadratic exponential family with mean parameters (β) and variance parameters (α):

f(yz ∣ β, α) = exp ℎ(β, α)⊺yz + c(β, α) + d(yz) + yz
⊺D(β, α)yz

Without loss of generality, assume β = 0 is fixed, and let α = (σA
2 , σC

2 , σE
2 ) be 

the variance parameters. Then define Γz and γz to be the population and sample 

variances in the following vectorized form Γz = (σA
2 + σC

2 + σE
2 , σA

2 + σC
2 + σE

2 , wzσA
2 + σC

2 )⊺

and γz = (yz1
2 , yz2

2 , yz1yz2)⊺. Define fz = γz − Γz. Then Prentice and Zhao21 derived the 

following estimating equations assuming yz belongs to the quadratic exponential family:

uz(α) = Dz
⊺Ωz

−1fz = 0, where Dz = ∂Γz
∂α⊺ , Ωz = [Cov(γz)] (4)

Note that Ωz is the “working covariance structure” of the sample covariance vector γz. 

Recall from GEE2 theory that only E(yz) and Cov(yz) = Σz are required to be correctly 

specified, whereas the working covariance structure Ωz is allowed to be misspecified and 

one can still obtain valid inference for both mean and variance parameters (β, α) in large 

samples. The “normal working covariance”21 for the GEE2-NACE model is defined as:

Ωz, Norm =

2(σA
2 + σC

2 + σE
2 )2 2(wzσA

2 + σC
2 )2 2(σA

2 + σC
2 + σE

2 )(wzσA
2 + σC

2 )

2(wzσA
2 + σC

2 )2 2(σA
2 + σC

2 + σE
2 )2 2(σA

2 + σC
2 + σE

2 )(wzσA
2 + σC

2 )

2(σA
2 + σC

2 + σE
2 )(wzσA

2 + σC
2 ) 2(σA

2 + σC
2 + σE

2 )(wzσA
2 + σC

2 ) (wzσA
2 + σC

2 )2 + (σA
2 + σC

2 + σE
2 )2

Put simply, the normal working covariance assumes that all moments of yz follow a 

multivariate normal distribution. Given an initial estimate α0, a modified Newton-Raphson 

algorithm is used to iteratively update the estimator as follows21:

αu = α0 + ( ∑
1

N
Dz

⊺Ωz
−1Dz)−1( ∑

1

N
Dz

⊺Ωz
−1fz)

α = α0
. (5)

Next, the following robust estimator for Cov(α) is used21:
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Cov(α) = N−2Ψ−1 ∑
1

N
Dz

⊺Ωz
−1fzfz

⊺Ωz
−1Dz Ψ−1

α = α
where Ψ

= N−1∑
1

N
Dz

⊺Ωz
−1Dz

(6)

Then robust standard errors for α can be obtained by taking the square-root of the diagonal 

of Cov(α). Note that 1
N Ψ−1 is the “model-based” variance of α, derived from the implied 

likelihood function which follows the quadratic exponential family. In general, this model

based variance estimator is incorrect when the implied likelihood function is misspecified. 

The inside “empirical-variance” term ∑1
N Dz

⊺Ωz
−1fzfz

⊺Ωz
−1Dz  is a consistent nonparametric 

estimator of the true variance of α. The reason these standard errors are “robust” is because 

although we allow Ωz = Cov(γz) to be misspecified when estimating α, the standard errors 

“correct” this by using a consistent nonparametric estimator of Cov(γz) through the inside

term fzfz
⊺ = (γz − Γz)(γz − Γz)⊺. In contrast, the standard errors for the traditional NACE 

model are completely determined by the multivariate normal likelihood function, which if 

misspecified, can lead to poor coverage rates of the true variance parameters.

Note in Supplemental Material Section 2, the estimating equations for the NACE and 

GEE2-NACE models are derived and shown to be identical, thus both models will 

produce identical point estimates (with perhaps slight differences due to different software 

implementations). However, we show through simulations that the GEE2-NACE model, 

which uses robust standard errors, provides a better coverage rate of the true heritability 

parameter given a non-normally distributed outcome.

Lastly, it is possible to allow the ACE variance components to differ as a function of 

covariates. For example, suppose one wants to allow the ACE variance components to 

vary as a function of sex. Then for a given twin pair, we can redefine the ACE variance 

components as follows:

g(σA
2 ) = a0 + a1Sex, g(σC

2 ) = c0 + c1Sex, g(σE
2 ) = e0 + e1Sex

where g(.) is a specified link function (e.g. identity or log-link), and Sex represents the sex 

of a given twin pair. Note that we assume both twins within a given pair have the same 

sex, thus we do not allow for the case of mixed-gender DZ twins. Now our new variance 

parameters of interest are: α = (a0, a1, c0, c1, e0, e1), and equations (5-6) can be used to 

obtain the estimates and standard errors. Finally, the heritabilities for males and females are 

defined as:

ℎMale
2 =

g−1(a0 + a1)
g−1(a0 + a1) + g−1(c0 + c1) + g−1(e0 + e1)

, ℎFemale
2 =

g−1(a0)
g−1(a0) + g−1(c0) + g−1(e0)
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Note that c2 and e2 for males and females would be defined similarly. The delta-method is 

used to obtain the final standard errors for ℎMale
2

, ℎFemale
2

. This framework can easily be 

extended to account for other covariate effects as long as the covariate takes on the same 

values within a given twin pair (e.g. age or family-level covariates). Accounting for ACE 

covariate effects with covariates that differ within a given twin pair is left for future work.

2.3.2 ∣ GEE2-Falconer—We now derive the GEE2 version of Falconer’s method. Recall 

from Section 2.2 that Falconer’s estimators allow the MZ and DZ population variance 

parameters to differ. Thus in deriving GEE2-Falconer, we assume a covariance matrix with 

two distinct parameters for MZ and DZ population variances (σMZ
2 , σDZ

2 ) and two distinct 

correlation parameters (ρMZ, ρDZ). Thus this approach provides a more flexible way of 

estimating heritability compared to NACE model which requires the MZ and DZ variance 

parameters to be the same. Then define the following quantities which will allow us to fit 

Falconer’s method within the same GEE2-framework presented in Section 2.3.1:

Cov(yz) =
σz2 σz2ρz

σz2ρz σz2
(population trait covariance, z = MZ or DZ)

g(σz2) = v0 + v1z (g is identity or log‐link)
ℎ(ρz) = p0 + p1z (ℎ is identity or Fisher’s Z‐transformation)
α = (v0, v1, p0, p1) (parameters to estimate)
Γz = (σz2, σz2, σz2ρz) (population covariance matrix in vectorized form)
γz = (yz1

2 , yz2
2 , yz1yz2) (sample covariance matrix in vectorized form)

Ωz = I2 (Identity matrix)

The above implies that σMZ
2 = g−1(v0 + v1), σDZ

2 = g−1(v0), ρMZ = h−1(p0 + p1), ρDZ = 

h−1(p0). Equations (5-6) can be used to obtain α and Cov(α) respectively, which then can be 

plugged in to get ρMZ, ρDZ, which then are plugged into Falconer’s equations (3) to get ℎ2
, 

c2. The delta-method is used to obtain the final standard errors and Wald-type confidence 

intervals for h2, c2.

Recall that Ωz = Cov(γz) encodes all assumptions about higher-order moments. Falconer’s 

estimators only use information from the first two moments thus ignoring all higher-order 

moments. Therefore we set Ωz = I2 so that Ω effectively drops out of equation (5) which is 

used to obtain the GEE2-Falconer point estimates.

Lastly, we show how GEE2-Falconer can allow heritability to vary as a function of 

covariates. For example, suppose we want to allow heritability to vary as a function of 

sex. Then define:

g(σz2) = v0 + v1z + v2Sex + v3Sex ∗ z
ℎ(ρz) = p0 + p1z + p2Sex + p3Sex ∗ z

where the new parameters of interest are α = (v0, v1, v2, v3, p0, p1, p2, p3). Notice that unlike 

GEE2-NACE, GEE2-Falconer requires covariate-zygosity interactions when allowing h2, c2 
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to vary as a function of covariates. These interaction terms allow the variance and covariance 

parameters to differ between MZ and DZ twins (we found through simulations that ignoring 

the interaction terms could lead to under-coverage of the true h2, results not shown). In 

contrast, the NACE model assumes all variance components are the same between MZ and 

DZ twins. Again, we can use equations (5-6) to obtain estimates and robust standard errors 

for α.

Then one can obtain sex-specific estimates of h2, c2 as follows:

ρMZ, Male = g−1(p0 + p1 + p2 + p3), ρDZ, Male = g−1(p0 + p2)
ρMZ, Female = g−1(p0 + p1), ρDZ, Female = g−1(p0)
ℎMale

2 = 2(ρMZ, Male − ρDZ, Male), cMale
2 = 2ρDZ, Male − ρMZ, Male

ℎFemale
2 = 2(ρMZ, Female − ρDZ, Female), cFemale

2 = 2ρDZ, Female − ρMZ, Female

More generally: to estimate the heritability ℎx
2 for a particular combination of covariates 

“x”, simply plug ρMZ, x, ρDZ, x into Falconer’s equations (3) and use the delta-method with 

Cov(α) to get the final standard errors for ℎx
2
, cx

2.

3 ∣ RESULTS

In Sections 3.1-3.6, we compare the following ACE models via simulations and application 

to the Minnesota Center for Twin and Family Research study: the normal ACE model 

(“NACE”), Falconer’s simple moment estimators (“Falconer”), and robust GEE2 versions of 

both models (“GEE2-NACE” and “GEE2-Falconer” respectively).

3.1 ∣ Estimating Heritability for a Heavy-Tailed Continuous Trait

Assume the outcome for a given twin pair follows a centered heavy-tailed multivariate 

t-distribution:

yz = (yz1, yz2) ∼ f(yz) =
Γ(v + 2

2 )

Γ(v
2 )vπ ∣ Σz ∣1 ∕ 2 [1 + 1

vyz
⊺Σz

−1yz]
−(v + 2)

2

Σz =
σA

2 + σC
2 + σE

2 wzσA
2 + σC

2

wzσA
2 + σC

2 σA
2 + σC

2 + σE
2

(7)

Then with σA
2 = 0.5, σC

2 = 0.3, σE
2 = 0.2, and v = 4.5, we simulate 1000 datasets according to 

(7), each with 700 MZ and 700 DZ twin pairs. Among the various models, we are interested 

in comparing the the following metrics of h2 and c2 across 1000 simulated datasets: the 

average point estimate, the standard deviation of the estimates (i.e. the “true standard error”), 

the average estimated standard error, and the confidence interval coverage rate (i.e. the 

proportion of all 1000 confidence intervals that contain the true parameter value).

From Table 1, we see the traditional NACE model has poor coverage for both h2 and c2 

(less than 75%), whereas GEE2-NACE attains coverage much closer to the nominal rate 
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of 95%. Notice that GEE2-NACE produces identical point estimates to the normal NACE, 

however, GEE2-NACE produces larger and more trustworthy standard errors. Table 1 clearly 

shows that the average estimated SE’s for the NACE significantly underestimate the true 

SE’s; whereas the average estimated SE’s for GEE2-NACE match up very well with the 

true SE’s. The reason the NACE estimated standard errors are incorrect is because they 

are based on Fisher’s Information matrix which is determined by the assumed likelihood 

function (normal) which is misspecified (the true likelihood is a heavy-tailed t-distribution). 

In contrast, GEE2-NACE uses robust sandwich standard errors that provide significantly 

better coverage of the true variance parameters.

Notice that GEE2-Falconer and Falconer’s method produce identical point estimates, 

however, GEE2-Falconer uses robust standard errors and thus attains significantly better 

coverage of the true heritability compared to Falconer’s method. A key point is that although 

the GEE2 models do not attempt to model the true parametric distribution of the trait 

(heavy-tailed t), they can nevertheless still attain approximately correct coverage rates of the 

true heritability parameter.

3.2 ∣ Estimating Heritability for Right-Skewed Over-Dispersed Count Data

For a given pair of twins, let yz = (yz1, yz2) ∼ bLGP (σA
2 + σC

2 + σE
2 , λ), where bLGP(.) is the 

bivariate Lagrangian Poisson distribution with dispersion parameter λ ∈ (−1, 1). Following 

Kirkpatrick and Neale15, we can use the RMKdiscrete R package24 to simulate from the 

bLGP distribution as follows:

For MZ twins:
Q0 ∼ LGP (σA

2 + σC
2 , λ)

Q1, Q2 ∼ LGP (σE
2 , λ)

Y1 = Q0 + Q1 and Y2 = Q0 + Q2

Y1, Y2 ∼ bLGP (σA
2 + σC

2 + σE
2 , λ)

For DZ twins:
Q0 ∼ LGP (0.5σA

2 + σC
2 , λ)

Q1, Q2 ∼ LGP (0.5σA
2 + σE

2 , λ)
Y1 = Q0 + Q1 and Y2 = Q0 + Q2

Y1, Y2 ∼ bLGP (σA
2 + σC

2 + σE
2 , λ)

where LGP(.) and bLGP(.) are the univariate and bivariate lagrangian 

poisson distributions respectively. Then we have the following distributional 

properties15: E(yz1) = E(yz2) =
σA

2 + σC
2 + σE

2

1 − λ , V ar(yz1) = V ar(yz1) =
σA

2 + σC
2 + σE

2

(1 − λ)3
, 

Cov(yMZ1, yMZ2) =
σA

2 + σC
2

(1 − λ)3
, Cov(yDZ1, yDZ2) =

0.5σA
2 + σC

2

(1 − λ)3
.

However, note that the above construction of the bivariate lagrangian poisson distribution 

may be invalid when λ < 0 (under-dispersion), but will hold when λ > 0 (over-dispersion).15 

In contrast, our GEE2 ACE models work for both underdispersed or overdispersed count 
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data. Nevertheless, we will only consider the case of over-dispersed count data with λ = 

0.35, σA
2 = 0.5, σC

2 = 0.3, and σE
2 = 0.2. One-thousand datasets were simulated, each with 700 

MZ twin pairs and 700 DZ twin pairs.

Notice from Table 2 that the same patterns from Section 3.1 hold. GEE2-NACE has 

significantly better coverage rates and more accurate estimated standard errors compared 

to the traditional NACE. The same result holds for GEE2-Falconer compared to Falconer’s 

method. Again, the main problem is that the average estimated standard errors for the 

NACE and Falconer’s method are significantly less than their true standard errors, thus 

yielding coverage rates much less than the nominal rate of 95%. In contrast, the robust 

GEE2-NACE and GEE2-Falconer models produce much more accurate standard errors and 

coverage rates closer to the nominal level. A key point is that although the GEE2 models 

do not attempt to model the true parametric distribution of the trait (Lagrangian Poisson), 

they can nevertheless still attain approximately correct coverage rates of the true heritability 

parameter.

To get a better sense of how sample size affects the GEE2 estimators of heritability, Table 

3 reports results using the same LGP simulation settings except now the number of MZ and 

DZ twin pairs is varied from 50 to 400 pairs each. Again, in all scenarios, the GEE2 average 

estimated standard errors more closely match the true standard errors and the coverage rates 

are much closer to 95% compared to the traditional NACE and Falconer methods. However, 

with sample sizes less than 400 MZ and 400 DZ pairs, the coverage rate for the true 

heritability drops below the nominal rate, but is nevertheless still substantially better than the 

non-GEE2 models. The drop in coverage may be due to the poor performance of GEE-type 

standard errors in smaller sample sizes, as well as the fact that twin studies generally need 

large sample sizes for accurate inference of heritability to begin with - see the Discussion 

section for more details.

Lastly, we wanted to investigate the performance of the GEE2 heritability estimators 

given an unequal number of MZ and DZ twins. For a normally distributed outcome, 

both25,26 suggest that an unequal number of MZ and DZ twins results in less power to 

detect significant genetic effects (i.e. wider confidence intervals for heritability), unless the 

heritability is large (>50%).25 Using the same simulation parameters for the right-skewed 

over-dispersed count outcome, except now with a total of 1000 twin pairs, we varied the 

ratio of MZ to DZ twins from 4:1, 3:2, 1:1, 2:3, and 1:4 (1000 simulation replicates per 

ratio setting). The results are given in Supplemental Table S1. Overall, the standard errors 

are relatively similar in the first four scenarios (ratio of MZ to DZ twins of 4:1, 3:2, 1:1, 

and 2:3), but tend to become slightly larger as the ratio deviates from 1. The standard errors 

are largest when there are many more DZ twins than MZ twins (1:4 scenario, 200 MZ pairs 

and 800 DZ pairs). Similar to25,26, as the ratio of MZ to DZ twins moves further away from 

1, GEE2-based confidence intervals for heritability may become slightly larger, especially if 

there are many more DZ than MZ twins.
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3.3 ∣ Scenario where the NACE Twin model is Biased, but Falconer’s Method Remains 
Unbiased

Recall from Section 2.2 that Falconer’s method allows the ACE variance parameters to differ 

between MZ and DZ twins, as long as the variance proportions (h2, c2, e2) are the same 

in MZ and DZ twins. In contrast, the NACE approach makes a stronger assumption that 

the individual variance components (σA
2 , σC

2 , σE
2 ) are equal for both MZ and DZ twins. In the 

existing literature for the twin NACE model, researchers have made no comments on how 

to address the scenario where the σA
2 , σC

2 , σE
2  variance components differ between MZ and 

DZ twins.7,8,9,10 Additionally, the assumption of equal variance parameters between MZ 

and DZ twins is a common criticism of twin studies.5 For example, there is some evidence 

that MZ twins are treated more similarly by their parents compared to DZ twins5: this may 

result in MZ twins having smaller shared family environmental variance (σC
2 ) compared to 

DZ twins. "Sibling contrast effects" can also lead to DZ twins having larger variance.11 Thus 

it would be beneficial to have methods for estimating heritability that are less sensitive to the 

assumption of equal variances between MZ and DZ twins (e.g. Falconer’s method).

A simulation study was performed where the MZ variance parameters were less than the 

DZ variance parameters by a constant scaling factor "τ", while the variance proportions (h2, 

c2, e2) were equal for both twin types. The trait was simulated from a bivariate normal 

distribution with:

V ar(yDZ) = σADZ
2 + σCDZ

2 + σEDZ
2 = .5 + .3 + .2 = 1

V ar(yMZ) = τ ∗ V ar(yDZ), τ = 0.5 to 1, increments of 0.1

Notice the ratio of the total MZ variance to DZ variance (τ) ranges from 0.5 times less to 1 

(equal). For each value of the variance scaling factor τ, 1000 datasets were simulated each 

with NMZ = NDZ = 700 pairs. From Figure 1, as the MZ variance becomes smaller relative 

to the DZ variance, the NACE heritability estimator becomes more biased, while Falconer’s 

method remains unbiased. The maximum bias (overestimation by 53.4%) occurs at τ = 0.5, 

with substantial bias (9.6%) still remaining for τ = 0.9.

Although not discussed in the literature7,8,9,10, we found that transforming the outcome by 

separately scaling the MZ and DZ variances each to 1 removed the bias (while combining 

MZ,DZ twins together and then scaling the variance to 1 does not remove the bias), results 

not shown. However, when interested in allowing heritability to differ by multiple covariates 

(especially continuous covariates), it is unclear how one should scale the outcome to remove 

this bias. Thus Falconer’s method (and GEE2-Falconer) may be preferred since it requires 

no data transformations/scaling to remain unbiased in this setting.

3.4 ∣ Allowing Heritability to vary as a Function of Sex

Here the ACE variance components are allowed to differ by sex. Following the notation 

and assumptions of Sections 2.1 and 2.3.1, let a0 = 0.3, a1 = 0.3, c0 = 0.4, c1 = −0.2, e0 = 

0.3, and e1 = −0.1. This implies that for males: σA
2 = 0.6, σC

2 = 0.2, E = 0.2 and for females: 
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σA
2 = 0.3, σC

2 = 0.4, σE
2 = 0.3. Two sample size scenarios were considered: 450 pairs in each 

of the following categories: MZ males, MZ females, DZ males, and DZ females; and only 

100 pairs in each category. For each of the two sample size scenarios, 1000 datasets were 

simulated. "NACE-S" and "Falconer-S" refer to the traditional NACE and Falconer models 

except fit stratified by sex. The results in Table 4 indicate that the average estimated standard 

errors for the GEE2 models match up well with the corresponding true standard errors, 

thus approximately achieving the correct coverage rates for the sex-specific heritability 

parameters.

Lastly, for a normally distributed trait, there does not appear to be any efficiency gain when 

jointly estimating heritability for both sexes in GEE2-NACE and GEE2-Falconer compared 

to NACE-S and Falconer-S which are fit separately to each sex. However, as shown in 

Sections 3.1-3.2, if the trait is non-normally distributed, then the GEE2 models should be 

preferred for their more robust confidence intervals.

3.5 ∣ Estimating Heritability for a Normally Distributed Trait with varying Sample Size

Assuming the outcome from each twin pair follows a bivariate normal distribution, we want 

to compare the size of the standard errors from the GEE2 and traditional methods, across 

a range of sample sizes. The normal NACE model should have the smallest standard errors 

here (since the model is correctly specified), and it is of interest to see how much larger the 

GEE2-NACE and GEE2-Falconer standard errors are. The outcome was simulated such that 

h2 = 0.5, c2 = 0.3, and e2 = 0.2. The range of sample sizes considered were 50 MZ and 50 

DZ pairs to 400 pairs each. From Table 5, notice for Npairs=50 that the average estimated 

standard error for the GEE2-NACE heritability estimator is larger by 0.01 (5.6%) compared 

to the NACE model, while GEE2-Falconer is larger by 0.04 (22.2%). For Npairs ≥100, 

there is no difference between NACE and GEE2-NACE, however, the average estimated 

standard errors of GEE2-Falconer are still larger by 0.02 (15.4%, Npairs=100), 0.01 (10%, 

Npairs=200) and 0.01(14.3%, Npairs=400).

3.6 ∣ Minnesota Center for Twin and Family Research Study (MCTFR)

The Minnesota Center for Twin and Family Research study (MCTFR)27,16 contains 8,405 

subjects clustered into 4-member families (each with 2 parents and 2 twins, either MZ or 

DZ). The overall goal of the study is to explore the genetic and environmental factors of 

substance abuse disorders. We consider five composite quantitative clinical phenotypes16, 

which were derived using a hierarchical factor analytic approach.28 These five phenotypes 

are: 1) Nicotine (NIC): composite measure of nicotine use and dependence, 2) Alcohol 

Consumption (CON): composite of measures of alcohol use frequency and quantity, 3) 

Illicit Drugs (DRG): composite of frequency of use of 11 different drug classes and DSM 

symptoms of drug dependence, 4) Behavioral Disinhibition (BD): composite of measures 

non-substance use behavioral disinhibition including symptoms of conduct disorder and 

aggression, and 5) Externalizing Factor (EXT): a composite measure of all four previous 

traits.

We considered a total of 936 MZ and 478 DZ twin pairs for each phenotype (all twins with 

non-missing phenotype data, parent data was not included). See Figure 2 for the histograms 
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of each phenotype; notice that all five phenotypes appear very right-skewed, non-normal, 

and do not appear to follow any standard parametric distributions. However, as long as 

the trait can be approximated by a member of the quadratic exponential family with the 

first two moments correctly specified, then it is not necessary to try and model the true 

parametric distribution of these traits, rather one can simply use GEE2 which produces a 

robust confidence interval of heritability. Note that the five substance abuse traits considered 

here were only measured once on each twin, when the twin cohort had a median age of 17.8 

years (standard deviation=0.7, min.= 16.6, max.=21). Later in Section 3.6.1 we consider 

a longitudinal measure of alcohol use. Lastly, for all five substance abuse traits, first an 

ordinary linear model was fit to regress out the effects of several covariates: Sex, Age, and 

the top 5 principle components; then the residuals were used as the new response for fitting 

the ACE models. Although the NACE and GEE2 models can directly adjust for covariate 

effects, the original Falconer’s method cannot. Thus in order to present a fair comparison 

between all models, the trait covariate-adjusted residuals were used as the outcome for all 

models. As a sensitivity analysis (results not shown), we compared h2, c2 estimates and 

standard errors between GEE2-Falconer when using the trait covariate-adjusted residuals 

compared to the original outcome while directly adjusting for the covariates in the mean 

function of the model. The results were nearly identical, differing by at most 0.01 units.

The results from Table 6 indicate several patterns. First, notice that GEE2-NACE 

and NACE model produce identical point estimates, however, GEE2-NACE produces 

larger and probably more trustworthy standard errors (as shown throughout all of 

simulations). Similarly, GEE2-Falconer and Falconer’s method produce identical point 

estimates, although the standard errors for GEE2-Falconer are likely more accurate (as 

shown throughout all simulations). Interestingly, Falconer’s method (and GEE2-Falconer) 

consistently produce smaller estimates of heritability compared to NACE (and GEE2

NACE). Recall that the NACE model assumes the population variances are equal between 

MZ and DZ twins, whereas Falconer’s method allows them to differ. Note that the ratio of 

the MZ to DZ sample variance for the five substance abuse traits is 0.95, 0.99, 0.89, 0.97, 

and 0.96 respectively. The fact that the observed sample variances differ between MZ and 

DZ twins (by at most 11%) may explain why the NACE and Falconer’s method produce 

different point estimates of heritability in Table 6 (with a maximum difference of 8% for 

DRG).

3.6.1 ∣ Allow h2, c2, e2 to vary as a Non-linear Function of Age in a 
Longitudinal Study—The MCTFR is a longitudinal study in which data was collected 

from the same cohort of twins at five different time periods: ages 11, 17, 20, 24, and 29. 

The five quantitative phenotypes in Table 6 were only available around age 17, however, 

additional phenotypes related to “alcoholism” were available at multiple time points (but 

not all time periods). The GEE2-Falconer model was used to jointly model the h2, c2, e2 

parameters from ages 17-29 for a count phenotype measure of alcohol use (values range 

from 0 to 5, larger values indicate greater alcohol use). See Supplemental Figure S1 for a 

histogram of the longitudinal alcohol phenotype.
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The GEE2-Falconer model was fit as described in Section 2.3.2, with the following 

modification to allow the h2, c2, e2 parameters to vary as a 2nd-degree polynomial function 

of age:

g(σz2) = v0 + v1z + v2Age + v3Age2 + v4Age ∗ z + v5Age2 ∗ z
ℎ(ρz) = p0 + p1z + p2Age + p3Age2 + p4Age ∗ z + p5Age2 ∗ z (8)

where Age is the age of a given twin pair, and Age2 = (Age − mean(Age))2 is the 

squared centered age of a given twin pair. Recall from Section 2.3.2 that covariate

zygosity interaction terms are necessary when incorporating ACE covariate effects for 

GEE2-Falconer. The interaction terms allow the correlations and ACE covariate effects 

to differ between MZ and DZ twins. For example, to estimate the heritability at age 17, 

the relevant covariate values are plugged into equation (8) to get ρMZ17, ρDZ17, then 

ℎ17
2 = 2(ρMZ17 − ρDZ17).

Although it’s straightforward to apply equations (4) and (6) in a cross-sectional study, it’s 

challenging to extend these to handle repeated measures in a longitudinal study. Equation 

(8) models the correlation between a pair of twins’ measures within a single time period, 

but treats the correlation across time periods or age groups (e.g. the correlation between 

a twin’s outcome at Age 17 and Age 29) as independent. In order to account for the 

correlation across time periods, we propose using the "cluster-bootstrap"29 when calculating 

standard errors and confidence intervals for h2, c2, e2, rather than equation (6). For the 

cluster-bootstrap, a single twin pair and all of its repeated measures are treated as a "cluster." 

These clusters are then resampled with replacement of size N (where N is the total number 

of clusters) and equal probability of selection. The model is then refit to the resulting 

bootstrap sample and h2, c2, e2, are re-estimated. This process was repeated 5000 times. The 

bootstrap 95% CIs are then calculated as the 2.5th and 97.5th percentiles of the bootstrap 

distributions of a given statistic. Bootstrap standard errors can be estimated as the standard 

deviation of the bootstrap distribution.

Figure 3 displays the point estimates and cluster-bootstrap 95% percentile confidence 

intervals for h2, c2, e2 at Ages 17-29. Notice that the non-shared environmental effect 

(e2) increases over time, while the shared environmental effect (c2) decreases. The genetic 

effect (h2) on the Alcohol Use trait remained relatively stable across the four time periods. 

Wald tests were used to check if h2, c2, e2 significantly changed from ages 17 to 29 (e.g. 

H0 : ℎ29
2 − ℎ17

2 = 0, wald‐stat = (ℎ29
2 − ℎ17

2 ) ∕ SE boot, where SE boot is estimated as the standard 

deviation of the bootstrap distribution of the numerator) and produced the following p-values 

respectively: 0.76, 0.066, and < 0.0001. Intuitively, these results may mean that as the 

twins age and become more independent, their non-shared environmental experiences have a 

greater influence on their alcohol use, whereas the effect of their shared-family environment 

decreases.

Lastly, two more points are worth highlighting from the results in Supplemental Table 

S2. Jointly modeling the Alcohol Use trait at all four time periods usually resulted in 

smaller standard errors compared to fitting separate univariate GEE2 models at each time 
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period. Interestingly, the cluster-bootstrap standard errors (which account for a twin pair’s 

correlation within each time period and across time periods) were nearly identical to the 

sandwhich standard errors that ignore the correlation between a twin pair’s outcome over 

time; although the cluster-bootstrap standard errors were consistently slightly larger.

4 ∣ DISCUSSION

Twin studies have proven to be powerful instruments in quantifying the genetic and 

environmental factors of complex phenotypes.2,1 In practice, the normal ACE model 

(“NACE”)7,8 and Falconer’s moment estimators6,5 are popular methods for estimating 

heritability in twin studies. We’ve shown that both models can be fit within a unified 

second-order generalized estimating equations framework (“GEE2”), which provides robust 

standard errors and can incorporate covariate effects for both mean and variance parameters 

(e.g. let heritability vary by sex or age as done in Sections 3.4 and 3.6.1). It’s worth 

emphasizing that the original version of Falconer’s method6 cannot directly adjust for 

covariate effects, whereas our GEE2-Falconer model can.

Researchers are often interested in estimating heritability for non-normal phenotypes (e.g. 

counts, binary, skewed or heavy-tailed continuous data). When interested in fitting an ACE 

model to a non-normal phenotype, one option is to try and parametrically model the true 

distribution.15,13,14,12 However, inferences on the variance components may be sensitive to 

departures from parametric distributional assumptions. Our simulations indicate that when 

the parametric distributional assumption is incorrect, Wald-type confidence intervals for 

the ACE variance parameters may significantly differ from the nominal rate. In addition, 

we’ve shown that as long as the trait can be approximated by a member of the quadratic 

exponential family, then it is not necessary to try and fit the true parametric distribution; 

rather one can simply use GEE2 which provides a robust confidence interval for the true 

heritability. The GEE2 model requires only the first two moments (i.e. mean and variance 

structures) to be correct, all other moments are allowed to be misspecified. In contrast, 

parametric models assume all moments (i.e. the likelihood function) are correct, and may 

lead to poor coverage rates when assumptions fail.

In Section 3.3, we demonstrated an important scenario where NACE produces biased 

estimates of heritability, while Falconer’s method remains unbiased. Specifically, the NACE 

assumes that the ACE variance components are equal for both MZ and DZ twins (e.g. 

σAMZ
2 = σADZ

2 ); whereas Falconer’s method allows the variance components to differ 

between twins, and only assumes the variance proportions are the same for both twin types 

(e.g. ℎMZ
2 = ℎDZ

2 ). A recent meta-analysis1 of all twin studies performed in the last 50 

years demonstrated that NACE and Falconer’s methods can produce substantially different 

estimates of heritability in practice (see their Supp. Figures 9-10 and Supp. Section 5.7). 

Our results highlight one possible explanation for these differences: if the magnitude of 

the ACE variance parameters differs between MZ and DZ twins (a common criticism 

of twin studies5), then the NACE will produce biased estimates of heritability, while 

Falconer’s method remains unbiased under weaker assumptions. Additionally, although 

far from solving the problem, this potential NACE-bias could be one of many factors 
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contributing to the “missing heritability phenomena” where several authors have suggested 

that twin/family studies may be overestimating heritability.30,31,32 Figure 1 shows that as 

the DZ trait-variance becomes larger than the MZ variance (which can happen due to 

sibling contrast effects11), then NACE over-estimates heritability. As discussed in Section 

3.3, one possible solution to remove the NACE bias is to first separately scale the MZ and 

DZ variances to 1. However, when interested in allowing heritability to differ by multiple 

covariates (especially continuous covariates), it is unclear how one should scale the outcome 

to remove this bias. Thus Falconer’s method (and GEE2-Falconer) may be preferred since 

it remains unbiased under weaker assumptions without requiring any data transformations/

scaling.

In practice, the large twin study meta-analysis of Polderman et al1 found that in the top 

8 countries with the most number of twin studies, the average number of twin pairs per 

study ranged from 579 to 2,104 with 5/8 of these countries all averaging >1000 twin 

pairs per study. Only 2 countries in the top 20 had an average sample size <100 twin 

pairs per study (71 and 83 respectively). Nevertheless, further research improving the 

small-sample performance of GEE2-heritability estimators may be warranted, such as using 

cluster-bootstrap based confidence intervals. 29

Another area for future work is "model-selection" for GEE2-based twin models. For 

example, what mean-level covariate effects should be included, should one use GEE2-NACE 

or GEE2-Falconer (we recommend the later due to the potential bias of GEE2-NACE 

demonstrated in Section 3.3), and what covariates should one allow heritability to differ 

by. Several information criteria have been proposed for model selection in GEE-type 

models.33,34,35 It would be interesting to try extending these methods to the GEE2-NACE 

and GEE2-Falconer twin models, especially for deciding which covariates affect heritability.

Although this paper focuses on the ACE model, all models considered can be extended to 

fit the “ADE” twin model, where “D” stands for genetic dominance effects. In practice, 

researchers typically fit an ACE model if rDZ > 0.5rMZ, and an ADE model when rDZ < 

0.5rMZ.5 However, we chose to focus on the ACE model for several reasons: 1) both36,4 

found that ignoring shared environmental effects lead to greater bias in estimated heritability 

compared to ignoring dominance or epistatic genetic effects. 2) Assuming the true model is 

ACDE, Wang et al 8 proved that σA
2  from a working ACE model is a consistent estimator 

of σA
2 + 1.5σD

2 ; while σA
2  from a working ADE model is a consistent estimator of σA

2 + 3σC
2 . 

Notice the working ACE model estimate of σA
2  only reflects genetic effects (both additive 

and dominant), while the working ADE model estimate of σA
2  is confounded/biased by 

shared environmental effects. Thus if the goal is to estimate heritability (the proportion of 

trait variance due to genetic effects), then the working ACE model seems preferable to the 

working ADE model under model misspecification. 3) The Minnesota Center for Twin and 

Family Research study (Section 3.6) focused on substance abuse disorder traits, which have 

been shown to have substantial shared family environmental effects.1

Lastly, although it is straightforward to use equations (4,6) to estimate heritability in a cross

sectional study, there are several challenges in extending these to estimating heritability 
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in a longitudinal study with repeated measures. For example, the application in Section 

3.6.1 had 4 repeated measures on each twin, for a total of 8 correlated measures within 

each twin pair. We proposed a simplified approach that treated the correlation between a 

twin’s repeated measures over time as independent, and accounted for this correlation when 

making inferences within a single time period by using the cluster-bootstrap.29 However, 

further research should be conducted in using GEE2 to jointly estimate heritability in 

longitudinal studies.

In summary, we’ve shown that given non-normal data, the traditional normal NACE or 

Falconer’s method may significantly undercover the true heritability parameter. In contrast, 

the proposed GEE2 models can obtain valid inference for the heritability of a wide variety 

of outcomes, such as: normal, binary, counts, and heavy-tailed or skewed continuous 

traits. The GEE2 framework requires only the first two moments (i.e. mean and variance 

structures) to be correctly specified, while all higher-order moments are allowed to be 

modeled incorrectly. We showed that both the traditional NACE and Falconer’s methods 

can be fit within a unified GEE2 framework which provides robust standard errors and can 

incorporate covariate effects in mean and variance-level parameters (e.g. let heritability vary 

as a function of age or sex). It is important to note that the traditional Falconer’s method6 

cannot directly adjust for covariate effects whereas our GEE2-Falconer model can. Finally, 

we demonstrated that if the ACE variance parameters differ between MZ and DZ twins, then 

the standard NACE produces biased estimates of heritability, while Falconer’s method still 

produces unbiased estimates under weaker assumptions. Therefore, we recommend GEE2

Falconer for estimating the heritability of non-normally distributed outcomes in future twin 

studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This research was supported by the NIH grant R01DA033958 (PI: Saonli Basu) and NIH grant T32GM108557 (PI: 
Wei Pan).

References

1. Polderman TJ, Benyamin B, De Leeuw CA, et al. Meta-analysis of the heritability of human traits 
based on fifty years of twin studies. Nature genetics 2015; 47(7): 702–709. doi: 10.1038/ng.3285 
[PubMed: 25985137] 

2. Neale M, Cardon L. Methodology for genetic studies of twins and families. 67. Springer Science & 
Business Media . 2013

3. Visscher PM, Hill WG, Wray NR. Heritability in the genomics era–concepts and misconceptions. 
Nature reviews. Genetics 2008; 9(4): 255. doi: 10.1038/nrg2322

4. Tenesa A, Haley CS. The heritability of human disease: estimation, uses and abuses. Nature 
Reviews. Genetics 2013; 14(2): 139. doi: 10.1038/nrg3377

5. Rijsdijk FV, Sham PC. Analytic approaches to twin data using structural equation models. Briefings 
in bioinformatics 2002; 3(2): 119–133. doi: 10.1093/bib/3.2.119 [PubMed: 12139432] 

6. Falconer DS. Introduction to quantitative genetics. Oliver And Boyd; Edinburgh; London . 1960.

Arbet et al. Page 19

Stat Med. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Rabe-Hesketh S, Skrondal A, Gjessing HK. Biometrical modeling of twin and family data using 
standard mixed model software. Biometrics 2008; 64(1): 280–288. [PubMed: 17484777] 

8. Wang X, Guo X, He M, Zhang H. Statistical inference in mixed models and analysis of twin and 
family data. Biometrics 2011; 67(3): 987–995. doi: 10.1111/j.1541-0420.2010.01548.x [PubMed: 
21306354] 

9. Feng R, Zhou G, Zhang M, Zhang H. Analysis of twin data using SAS. Biometrics 2009; 65(2): 
584–589. doi: 10.1111/j.1541-0420.2008.01098.x [PubMed: 18647295] 

10. McArdle JJ, Prescott CA. Mixed-effects variance components models for biometric family 
analyses. Behavior genetics 2005; 35(5): 631–652. doi: 10.1007/s10519-005-2868-1 [PubMed: 
16184490] 

11. Eaves LJ, Silberg JL. Parent–Child Feedback Predicts Sibling Contrast: Using Twin Studies to Test 
Theories of Parent–Offspring Interaction in Infant Behavior. Twin Research and Human Genetics 
2005; 8(1): 1–4. [PubMed: 15836803] 

12. Jamsen KM, Zaloumis SG, Scurrah KJ, Gurrin LC. Specification of generalized linear mixed 
models for family data using Markov Chain Monte Carlo Methods. Journal of Biometrics & 
Biostatistics 2012. doi: 10.4172/2155-6180.S1-003

13. Burton PR, Tiller KJ, Gurrin LC, Cookson WO, Musk AW, Palmer LJ. Genetic 
variance components analysis for binary phenotypes using generalized linear mixed models 
(GLMMs) and Gibbs sampling. Genetic epidemiology 1999; 17(2): 118–140. doi: 10.1002/
(SICI)1098-2272(1999)17:2<118::AID-GEPI3>3.0.CO;2-V [PubMed: 10414556] 

14. Scurrah KJ, Palmer LJ, Burton PR. Variance components analysis for pedigree-based censored 
survival data using generalized linear mixed models (GLMMs) and Gibbs sampling in BUGS. 
Genetic Epidemiology 2000; 19(2): 127–148. doi: 10.1002/1098-2272(200009)19:2<127::AID
GEPI2>3.0.CO;2-S [PubMed: 10962474] 

15. Kirkpatrick RM, Neale MC. Applying multivariate discrete distributions to genetically informative 
count data. Behavior genetics 2016; 46(2): 252–268. doi: 10.1007/s10519-015-9757-z [PubMed: 
26497008] 

16. McGue M, Zhang Y, Miller MB, et al. A genome-wide association study of behavioral 
disinhibition. Behavior genetics 2013; 43(5): 363–373. doi: 10.1007/s10519-013-9606-x 
[PubMed: 23942779] 

17. Boos D, Stefanski L. Essential Statistical Inference Theory and Methods. Springer, Berlin . 2013

18. Holst KK, Scheike T. mets: Analysis of Multivariate Event Times. 2017. R package version 1.2.2

19. Bowley A The standard deviation of the correlation coefficient. Journal of the American Statistical 
Association 1928; 23(161): 31–34. doi: 10.1080/01621459.1928.10502991

20. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986: 
13–22. doi: 10.1093/biomet/73.1.13

21. Prentice RL, Zhao LP. Estimating equations for parameters in means and covariances of 
multivariate discrete and continuous responses. Biometrics 1991: 825–839. doi: 10.2307/2532642 
[PubMed: 1742441] 

22. Ziegler A, Kastner C, Blettner M. The generalised estimating equations: an 
annotated bibliography. Biometrical Journal 1998; 40(2): 115–139. doi: 10.1002/
(SICI)1521-4036(199806)40:2<115::AID-BIMJ115>3.0.CO;2-6

23. Ziegler A Generalized Estimating Equations. New York: Springer . 2011

24. Kirkpatrick RM. RMKdiscrete: Sundry Discrete Probability Distributions. 2014. R package version 
0.1

25. Visscher PM. Power of the classical twin design revisited. Twin Research and Human Genetics 
2004; 7(5): 505–512.

26. Verhulst B A power calculator for the classical twin design. Behavior genetics 2017; 47(2): 255–
261. [PubMed: 27866285] 

27. Miller MB, Basu S, Cunningham J, et al. The Minnesota Center for Twin and Family Research 
genome-wide association study. Twin Research and Human Genetics 2012; 15(06): 767–774. doi: 
10.1017/thg.2012.62 [PubMed: 23363460] 

28. Hicks BM, Schalet BD, Malone SM, Iacono WG, McGue M. Psychometric and genetic 
architecture of substance use disorder and behavioral disinhibition measures for gene association 

Arbet et al. Page 20

Stat Med. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies. Behavior genetics 2011; 41(4): 459–475. doi: 10.1007/s10519-010-9417-2 [PubMed: 
21153693] 

29. Cameron AC, Gelbach JB, Miller DL. Bootstrap–based improvements for inference with clustered 
errors. The Review of Economics and Statistics 2008; 90(3): 414–427.

30. Maher B Personal genomes: The case of the missing heritability. Nature News 2008; 456(7218): 
18–21. doi: 10.1038/456018a

31. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. 
Nature 2009; 461(7265): 747. doi: 10.1038/nature08494 [PubMed: 19812666] 

32. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: Genetic 
interactions create phantom heritability. Proceedings of the National Academy of Sciences 2012; 
109(4): 1193–1198. doi: 10.1073/pnas.1119675109

33. Pan W Akaike’s information criterion in generalized estimating equations. Biometrics 2001; 57(1): 
120–125. [PubMed: 11252586] 

34. Hin LY, Wang YG. Working-correlation-structure identification in generalized estimating 
equations. Statistics in medicine 2009; 28(4): 642–658. [PubMed: 19065625] 

35. Gosho M, Hamada C, Yoshimura I. Modifications of QIC and CIC for selecting a working 
correlation structure in the generalized estimating equation method. Japanese Journal of 
Biometrics 2011; 32(1): 1–12.

36. Zaitlen N, Kraft P, Patterson N, et al. Using extended genealogy to estimate components of 
heritability for 23 quantitative and dichotomous traits. PLoS Genet 2013; 9(5): e1003520. doi: 
10.1371/journal.pgen.1003520 [PubMed: 23737753] 

Arbet et al. Page 21

Stat Med. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
NACE is biased given unequal MZ and DZ variance while Falconer’s method remains 

unbiased
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FIGURE 2. 
Histograms of 5 substance-abuse traits from the Minnesota Center for Twin and Family 

Research study. For each trait, there were 936 MZ and 478 DZ twin pairs.

Nicotine (NIC): composite measure of nicotine use and dependence; Alcohol Consumption 

(CON): composite of measures of alcohol use frequency and quantity; Illicit Drugs (DRG): 

composite of frequency of use of 11 different drug classes and DSM symptoms of 

drug dependence; Behavioral Disinhibition (BD): composite of measures non-substance 

use behavioral disinhibition including symptoms of conduct disorder and aggression; 

Externalizing Factor (EXT): a composite measure of all five previous traits
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FIGURE 3. 
GEE2-Falconer model with h2, c2, e2 allowed to vary as a non-linear function of Age (with 

95% confidence intervals) for a longitudinal alcohol use trait from the Minnesota Center 

for Twin and Family Research study. There were 611 MZ and 341 DZ twin pairs with the 

outcome measured at all ages 17, 20, 24, and 29.

h2, c2, e2: proportion of total trait variance due to additive genetic effects, common shared 

environmental effects, and unique non-shared environmental effects respectively
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TABLE 1

Heavy-tailed trait simulation: mean point estimates (ℎ̄2, c̄2), true standard errors “S E” (standard deviation of 

estimates across all simulated datasets), mean estimated standard errors (SĒ), and 95% confidence interval 

coverage rates of h2 = 0.5 and c2 = 0.3 across 1000 simulated datasets

Model ℎ̄2(SE, SĒ) c̄2(SE, SĒ) Coverage (h2, c2)

NACE 0.50 (0.10, 0.05) 0.30 (0.09, 0.05) (0.74, 0.74)

GEE2-NACE 0.50 (0.10, 0.09) 0.30 (0.09, 0.08) (0.95, 0.94)

Falconer 0.50 (0.10, 0.04) 0.30 (0.09, 0.04) (0.58, 0.60)

GEE2-Falconer 0.50 (0.10, 0.10) 0.30 (0.09, 0.09) (0.95, 0.95)
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TABLE 2

Right-skewed over-dispersed count trait simulation: mean point estimates (ℎ̄2, c̄2), true standard errors “S E” 

(standard deviation of estimates across all simulated datasets), mean estimated standard errors (SĒ), and 95% 

confidence interval coverage rates of h2 = 0.5 and c2 = 0.3 across 1000 simulated datasets, each with 700 MZ 

and 700 DZ twin pairs.

Model ℎ̄2(SE, SĒ) c̄2(SE, SĒ) Coverage (h2, c2)

NACE 0.50 (0.11, 0.05) 0.30 (0.10, 0.05) (0.63, 0.67)

GEE2-NACE 0.50 (0.11, 0.11) 0.30 (0.10, 0.10) (0.95, 0.94)

Falconer 0.50 (0.11, 0.04) 0.30 (0.10, 0.04) (0.54, 0.55)

GEE2-Falconer 0.50 (0.11, 0.12) 0.30 (0.10, 0.10) (0.95, 0.94)
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TABLE 3

Right-skewed over-dispersed count trait simulation with varying sample size: "Npairs" is the number of MZ 

and DZ twin pairs (e.g. Npairs=50 means there were 50 MZ twin pairs and 50 DZ twin pairs). The number 

outside parentheses is the mean estimate of heritability (ℎ̄2) across 1000 simulation replicates. Numbers inside 

parentheses: true standard errors (standard deviation of heritability estimates across all simulated datasets), 

mean estimated standard error, and 95% confidence interval coverage rate of h2 = 0.5.

Npairs NACE GEE2-NACE Falconer GEE2-Falconer

50 0.48 (0.29, 0.14, 0.62) 0.51 (0.40, 0.33, 0.90) 0.50 (0.39, 0.16, 0.55) 0.51 (0.40, 0.33, 0.88)

100 0.49 (0.25, 0.11, 0.62) 0.50 (0.29, 0.27, 0.91) 0.50 (0.29, 0.11, 0.54) 0.50 (0.30, 0.26, 0.92)

200 0.50 (0.20, 0.09, 0.64) 0.51 (0.21, 0.20, 0.93) 0.51 (0.21, 0.08, 0.53) 0.51 (0.22, 0.20, 0.91)

400 0.50 (0.15, 0.07, 0.63) 0.51 (0.15, 0.15, 0.95) 0.50 (0.15, 0.06, 0.53) 0.50 (0.15, 0.15, 0.94)
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TABLE 4

Simulation allowing heritability (h2) to vary by sex: average point estimates (ℎ̄Male
2 , ℎ̄Female

2 ) across 1000 

simulated datasets. In parentheses: true standard error (standard deviation of estimates across all datasets), 

average estimated standard error, and 95% confidence interval coverage rate. NACE-S and Falconer-S are the 

traditional NACE/Falconer methods except fit stratified by sex. "Npairs" is the number of twin pairs in each 

category: MZ male, MZ female, DZ male and DZ female.

Npairs Model ℎ̄Male
2 = 0.60 ℎ̄Female

2 = 0.30

450 NACE-S 0.60 (0.07, 0.07, 0.95) 0.30 (0.07, 0.07, 0.95)

GEE2-NACE 0.60 (0.07, 0.07, 0.96) 0.30 (0.07, 0.07, 0.94)

Falconer-S 0.60 (0.08, 0.06, 0.84) 0.30 (0.08, 0.06, 0.83)

GEE2-Falconer 0.60 (0.08, 0.08, 0.96) 0.30 (0.08, 0.08, 0.95)

100 NACE-S 0.59 (0.14, 0.13, 0.90) 0.31 (0.15, 0.15, 0.96)

GEE2NACE 0.59 (0.15, 0.14, 0.92) 0.31 (0.15, 0.14, 0.94)

Falconer-S 0.60 (0.17, 0.12, 0.82) 0.31 (0.18, 0.12, 0.82)

GEE2-Falconer 0.60 (0.17, 0.16, 0.92) 0.31 (0.17, 0.17, 0.95)
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TABLE 5

Estimating heritability for a normally distributed trait with varying sample size: "Npairs" is the number of 

MZ and DZ twin pairs (e.g. Npairs=50 means there were 50 MZ twin pairs and 50 DZ twin pairs). In each 

setting, the average estimated heritability (outside the parentheses) is reported across 1000 simulated datasets. 

In parentheses: true standard error (standard deviation of estimates across all simulation replicates), average 

estimated standard error, and 95% confidence interval coverage rate. The true h2 = 0.5, c2 = 0.3, e2 = 0.2.

Npairs NACE GEE2-NACE Falconer GEE2-Falconer

50 0.50 (0.18, 0.18, 0.89) 0.50 (0.19, 0.19, 0.92) 0.51 (0.23, 0.16, 0.82) 0.51 (0.23, 0.22, 0.93)

100 0.50 (0.14, 0.13, 0.94) 0.50 (0.14, 0.13, 0.94) 0.50 (0.16, 0.11, 0.84) 0.50 (0.16, 0.15, 0.95)

200 0.50 (0.10, 0.10, 0.95) 0.50 (0.10, 0.10, 0.95) 0.50 (0.11, 0.08, 0.84) 0.50 (0.11, 0.11, 0.94)

400 0.50 (0.07, 0.07, 0.94) 0.50 (0.07, 0.07, 0.94) 0.50 (0.08, 0.06, 0.83) 0.50 (0.08, 0.08, 0.94)
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TABLE 6

Minnesota Center for Twin and Family Research study: point estimates and standard errors (in parentheses) 

for 5 substance-abuse traits

Trait Model h 2 c 2

NIC NACE 0.53 (0.07) 0.19 (0.07)

GEE2-NACE 0.53 (0.10) 0.19 (0.09)

Falconer 0.48 (0.05) 0.24 (0.05)

GEE2-Falconer 0.49 (0.10) 0.23 (0.09)

CON NACE 0.44 (0.06) 0.29 (0.06)

GEE2-NACE 0.44 (0.09) 0.29 (0.08)

Falconer 0.40 (0.05) 0.32 (0.05)

GEE2-Falconer 0.40 (0.09) 0.32 (0.08)

DRG NACE 0.50 (0.07) 0.20 (0.07)

GEE2-NACE 0.50 (0.13) 0.20 (0.12)

Falconer 0.42 (0.06) 0.26 (0.05)

GEE2-Falconer 0.42 (0.12) 0.26 (0.11)

BD NACE 0.67 (0.07) 0.08 (0.07)

GEE2-NACE 0.67 (0.09) 0.08 (0.09)

Falconer 0.63 (0.06) 0.12 (0.05)

GEE2-Falconer 0.63 (0.09) 0.12 (0.09)

EXT NACE 0.60 (0.06) 0.18 (0.06)

GEE2-NACE 0.60 (0.09) 0.18 (0.09)

Falconer 0.55 (0.05) 0.23 (0.05)

GEE2-Falconer 0.55 (0.09) 0.22 (0.08)

Nicotine (NIC): composite measure of nicotine use and dependence; Alcohol Consumption (CON): composite of measures of alcohol use 
frequency and quantity; Illicit Drugs (DRG): composite of frequency of use of 11 different drug classes and DSM symptoms of drug dependence; 
Behavioral Disinhibition (BD): composite of measures non-substance use behavioral disinhibition including symptoms of conduct disorder and 
aggression; Externalizing Factor (EXT): a composite measure of all five previous traits
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