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Abstract
The objectives of the study were to use tumor size data from 10 phase II/III atezoli-
zumab studies across five solid tumor types to estimate tumor growth inhibition (TGI) 
metrics and assess the impact of TGI metrics and baseline prognostic factors on over-
all survival (OS) for each tumor type. TGI metrics were estimated from biexponential 
models and posttreatment longitudinal data of 6699 patients. TGI-OS full models 
were built using parametric survival regression by including all significant baseline 
covariates from the Cox univariate analysis followed by a backward elimination step. 
The model performance was evaluated for each trial by 1000 simulations of the OS 
distributions and hazard ratios (HR) of the atezolizumab-containing arms versus the 
respective controls. The tumor growth rate estimate was the most significant predic-
tor of OS across all tumor types. Several baseline prognostic factors, such as inflam-
matory status (C-reactive protein, albumin, and/or neutrophil-to-lymphocyte ratio), 
tumor burden (sum of longest diameters, number of metastatic sites, and/or presence 
of liver metastases), Eastern Cooperative Oncology Group performance status, and 
lactate dehydrogenase were also highly significant across multiple studies in the final 
multivariate models. TGI-OS models adequately described the OS distribution. The 
model-predicted HRs indicated good model performance across the 10 studies, with 
observed HRs within the 95% prediction intervals for all study arms versus controls. 
Multivariate TGI-OS models developed for different solid tumor types were able to 
predict treatment effect with various atezolizumab monotherapy or combination regi-
mens and could be used to support design and analysis of future studies.
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INTRODUCTION

The use of tumor dynamics model-based approaches has be-
come increasingly attractive to evaluate treatment response for 
decision-making through the course of clinical development in 
oncology.1–3 Model-based tumor dynamics metrics (including 
early shrinkage, time to regrowth, on-treatment growth rate, 
or the full dynamic profile) have been demonstrated to predict 
overall survival (OS) in different types of solid tumors, includ-
ing colorectal cancer,4–6 breast cancer,7,8 non-small cell lung 
cancer (NSCLC),9–11 locally advanced and metastatic urothe-
lial carcinoma (mUC),12,13 renal cell carcinoma (RCC),14,15 
and several other tumor types16–19 for a variety of treatments. 
Leveraging tumor dynamics as a biomarker to predict OS 
in phase II trials with cancer immunotherapy (CIT) is not a 
novel concept, but longitudinal tumor response to CIT treat-
ment may elicit different patterns compared with treatments 
with other mechanisms of action, such as delayed responses or 
increased tumor burden before regression.10,12,13,16

Atezolizumab is a humanized immunoglobulin G1 mono-
clonal antibody that targets human programmed death-ligand 
1 (PD-L1) on tumor-infiltrating immune cells (ICs) and tumor 
cells (TCs) and inhibits PD-L1 interaction with programmed 
death 1 (PD-1) and B7.1 receptors, thereby sending inhibitory 
signals to T cells.20–22 Atezolizumab is approved to treat locally 
advanced or metastatic NSCLC, mUC, extensive-stage small-
cell lung cancer (SCLC), locally advanced or metastatic triple-
negative breast cancer (TNBC), and unresectable hepatocellular 
carcinoma (HCC) by the US Food and Drug Administration 
(US FDA) and/or the European Medicines Agency.23,24

The association between tumor growth inhibition (TGI) 
metrics and OS for atezolizumab was previously investigated 

in patients with NSCLC who progressed during or follow-
ing prior platinum chemotherapy, using atezolizumab and 
control (docetaxel) data from a phase II trial (POPLAR) for 
model development and a phase III trial (OAK) as exter-
nal evaluation.10 A TGI-OS model, with on-treatment tumor 
growth rate constant (KG) as estimated using time profiles 
of the sum of longest diameters (target lesions per response 
evaluation criteria in solid tumours [RECIST] 1.1), albumin 
(ALB), and number of metastatic sites as independent prog-
nostic factors, was able to predict the OS hazard ratio (HR) 
in subpopulations of patients with varying baseline PD-L1 
expression in both trials. This model will be referred to 
herein as the “historical” OS model. In POPLAR and OAK, 
slower KG in the atezolizumab arm when compared with the 
docetaxel (control) arm predicted the OS benefit, whereas 
the other TGI metrics (i.e., time to growth, early change in 
tumor size, and tumor shrinkage rate constant), as well as 
classical clinical end points of overall response rate (ORR) 
and progression-free survival (PFS), did not predict the ob-
served difference in OS in the two studies.10 Although the 
link between tumor dynamics and OS was shown for other 
CITs,12,13,16,25 this is the only analysis where the difference 
in TGI metrics (namely KG) across treatment arms in ran-
domized studies was shown to predict treatment effect (HR 
of investigational treatment vs. control) on OS. Among the 
various tumor dynamic-based approaches to predict OS, the 
use of KG estimates seems to be quite promising as demon-
strated in many studies.6,10,15,18,25

Limitations of the previous atezolizumab study10 are 
the use of only one tumor type and the model development 
was based on data from a single clinical trial. To deter-
mine whether the TGI-OS platform can be generalized, the 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The association between tumor growth inhibition (TGI) metrics and overall survival 
(OS) for atezolizumab was previously investigated in patients with non-small cell 
lung cancer from a phase II trial for model development and a phase III trial as exter-
nal evaluation.
WHAT QUESTION DID THIS STUDY ADDRESS?
Whether the TGI-OS platform could be generalized for atezolizumab by the inclusion 
of 10 clinical studies across five solid tumor types.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The TGI-OS models predicted the treatment effects of atezolizumab-containing and 
control arms based on the comparison of hazard ratios. The tumor growth rate was 
the most significant predictor of OS across tumor types, and inflammatory status and 
tumor burden were also strong predictors.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
Identification of patient-level baseline prognostic factors and early on-treatment in-
formation can be leveraged to predict longer term survival benefit in cancer immu-
notherapy studies in multiple cancer types and support early development decisions 
with combination treatments.
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inclusion of other studies and tumor types should be ex-
plored. The objectives of our analysis were to develop mul-
tivariate TGI-OS models to predict the OS distribution and 
the benefit of atezolizumab-containing treatments compared 
with controls in 10 clinical studies stratified by five solid 
tumor types. The goal is to identify appropriate patient-level 
baseline prognostic factors as well as individualized, early 
on-treatment information in the form of KG to predict longer 
term survival benefit in CIT studies in multiple cancer types 
and to identify patients who are most likely to benefit from 
these therapies. Ultimately, a successful confirmation of the 
TGI-OS platform can facilitate application across other CITs 
to support phase II study design, end-of-phase II decisions, 
and phase III planning and analysis particularly with combi-
nation treatments.1–3

METHODS

The clinical trial protocols of the 10 trials have been previ-
ously described26–35 and are summarized in Table 1. Across 
all trials, patients in the atezolizumab-containing arm re-
ceived either atezolizumab intravenously at 840 mg every 2 
weeks (IMpassion130, triple negative breast cancer [TNBC]) 
or 1200 mg every 3 weeks (the other nine trials). The 10 trials 
were conducted in five solid tumor types—NSCLC, SCLC, 
TNBC, RCC, and mUC—in accordance with the Declaration 
of Helsinki after approval by institutional review boards or 
independent ethics committees. All patients provided written 
informed consent.

Tumor lesions were measured using computed tomography 
or magnetic resonance imaging at baseline and at regular in-
tervals afterward (approximately every 6–9  weeks for 1 year 
and then every 9–12 weeks thereafter until disease progression, 
death, or loss of follow-up). Longitudinal tumor size data, de-
fined as the sum of the longest diameters of target lesions at each 
visit according to RECIST 1.1, were used for the estimation of 
TGI metrics. Patients with at least baseline and one postbaseline 
tumor size measurements were defined as evaluable, and data 
from patients who only had baseline tumor assessments were 
excluded from the analysis.

TGI modeling methods have been previously published.10 
Briefly, the biexponential TGI model proposed by Stein 
et al.18 was fit to the longitudinal tumor size data set by tumor 
type. In the model, TS0 is the model-estimated tumor size at 
the start of treatment (time = 0), KG is the tumor growth rate 
constant (1/week), and KS is the tumor shrinkage rate con-
stant (1/week). The model was implemented as a nonlinear 
mixed effect model using NONMEM version 7.4. In each of 
the models by tumor type, a log-normal distribution was used 
to characterize the interindividual variability of KG and KS 
by treatment, with a common log-normal distribution for TS0 
within the same tumor type, and an additive residual error was 
described by a normal distribution. TGI model evaluation was 

conducted using standard goodness-of-fit plots. Individual 
post hoc parameter estimates from the model were used as 
TGI metrics in the subsequent TGI-OS modeling.

The TGI-OS model was developed and evaluated as previ-
ously described.10 The impact on OS from a predefined list of 
potential covariates, which consisted of individual baseline 
prognostic factors for each tumor type (Table S1) and TGI 
metrics, was first explored using the Kaplan–Meier method. 
Baseline prognostic factors investigated across the five tumor 
types included variables associated with tumor burden (base-
line tumor size [SLD], number of metastatic sites [MET], 
liver metastasis), inflammatory status (ALB, neutrophil-
to-lymphocyte ratio [NLR], C-reactive protein [CRP]), and 
general prognostic factors (Eastern Cooperative Oncology 
Group performance status [ECOG], lactate dehydrogenase 
[LDH], alkaline phosphatase). In addition, race (White vs. 
non-White or Asian vs. non-Asian) and tumor-specific vari-
ables, such as hemoglobin, time since initial diagnosis, cal-
cium, and sarcomatoid histology for RCC, were also tested in 
tumor-specific TGI-OS models. PD-L1, which is expressed 
on TCs and tumor-infiltrating ICs on a wide variety of cancer 
expressions and is targeted by atezolizumab, was scored by 
immuno-histochemistry as percentage of PD-L1–expressing 
TC (TC3 ≥ 50%, TC2 ≥ 5%, and <50%, TC1 ≥ 1% and <5%, 
and TC0  <  1%) and as percentage of PD-L1–expressing 
tumor area for IC (IC3 ≥ 10%, IC2 ≥ 5%, and <10%, IC1 ≥ 
1% and <5%, and IC0 < 1%).36

Univariate screening of the covariates was evaluated using 
Cox regression analyses, and all significant covariates with a 
significance level of p < 0.05 per the log-likelihood ratio test 
were included in the full model. If several covariates relating to 
the same variable were significant in the Cox analysis, such as 
dichotomizing race to White versus non-White or Asian versus 
non-Asian, only the one with the best likelihood improvement 
was retained in the full model. The continuous covariates were 
not normalized by median values.

The full model parameters were estimated based on a para-
metric survival regression. The probability density function 
that best described the observed survival times was selected 
among normal, log-normal, Weibull, logistic, log-logistic, and 
exponential by using the difference in Akaike information cri-
terion of the alternative models. Backward stepwise elimina-
tion of the full model was performed using a significance level 
of p < 0.01, and this resulted in the final model, in which all co-
variates were significant. The TGI-OS models were developed 
independently by tumor type, and model development and 
evaluation were implemented in R version 3.6.3 (R Foundation 
for Statistical Computing).

The model performances were evaluated using a 
simulation-based approach. Baseline prognostic factors as 
well as KG were resampled from observed values in the 
analysis data set for each tumor type. Model parameters 
were sampled from the estimated mean values and uncer-
tainty in parameter estimates from the TGI-OS model for 
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each of the simulated study replicate. Censoring was sim-
ulated by sampling patient study duration from a uniform 
distribution based on observed censoring data as shown in 
Figure S1. Simulation results of the TGI-OS model were fur-
ther summarized as OS HR by comparing the atezolizumab-
containing arm(s) to the respective control arm of each 
clinical trial. OS distributions and HR of the atezolizumab-
containing arm versus control of each trial were simulated 
1000 times.

The performance of the TGI-OS model for NSCLC was 
further evaluated using external validation by randomly split-
ting the data from 70% of the patients into a training set and 
30% into a testing set and using the model developed from 
the training set to predict the OS outcome of the patients in 
the testing set. The model performance was evaluated based 
on the concordance index (c-index).37

RESULTS

Data from one phase II and nine phase III atezolizumab trials 
were included in the analysis. Among these 10 trials, treat-
ment consisted of atezolizumab monotherapy, atezolizumab 
in combination with chemotherapy (e.g., carboplatin), and/
or targeted therapy (e.g., bevacizumab), and the active con-
trol arm generally included the corresponding combination 
treatment, chemotherapy (e.g., docetaxel), or targeted ther-
apy (e.g., sunitinib), as shown in Table 1. A total of 6699 of 
the 7367 patients randomized (90.0%) to the 10 trials were 
considered TGI evaluable. The numbers of randomized and 
TGI-evaluable patients by trial are listed in Table 1. Of the 
five tumor types included in the analysis, the majority of the 
data (57%) were in NSCLC. A total of 43,447 baseline and 
posttreatment tumor assessments from the TGI-evaluable pa-
tients were used for TGI model development, with an average 
of 6.49 tumor assessments per patient. The median duration 
of tumor assessments ranged between 123 days (mUC) and 
380 days (RCC), and the majority of OS data with censoring 
was up to 405 days of follow-up, except in RCC, where the 
median OS had not been reached (Figure S1). The difference 
between the median duration of tumor assessment and OS 
duration ranged from 129 days (mUC) to 407 days (TNBC), 
with a median of 275 days across tumor types. Within each 
trial, the atezolizumab-containing treatment arm is gener-
ally associated with longer duration of tumor assessment, as 
shown in Figure S1, as the patients who had slower disease 
progression were more likely to continue clinical visits.

The biexponential TGI models were fitted to tumor 
type-specific data. An example model was included in the 
Supplementary Material. The TGI model was sufficiently 
flexible to capture different patterns of tumor dynamics ob-
served for NSCLC as well as for the other four solid tumor 
types. Example model fits of individual tumor size data are 

illustrated in Figure S2, and the goodness-of-fit plots for the 
longitudinal tumor data are shown in Figure S3, indicating no 
bias across time or tumor size as well as demonstrating good 
correlations between observed and predicted values among the 
five tumor-specific models.

The final TGI model parameter estimates by tumor type 
are shown in Table S2. All parameters are estimated pre-
cisely regardless of treatment type or tumor type, with a 
relatively low standard error <10% for KG and <13% for 
KS. Overall, individual parameter estimates were not re-
duced to the population mean, and particularly for KG, the 
estimated shrinkage values38 were generally below 20%, in-
dicating the data were informative for individual parameter 
estimations.

A comparison of KG distributions between treatments 
for NSCLC is shown in Figure 1. Across tumor types, mUC 
has faster tumor shrinkage with larger KS, and SCLC has 
the slowest tumor regrowth with smaller KG, irrespective 
of treatment type. The typical TGI profiles stratified by 
treatment and trial are shown in Figure 2.

Along with the predefined lists of baseline prognostic 
factors, individual KG estimates were considered as co-
variates for the TGI-OS model development. Previously, 

F I G U R E  1   Model-estimated KG comparison between 
treatments in patients with non-small cell lung cancer. Dots 
indicate individual model-estimated KG, ends of boxes indicate 
25th and 75th percentiles (i.e., interquartile range), horizontal 
lines indicate medians, and ends of whiskers indicate 1.5 times 
the interquartile range. Atezo, atezolizumab; B, bevacizumab; 
C/C, cisplatin/carboplatin; CnP, carboplatin + nab-paclitaxel; CP, 
carboplatin + paclitaxel; Doce, docetaxel; KG, tumor growth rate 
constant; P, pemetrexed



1176  |      CHAN et al.

KG has been shown to be a strong predictor of OS in 
atezolizumab trials for NSCLC.10 Exploration of the as-
sociation between KG and OS data was conducted using 
Kaplan–Meier analysis and is shown in Figure S4. In all 
tumor types, a trend of inverse correlation is observed 
between tumor growth and survival, with the slowest KG 
(lowest quartile of log(KG)) having the longest OS.

TGI-OS models for each tumor type were developed 
using univariate screening, followed by backward elimi-
nation. The parameter estimates of the final TGI-OS mod-
els based on a log-normal probability density function are 

shown in Table  2 for NSCLC and in Table  S3 for other 
tumor types. KG was the most significant predictor of OS 
across all five tumor types.

Several baseline prognostic factors were highly significant 
across multiple tumor types (Table 3), such as inflammatory 
status (CRP, ALB, and/or NLR in all tumor types), tumor 
burden (SLD, MET, and/or liver metastasis in all tumor 
types), ECOG (four tumor types, excluding RCC), LDH (two 
tumor types), and race in terms of Asian versus non-Asian 
(two tumor types).

According to TGI-OS models, survival probability in-
creases when CRP, NLR, SLD, or the number of metastatic 
sites decreases, and ALB increases. In addition, IC/TC PD-
L1 expression groups and line of treatment were significant 
prognostic factors for NSCLC, in which the data combined 
both first-line and later lines of treatment. Four tumor-
specific variables were also significant prognostic factors for 
RCC. Statistical summaries of the significant prognostic fac-
tors by trial and by treatment for NSCLC and by tumor type 
for the other models are shown in Table S4. Notably, 40.8% 
(N = 196) of patients in the IMpower132 trial for NSCLC 
had missing IC or TC PD-L1 expression information, but 
when combined with the rest of the NSCLC data, only 4.9% 
of patients (203 of 4179) had missing IC or TC information.

The predictive ability of the TGI-OS models was eval-
uated by comparing the 95% prediction intervals (PIs) of 
simulated survival distributions with observed distributions, 
stratified by treatment type (Figure S5). The overlapping of 
the curves suggests that the models can reasonably reproduce 
the observed survival distributions in all treatment types 
across the five tumor types.

The TGI-OS models were also evaluated by simulat-
ing OS HR by atezolizumab treatment arm versus appro-
priate control in each trial, conditional on the individual 
baseline prognostic factors and estimated KG, as shown in 
Figure 3. The model-predicted HRs indicate good model 
performance across all 11 comparisons from 10 trials, with 
observed HRs within the 95% PIs for all trial arms.

The results of the external validation by randomly split-
ting the data show that the c-index of the training (0.753) 
and of the testing sets (0.754) are the same or similar to 
the c-index of the model developed using the full set of 
data (0.754), indicating a good and consistent predictive 
accuracy of the model. The model evaluation using OS HR 
based on the testing set is shown in Figure  S6. External 
validation for the other tumor types was not conducted due 
to the relatively small sample sizes.

DISCUSSION

Model-based estimates of on-treatment growth rate (KG) 
have been found to predict for OS in a variety of tumor types 

F I G U R E  2   Typical tumor growth inhibition profiles by trial/
tumor type, stratified by arm, with non-small cell lung cancer on top 
panels, and extensive-stage small cell lung cancer, triple-negative 
breast cancer, renal cell carcinoma, and metastatic urothelial 
carcinoma on bottom panels. Atezo, atezolizumab; B, bevacizumab; 
C/C, cisplatin/carboplatin; CE, carboplatin+etoposide; CnP, 
carboplatin + nab-paclitaxel; CP, carboplatin + paclitaxel; Doce, 
docetaxel; nP, nab-paclitaxel; P, pemetrexed; PBO, placebo
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and treatments.6,10,15,18,25 More recently, KG was found to 
be the only tumor dynamic metric able to predict survival 
benefit in one phase II study and one phase III study of at-
ezolizumab versus chemotherapy in second and later lines of 
therapy for NSCLC, whereas other model-based metrics or 
classical end points (ORR, PFS) did not.10 US FDA scien-
tists found that KG was inversely associated with OS in 24 
randomized NSCLC clinical trials with CPIs or targeted ther-
apies,25 although they did not develop a predictive model, 
suggesting that KG estimates from early tumor dynamic data 
might serve as an earlier end point in clinical studies.1–3

The present analysis aimed to confirm the use of KG in 
predicting long-term survival benefit as well as to identify 
baseline prognostic factors that are common or specific across 
five solid tumor types using data from 10 atezolizumab ran-
domized clinical trials.

Because the majority of data in the analysis was collected 
from patients with NSCLC (N  =  3872 TGI-evaluable pa-
tients), a tumor-specific model was constructed from a large 
NSCLC data set of 27,409 tumor assessments, enabling a 
robust evaluation of the impact of a diverse set of patient 
characteristics. Comparing to the historical atezolizumab 
TGI-OS model that was developed from a phase II trial,10 in 
addition to ALB and the number of metastatic sites, the up-
dated model incorporated the additional independent base-
line prognostic factor effects of CRP, LDH, NLR, ECOG, 
race, presence of liver metastases, and PD-L1 expression 
(IC or TC  >  0), which were investigated in the previous 
analysis but deemed not to be significant. This phenomenon 
was probably attributed to the narrow range of the covariate 

values available or to the small sample size in each sub-
group for the previous analysis, thereby causing a decrease 
in power in detecting the effect on OS from these covariates. 
The updated NSCLC model also differentiated the effects 
between the first-line and later lines of treatment, mainly 
by using a more comprehensive data set for model devel-
opment, as opposed to the previous analysis, where only 
data for second and later lines of therapy were available. 
The directions of effect from the significant covariates on 
OS are consistent with the general knowledge of the trends 
between these prognostic factors and patient survival (e.g., 
higher ECOG score is associated with worse prognosis). In 
contrast, tumor burden, age, sex, body weight, histology 
(nonsquamous vs. squamous), and smoking history were 
not independent significant baseline prognostic factors in 
the historical or in the updated multivariate TGI-OS model.

PD-L1 expression was determined to be a significant co-
variate in the TGI-OS model for NSCLC. PD-LI expression 
is the most widely accepted predictive biomarker for treat-
ments with immune checkpoint inhibitors; however, its role is 
not clear, particularly in the combination treatment setting.39 
Because PD-L1 expression information in terms of IC/TC 
groups was missing in a large number of patients in one of 
the NSCLC trials (IMpower132), a sensitivity analysis was 
conducted by excluding IC/TC from the TGI-OS model de-
velopment. The results of the sensitivity analysis showed that 
the same set of covariates besides IC/TC were selected for the 
final model after backward elimination, and parameter esti-
mates were similar to the model incorporating IC/TC groups 
(Table  S5), with similar model evaluations using OS HR 

Parameter Estimate SE z p

Intercept 3.47 0.173 20.1 8.41E−90

log(KG) −0.616 0.0224 −27.4 1.35E−165

C-reactive protein (mg/L) −0.00385 0.000348 −11.1 1.75E−28

ECOG (1 vs. 0) −0.233 0.0298 −7.81 5.61E−15

Number of metastatic sites −0.0764 0.0139 −5.51 3.53E−08

Race (Asian vs. non-Asian) 0.244 0.0443 5.52 3.42E−08

Albumin (g/L) 0.0135 0.00304 4.43 9.48E−06

IC or TC > 0 vs. IC and TC = 0 0.119 0.0286 4.16 3.20E−05

Lactate dehydrogenase (U/L) −0.00014 4.00E−05 −3.53 0.00041

Neutrophil-to-lymphocyte ratio −0.009 0.00262 −3.44 0.000582

Lines of therapy (2+ vs. 1) −0.109 0.0341 −3.2 0.00138

Liver metastasis (yes vs. no) −0.118 0.0401 −2.94 0.00332

Log(scale) −0.264 0.0161 −16.3 4.95E−60

Note: Survival time was analyzed in days.
Abbreviations: ECOG, Eastern Cooperative Oncology Group performance status (reference group is 0); IC, 
tumor-infiltrating immune cells; log(KG), log of tumor growth rate constant (1/week) from the tumor growth 
inhibition model; p, Wald test p value; scale, standard deviation of log(OS); SE, standard error of parameter 
estimate; TC, tumor-infiltrating tumor cells (reference group is IC and TC = 0); z, Wald statistic.

T A B L E  2   Parameter estimates from 
tumor growth inhibition–overall survival 
models in non-small cell lung cancer
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(Figure S7). On the other hand, because IC/TC information 
is specific to immune checkpoint inhibitors targeting PD-L1 
receptors, the TGI-OS model without the IC/TC group in 
the sensitivity analysis could be applied to NSCLC trial data 
based on treatments with other mechanisms of action. The c-
index of the model without IC/TC is 0.752, which is similar 
to that of the model with IC/TC (0.754), further confirming 
the good predictive accuracy of both models.

The most impactful covariate (second to KG) in the up-
dated NSCLC model was CRP, which was not available pre-
viously for the development of the historical model that only 
used data from one clinical trial. This is consistent with results 
from a separate analysis based on data from two of the trials 
included in the current analysis.40 CRP was also a significant 
baseline prognostic factor in the TNBC model. CRP is an in-
flammation biomarker, routinely used in clinical practice for 
monitoring patients with cancer, and studies show an associ-
ation between elevated CRP levels with a poor response and 
worse survival in epithelial cancers, such as liver, lung, col-
orectal, and breast cancers.41–44

Another biomarker that was shown to be a significant co-
variate in the TGI-OS models from four of five tumor types 
is ALB, where hypoalbuminemia is a known risk factor for 
poor prognosis in patients with cancer45 and may be associ-
ated with cancer cachexia and impaired response to check-
point inhibitors.46 A similar association between ALB and 
OS have been identified in patients with locally advanced 
urothelial carcinoma or mUC treated with durvalumab13 and 
in Asian patients with NSCLC treated with motesanib.9

In the five tumor-type specific TGI-OS models developed 
in the current analysis (i.e., NSCLC, SCLC, TNBC, mUC, 
and RCC), KG was the most significant covariate in pre-
dicting OS, showing that increasing KG is associated with 
decreasing survival time. This is similar to an analysis con-
ducted by the US FDA using data from 24 NSCLC trials.25 
In the current analysis, atezolizumab-containing treatments 
had lower median KG, that is, slower growth, than treat-
ments from the respective control arms, and this is consis-
tent with the observation that the atezolizumab-containing 
arms have shown significant or numerical improvements 
in OS over control in all of the trials.26,27,29,33,34 Therefore, 
the exposure-driven treatment effects were assumed to have 
been captured by the estimated KG, and the subsequent sur-
vival model can be considered treatment independent.1,2 The 
biexponential TGI model was able to provide an adequate 
fit to the observed tumor size data, indicating that the in-
dividual post hoc estimates of KG described the individual 
longitudinal profiles well. No covariates were investigated 
for the TGI model (and KG), as the objective of the analysis 
was to simulate OS, conditional on TGI metrics and baseline 
prognostic factors.

Tumor dynamics has been studied as an early efficacy 
marker for other CITs as well as for chemotherapy and targeted T
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therapy. Among CIT treatments, tumor growth patterns were 
investigated with pembrolizumab, ipilimumab, nivolumab, 
durvalumab, and bevacizumab across melanoma, NSCLC, 
mUC, and kidney cancer types, and all reported a strong as-
sociation between survival and tumor response metrics, such 
as early tumor size change, KG, or KS,13,15,16,47,48 supporting 
the validity of TGI-OS correlation in CIT. Although tumor 
growth rate in terms of KG was the most significant TGI 
metrics in predicting OS for atezolizumab-containing treat-
ments, other TGI metrics should be explored when applying 
the TGI-OS framework to molecules and study designs (e.g., 
patient population or trial follow-up duration) not investi-
gated previously.

A similar model-based framework has been applied to 
other NSCLC9,11,25,40 and breast cancer8 analyses as well as 
in other tumor types such as prostate15,18 and ovarian can-
cer.19 In most cases, the analysis focuses on a single tumor 
type. The strength of the current analysis lies in its conglom-
eration of five different tumor types and thereby providing a 
wealth of support for the TGI-OS platform in various solid 
tumor types. In addition, it is the first study where TGI-OS 

models have been shown to predict OS treatment benefit 
across a wide variety of trials and tumor types. Although the 
analysis data originated from atezolizumab trials, the anal-
ysis is not restricted to atezolizumab monotherapy because 
various treatment types were included in the analysis due to 
the different treatments used in the control arms and in com-
bination with atezolizumab. However, whether the TGI-OS 
platform will apply to other anticancer treatments with dif-
ferent mechanisms of action remains to be determined, and 
external validation studies with other data sets are warranted. 
Furthermore, the association between tumor growth rates and 
OS could be explored using novel modeling approaches, such 
as machine learning.40,49

One limitation of the current work is that the two-stage 
approach may suffer from selection bias due to patients with 
progressing-only disease dropping out early in the trial. Joint 
modeling has been shown to address this issue based on a 
simulation study.50 However, in an analysis conducted using 
observed clinical data, the difference in model predictions 
between the joint model and two-stage approaches might 
not be clinically meaningful.51 Recent research indicates that 

F I G U R E  3   Hazard ratios of atezolizumab-containing arm versus control by study based on simulations of the tumor growth inhibition–overall 
survival models. N indicates number of tumor growth inhibition–evaluable patients in each group and arm (atezolizumab/control) with nonmissing 
covariates. Squares indicate observed hazard ratios, circles indicate median model-predicted hazard ratios, and bars indicate 95% prediction 
intervals (PIs) based on 1000 replicates. 1L, first line; 2+L, second or later line; Atezo, atezolizumab; B, bevacizumab; C/C, cisplatin/carboplatin; 
CE, carboplatin+etoposide; Chemo, chemotherapy; CI, confidence interval; CnP, carboplatin+nab-paclitaxel; CP, carboplatin+paclitaxel; Doce, 
docetaxel; mUC, metastatic urothelial carcinoma; nP, nab-paclitaxel; NSCLC, non-small cell lung cancer; P, pemetrexed; PBO, placebo; RCC, 
renal cell carcinoma; SCLC, extensive-stage small cell lung cancer; TNBC, triple-negative breast cancer
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competing risks joint models may be needed to correct for 
dropouts (by inducing informative censoring) when simulta-
neously modeling longitudinal biomarker and terminal event 
data.52 These questions require further evaluation with regard 
to the objectives of the modeling effort. The impact of fol-
low-up on TGI metrics estimates and OS HR predictions at 
the study level to support decisions based on early data cuts 
is being assessed using both two-stage and joint models. We 
contend that TGI metrics derived based on two-stage models 
are more actionable to support trial decisions,1 whereas cur-
rent SLD (or SLD slope)-based joint models are more suitable 
to perform patient-level dynamic predictions12 and enable per-
sonalized health care.

In conclusion, our study results provide further support 
that tumor dynamic model-based metrics (such as KG) could 
help support early decisions between alternative treatments, 
select the most promising combinations in future CIT clinical 
trials, and predict the probability of success of a phase III 
clinical trial.1,6,25
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