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Abstract
The aim of this study was to develop a multistate model for overall survival (OS) 
analysis, based on parametric hazard functions and combined with an investi-
gation of predictors derived from a longitudinal tumor size model on the tran-
sition hazards. Different states –  stable disease, tumor response, progression, 
second-line treatment, and death following docetaxel treatment initiation (stable 
state) in patients with HER2-negative breast cancer (n = 183) were used in model 
building. Past changes in tumor size prospectively predicts the probability of state 
changes. The hazard of death after progression was lower for subjects who had 
longer treatment response (i.e., longer time-to-progression). Young age increased 
the probability of receiving second-line treatment. The developed multistate 
model adequately described the transitions between different states and jointly 
the overall event and survival data. The multistate model allows for simultaneous 
estimation of transition rates along with their tumor model derived metrics. The 
metrics were evaluated in a prospective manner so not to cause immortal time 
bias. Investigation of predictors and characterization of the time to develop re-
sponse, the duration of response, the progression-free survival, and the OS can be 
performed in a single multistate modeling exercise. This modeling approach can 
be applied to other cancer types and therapies to provide a better understanding 
of efficacy of drug and characterizing different states, thereby facilitating early 
clinical interventions to improve anticancer therapy.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
In traditional overall survival (OS) analysis, a single hazard function is applied to 
the survival data in the presence of competing events, such as death due to non-
cancer causes and censoring. This could lead to a biased estimation of the hazard. 
Moreover, immortal time bias originating from a failure to adequately account for 
time-dependent predictors in the OS model can be a major issue.
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INTRODUCTION

Modeling of longitudinal tumor size (TS) data to establish 
exposure-response-outcome relationships has been in-
creasingly applied to facilitate trial design and the go/no-
go decision making in oncology clinical trials.1,2 Time to 
event (TTE) models allow investigation of the association 
between various covariates and long-term clinical end 
points, such as progression-free survival (PFS) and over-
all survival (OS). The developed TS-TTE models have the 
potential to predict PFS/OS of a similar population (i.e., 
same indication and end points), for example, utilizing re-
sults from phase II, and simulating event distributions in 
phase III trials. In a randomized clinical trial, the efficacy 
of new molecule is characterized into different response 
categories by the response evaluation criteria in solid tu-
mors (RECIST),3,4 which is based on the change in sum 
of longest diameters (SLDs). The TS is typically only re-
corded until disease progression because later to that, pa-
tients receive a different treatment or a sequential line of 
cancer therapy. The survival data comprise, however, the 
full duration of the time from enrollment into the clinical 
trial to the event of death or censor (end of trial or loss 
of follow-up). Therefore, the existing TTE modeling ap-
proach where estimation of a single survival function to 
OS data has problems. The model predicted tumor size (or 

biomarker) is typically extrapolated until OS time during 
survival analysis,5–7 leading to not accounting the effect 
of the sequential therapy. Immortal time bias originating 
from a failure to adequately account for time-dependent 
covariates in the TTE model can be a major issue. For ex-
ample, using “depth of tumor response” as a covariate on 
survival may introduce bias as a substantial decrease takes 
considerable time to achieve.8 Thus, only the individual 
surviving for considerable time will have a large decrease 
in TS. Multistate models could be a way of addressing 
these issues and describe the hazard over time correctly.

In traditional survival analysis, a single hazard func-
tion is applied to the survival data in the presence of com-
peting events, such as death due to non-cancer causes 
and censoring. This could lead to a biased estimation 
of the hazard. Moreover, the intermediate events prior 
to OS time might contain accompanying information 
on disease status and hazard of death, for example, the 
RECIST assessment of progressive disease from stable 
disease/partial response may indicate an increase in the 
risk of death. Multistate models have been recommended 
and has been increasingly used for such data.9–11 For the 
analysis of survival data, Beyer et al.12 developed a multi-
state model, where the transition hazards of intermediate 
events were modeled using semiparametric models with a 
treatment arm as a binary covariate. The implementation 

WHAT QUESTION DID THIS STUDY ADDRESS?
The intermediate events prior to OS time might contain accompanying informa-
tion on disease status and hazard of death. A multistate model could be a way 
of characterizing the intermediate events and evaluation of predictors that are 
specific to the transition, and jointly describing the survival data. Different states 
– stable disease, tumor response, progression, second-line treatment, and death 
following docetaxel treatment in patients with HER2-negative breast cancer were 
used in model building.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The developed multistate model operated by parametric hazard functions, esti-
mates the transition hazards of intermediate events, and allows investigation of 
predictors derived from a longitudinal tumor size model. Past changes in tumor 
size prospectively predicts the probability of state changes the hazard of death 
after progression was lower for subjects who had longer time-to-progression. The 
developed multistate model adequately described the transitions between differ-
ent states and jointly the survival data.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Investigation of predictors and characterization of the time to develop response, 
the duration of response, the progression-free survival, and the OS can be per-
formed in a single multistate modeling exercise. This modeling approach can be 
applied to other cancer types and therapies to provide a better understanding of 
efficacy of drug and characterizing different states, thereby facilitating early clini-
cal interventions to improve anticancer therapy.
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of multistate models in a nonlinear mixed effect (NLME) 
modeling framework would allow NLME-derived covari-
ate evaluation.13 NLME implementation could also allow 
for random effects14 or mixture models to be incorporated 
into the description of the data. This investigation gives 
an example of the latter. In an NLME framework, the 
tumor model derived predictors can be evaluated to be 
transition-dependent, and could more reliably predict dif-
ferent states (for example, time to response and duration 
of response) and survival. The aim of this study was to de-
velop a multistate model operated by parametric hazard 
functions using data from docetaxel treated patients with 
HER2-negative breast cancer, while allowing investiga-
tion of predictors derived from the longitudinal TS model 
on the transition hazards.

METHODS

Data

The tumor data (SLD) were available from the docetaxel 
(control) arm of the phase III AVADO trial where the 
efficacy and safety of combining bevacizumab with doc-
etaxel were investigated in patients with HER2-negative 
metastatic breast cancer (ClinicalTrials.gov Identifier: 
NCT00333775).15 In the docetaxel arm (n = 241), three pa-
tients did not receive therapy, 21 patients either received 
one dose of bevacizumab (n = 7) or started bevacizumab 
before disease progression (n = 14) and 34 patients did not 
have a measurable target lesion at baseline.15 Therefore, 
these 58 patients were not included in the multistate mod-
eling, hence, the study data consisted of 183 patients with 
HER2-negative metastatic breast cancer. The subjects 
were women with a median age of 55  years (range 29–
83 years). Patients received docetaxel 100 mg/m2 infused 
over 1 h on day 1 of each 3-week cycle. The SLD were eval-
uated from computed tomography scans every 9  weeks 
during the first 36 weeks and thereafter every 12 weeks; 
median follow-up was 32 weeks (range 6–160 weeks). The 
TS response was evaluated according to RECIST version 
1.03 (i.e., up to 10 lesions/patient were followed during 
the trial). Because individual lesion and metastatic organ 
data were available, the tumor SLD were re-created as per 
the RECIST version 1.1 criteria,4 which consider measure-
ments of up to five lesions/individual but not more than 
two lesions/organ. The AVADO trial was conducted ac-
cording to the Declaration of Helsinki, the Good Clinical 
Practice guidelines of the International Conference on 
Harmonization, and the laws and regulations of the coun-
tries involved. The protocol was approved by local ethics 
committees and written informed consent was obtained 
from all patients before the screening.

Tumor model

A tumor growth inhibition (TGI) model was applied to 
describe the change in SLD over time.16 In this model, the 
tumor was best described to grow exponentially with a 
first-order rate constant (kGROW). The tumor size shrink-
age during treatment was explained by drug exposure, the 
drug-specific cell kill rate constant (kSHR), and the emer-
gence of resistance to the treatment (LAMBDA) (Equation 
1). As docetaxel concentrations were not available, a pop-
ulation K-pharmacodynamic (PD) modeling17 approach 
(Equation 2), where the K-PD parameter represents the 
elimination rate constant in K-PD model, was used along 
with the TGI model to describe the docetaxel exposure 
over time (docetaxel (t) ). Interindividual variability was 
tested on all parameters.

where IBASE, model estimated baseline SLD for individ-
ual I; TS(t), tumor time course; DOSE, the docetaxel dose, 
kGROW is the tumor growth rate; kSHR cell kill rate constant; 
LAMBDA, resistance parameter; docetaxel (t), docetaxel ex-
posure over time; K-PD, the elimination rate constant.

Multistate model

Depending on the patient-level tumor response and OS 
event data, subjects had the possibility to transfer among 
five different states. The states considered were stable 
disease (S1, time = 0 state), tumor response (S2, >= 30% 
decrease in SLD from baseline), progressive disease (S3, 
>=  20% increase in SLD from tumor nadir or appear-
ance of new lesions or progression of nontarget lesions), 
initiated second-line treatment (S4) and death (S5). At 
baseline, all individuals were assigned in the stable dis-
ease state and during the study and follow-up period, 
after progression they could transfer to other states, as 
shown in Figure 1. In contrast to RECIST response eval-
uation, in multistate model if a tumor response (>= 30% 
decrease in SLD from baseline, stable →response) was 
observed, then the subject cannot move back to stable 
state (response →stable) even if it is later observed that 
the %decrease in SLD from baseline is less than 30%, or 
the %increase in SLD from baseline is less than 20%.

(1)

TS0= IBASE
dTS

dt
=kGROW ⋅TS (t) −kSHR ⋅Docetaxel (t) ⋅e

−LAMBDA⋅t
⋅TS (t)

(2)
Docetaxel0=DOSE

dDocetaxel

dt
= −K−PD ⋅Docetaxel (t)



1258  |      KRISHNAN et al.

A multistate model,13 where the transition rates (�ij) 
between each state were estimated, was developed to de-
scribe the observed events (Equations 3–7). The transition 
intensity (�) was evaluated with different hazard distribu-
tions (Exponential and Weibull) and selected based on the 
likelihood ratio test.

Where Si-j, different states; �ij transition intensities 
between state i (Si) and state j (Sj) and Si-j0, the initial 
conditions for the state.

The hazard of death from second-line treatment (�45) 
was set to be the same as the hazard for progression to death 
(�45 = �35) if it was not statistically different from �35. A 
mixture model with two subpopulations was evaluated 
on �34, where the first population received second-line 

treatment after disease progression and the second pop-
ulation did not receive second-line therapy (i.e., �34 = 0)

. The investigated predictors on transition rates included 
baseline variables: age, Eastern Cooperative Oncology 
Group (ECOG) score at enrollment, TS, total number 
of lesions, number of metastatic sites involved, as well 
as post-baseline model-based tumor dynamic estimates: 
relative change in SLD from baseline to the present SLD, 
relative change in SLD between two previous measure-
ments (dSLD), relative change in SLD from tumor nadir 
(defined as the lowest SLD up until the present time 
point) to the present SLD, tumor growth rate 

(
kGROW

)
, 

and rate of appearance of resistance (LAMBDA). Both 
past-observed and model-predicted tumor dynamic met-
rics at time of transitions were evaluated as predictors 
of transition rate. Additionally, reason(s) of disease pro-
gression (>= 20% increase in SLD from tumor nadir or 
appearance of new lesions or progression of nontarget 
lesions), number of new lesions, and time to progression 
were investigated on �35. The predictors were investi-
gated using proportional hazards model with a baseline 
transition rate of �ij; for example, predictor X  on transi-
tion rate stable to decrease (λ12) for individual i would 
be:

where Xi is the value of Xfor individual I; Xmedian is the pop-
ulation median value of X; �X is the coefficient of the effect 
of X on λ12, and e�x represents the hazard ratio associated 
with covariate X.

In traditional survival analysis, the predictors have most 
often been evaluated sequentially but in some cases as a 
joint model.18 The metrics derived from a tumor model, for 
example, tumor growth rate (kGROW) or time-to-regrowth 

(3)
S10=1

�S1

�t
= −S1 ⋅ (�12+�13+�15)

(4)
S20=0

�S2

�t
=S1 ⋅�12−S2 ⋅�23−S2 ⋅�25

(5)
S30=0

�S3

�t
=S1 ⋅�13+S2 ⋅�23−S3 ⋅�34−S3 ⋅�35

(6)
S40=0

�S4

�t
=S3 ⋅�34−S4 ⋅�45

(7)
S50=0

�S5

�t
=S1 ⋅�15+S2 ⋅�25+S3 ⋅�35+S4 ⋅�45

(8)�12i = �12 ⋅ e(�X ⋅ (Xi−Xmedian))

F I G U R E  1   The multistate model describing different states in patients with HER2-negative breast cancer treated with docetaxel. The 
�ij represents the transition intensities between each state and the n along with �ij is the number of observed transitions from state i to 
state j. The n along with different states are the number of clinical outcomes at the end of study. The metric in the dotted box indicating the 
associated predictor of the transition intensities in the final multistate model. relSLD, relative change from baseline; dSLD, change in SLD 
between previous two measurements; TTP, time to progression; Age, age in years
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(TTG), has been computed based on all collected tumor 
data. In a sequential or joint model, the computed kGROW 
or TTG information is treated as baseline covariate (i.e., as 
it is available at time 0). This does not recognize that data 
relevant for its estimation largely is obtained after start 
of therapy. Whereas joint models with estimated time-
varying predictors (e.g., tumor time-course [SLDt]) to 
some extent account for the immortal time bias, they are 
typically estimated based on all the tumor data, including 
the future tumor data. Thus, a tumor-OS joint modeling 
does not completely eliminate such bias.19 In the current 
analysis, the post-baseline time-varying predictors were 
investigated in a way that the future tumor observations 
would not influence the present predictions of transition 
rates. Thus, in contrast to the standard use of population 
pharmacokinetic (PK)PD models where all data contrib-
ute to defining individual parameters, only observations 
up to time t was used to make predictions beyond time t for 
each individual parameter. As a consequence, the tumor 
dynamic model parameters for an individual will change 
over time as more observations become available. The der-
ivation of the model predicted metrics on-fly using a joint 
tumor-multistate model or using the PPP&D approach18 
could not be applied here, as the estimates are based on all 
available data. The proseval tool from PSN20 was used 
for deriving tumor dynamic model parameters (kGROW, 	
LAMBDA, and model predicted tumor change) with 
successive increase in number of tumor measurements 
and these metrics were available to the multistate model 
through the input dataset.

Model development and evaluation

Population models were developed using the nonlin-
ear mixed-effect modeling (NONMEN) software (ver-
sion 7.4.4).21 Model development was assisted by Pirana 
(version 2.9.9) for run management, the Perl-speaks-
NONMEM (PsN) toolkit for handling NONMEM run 
commands, R (version 3.6), and Xpose (version 4.1) for 
model diagnostics and graphical analysis.22 The objec-
tive function value (OFV; −2 log-likelihood) and graph-
ical diagnostics were used in the evaluation of model 
performance. A randomization test (randtest tool in 
PsN20) was performed to determine actual significance 
levels and an OFV decrease of 5.17 (p < 0.05) was con-
sidered as significant for the addition of one parameter 
(1  degree of freedom) while testing predictors in the 
multistate model. An increase in OFV of 18.9 (p < 0.001) 
was used while testing �45 = �35 (decrease in 1 degree of 
freedom). Parameter uncertainties were derived using 
the sampling importance resampling (SIR)23 tool in PsN 
(tumor model) or R matrix (multistate model). Visual 

predictive checks (VPCs) for the tumor model and 
Kaplan–Meier VPCs for the multistate model were used 
for evaluating the predictive performance of the models. 
In the tumor model VPC, the simulated tumor data that 
is greater than 20% increase in SLD from tumor nadir 
along with at least 5 mm absolute size increase in SLD 
were censored (RECIST - Progressive Disease based on 
target lesions4). The final multistate model was evalu-
ated using the case deletion diagnostics (CCD) tool in 
PsN20 to identify any potential influential individual of 
estimated parameters/covariate effects.

To investigate if the final multistate model can be 
applied in a prospective manner to predict hazard of 
death over time for each individual, the “individual dy-
namic prediction” methods suggested by Desmée et al.24 
was used. The individual dynamic predictors include, 
time-dependent Brier score (BS; Equation 9) and the 
time-dependent area under the receiver operating char-
acteristic (ROC) curve (AUC) metric (Equation 10).24,25 
The methods proposed by Desmée et al.24 for assessing 
dynamic predictions and calculation of BS and AUC were 
here applied to the tumor-multistate model implemented 
in NONMEM. The individuals’ data until landmark time 
(s) were used for deriving a posteriori distribution, from 
this distribution, 200 samples were drawn to compute the 
predicted hazard of death for each individual in the pre-
diction window (t). In NONMEM, the SAEM estimation 
method along with ETASAMPLES argument was used 
for obtaining 200 samples from the conditional distribu-
tion.25 The landmark times (s) considered were 0, 3, 6, 
9, 12, and 18  months and prediction windows (t) until 
36 months.

Where �i model predicted probability of death for sub-
ject i in interval s to s+t given individual survival to time 
s; BS (s, t), brier score based on the final multistate model; 
BSno link (s, t), brier score based on the base model without 
any covariates.

The time-dependent AUC was calculated using tim-
eROC R package and BS function (R script) by Blanche 
et al.26 To account for censoring bias, the inverse proba-
bility of censoring weighting approach27–29 was applied 
in both BS and AUC calculations. Because the number of 
events and number of subjects alive at that landmark time 

(9)BS (s, t) = E
[(
1{s<X<s+t} − 𝜋i (s + t|s)

)2 |X > s
]

(10)

AUC (s, t) = ℙ
(
𝜋i(s + t|s

)
|s > 𝜋j(s + t |s) < Xi

⟨
s + t,Xj

⟩
s + t)

(11)sBS (s, t) = 1 −
BS (s, t)

BSno link (s, t)
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are different, scaled BS (sBS; Equation 11) was used for 
comparing different landmark times.30 The sBS calculates 
the relative improvement from the base model in predict-
ing individuals’ hazard of death over time in the final mul-
tistate model, whereas the AUC score shows the how well 
the final model distinguishes patients of low and high risk 
of death.

RESULTS

Tumor model

The tumor data consisted of 903 observations and the 
median SLD at time of enrollment (SLD0) was 56  mm 
(range, 10–221). OS data were collected for a median of 
108 weeks (range, 12–160 weeks) after the start of doc-
etaxel treatment. Ninety-two patients (51%) had death 
event and the median time to death was 50 weeks (range, 

13–145). The main characteristics of the study popula-
tion are summarized in Table 1. The TGI model described 
the longitudinal SLD adequately and the parameter esti-
mates in the final tumor model are provided in Table 2. 
The typical (kGROW) was estimated as 0.00576  week−1 
(i.e., a tumor doubling time of ~  2.3  years [doubling 
time  =  ln(2)/kGROW]). The interindividual variability 
was significant on all parameters, and kGROW was as-
sociated with a large interindividual variability (IIV; 126 
coefficient of variation percentage [CV%]). The predic-
tive performance was adequate from the VPC diagnos-
tics (Figure  S1) and the parameter uncertainties were 
less than 48% relative standard error (Table 2). The case 
deletion diagnostics did not identify any influential indi-
viduals of the parameter estimates (Figure S2a).

Multistate model

The multistate data consisted of 961 observations that 
includes 720 post baseline tumor measurements, 58 
second line and deaths (92)/censor (91) events. There 
were 432 transitions between each event (Figure 1). The 
multistate model operated by parametric hazard func-
tions was developed to successfully characterize the 
different events in patients with HER2-negative breast 
cancer treated with docetaxel. In the final model, the 
transition hazard λ12 (stable to response state) was de-
creasing with time, indicating that the probability of ob-
serving response state diminished over time. The past 
observed relative change from baseline SLD was predic-
tive of λ12; every 10% reduction in SLD from baseline 
increased transition rate by 90%. The longer a patient 
stayed in the stable state the hazard of progression (λ13) 
became higher (i.e., λ13 increased with time). No co-
variates were significant in predicting λ13.

T A B L E  1   Summary of patients’ characteristics and data

Characteristics Median Range

Total number of patients, n 183 -

Age, years 54 29–83

Sum of longest diameters at baseline, 
mm

56 10–221

Tumor follow-up, weeks 35 6–160

ECOG score at baseline, 0/1 (n) 108/75 -

New lesion appearance (yes), n 121 68%

Time of new lesion appearance, weeks 34 6 – 111

Overall survival time, weeks 108 13–160

Death events, n 92 51%

Time to death, weeks 50 13–145

Abbreviation: ECOG, Eastern Cooperative Oncology Group.

T A B L E  2   Parameter estimates and their uncertainty in the final tumor model

Parameter Description
Estimated value 
(RSEa )

Interindividual 
variability CV% (RSE)

kGROW Tumor growth rate (week−1) 0.00576 (37) 126 (15)

LAMBDA Rate of resistance appearance (week−1) 0.0703 (26) 46 (18)

kSHR Docetaxel specific cell kill rate (week−1) 0.000809 (43) 48 (16)

IBASE Baseline tumor size (mm) 58.9 (9) 77 (11)

KPD Parameter relating drug elimination in KPD model (week−1) 0.66 (48) 22 (19)

RUVb  Residual unexplained variability 22% (7) -

Abbreviations: CV%, coefficient of variation percentage; RSE, relative standard error.
aProportional residual error model.
bObtained from Sampling Importance Resampling (SIR).
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A constant hazard function described the transition 
from tumor response to progressive disease (λ23) and 
every 10% increase in the past observed SLD between 
the two previous measurements increased the hazard 
by 15%. A mixture model with two subpopulations 
best described the transition from progressive disease 
to second-line (λ34), where 45% of disease progressors 
(pop-1) received second-line treatment within 6 weeks 
after disease progression and remaining 55% (pop-2) 
did not receive second-line treatment. Age was a signif-
icant predictor for the probability to receive second-line 
treatment (i.e., younger patients had higher chance to 
receive second-line therapy after disease progression 
than older patients).

The hazard of death from the second-line treatment 
state was similar to the hazard for death from the state 
of progression and the parameter could be shared for the 
two transitions (λ45 = λ35) and was best described using 
a constant hazard function. The hazard of death was 
lower for subjects who had longer treatment response 

durations (i.e., longer time-to-progression). The base-
line covariates and tumor model parameters (kGROW  or 
LAMBDA) were not predictive of any transition rate. 
The model predicted tumor dynamics did not retain 
level of significance once the observed SLD changes 
at the previous tumor measurement were included in 
the model. The estimated hazard of death from stable 
disease (λ15) and tumor response (λ25) was estimated 
to be close to 0, and hence the hazards were fixed to 
Gompertz-Makeham distribution31 to allow for a hazard 
no lower than the expected age-specific hazard.

The final parameters and their uncertainties are 
given in Table 3. The VPCs showed good predictive per-
formance of the final model (proportions in different 
states, Figure 2 and Kaplan–Meier VPC Figure S3). The 
case deletion diagnostics results demonstrated no in-
fluential individuals that drive the parameter estimates 
and estimated covariate effects (Figure S2b).

The sBS (Equation 11) showed that the final mul-
tistate model improved 5–26% in the accuracy of 

T A B L E  3   Parameter estimates and their uncertainty in the final multistate model

Parameter Description Transition
Estimated 
value Hazard ratioa  RSEb 

Scale_12 Scale and shape parameter in 
Weibull distribution for �12c 

Stable →Response 0.0348 - 18

Shape_12 0.316 - 15

Scale_13 Scale and shape parameter in 
Weibull distribution for �13c 

Stable →Progression 0.0206 - 10

Shape_13 1.99 - 14

�23c  Exponential distribution (week−1) Response →Progression 0.0372 - 10

PPOP1 Proportion of population 
receiving second line PPOP1

- 0.445 - 11

�45_POP1c  Exponential distribution (week−1) Progression →Second 
line

0.171 - 17

�45_POP2 Fixed parameter - 0.001 -

�35 Exponential distribution (week−1) Progression →Death 0.050 - 23

�CHBo on �12 Coefficient of the effect of past 
change in SLD from baselined  
on �12

−6.42 1.90 for every 10% decrease 
in SLD from baseline

16

�TTTP on �35 Coefficient of the effect of time to 
progression on �35

−0.0477 0.95 for every extra week 
from median TTP of 
35weeks

16

�dSLDo on �23 Coefficient of the effect of past 
change in SLDm on �23

1.36 1.14 for every 10% increase 
in dSLD

34

�Age on P_POP1 Coefficient of the effect of age on 
PPOP1

−0.0512 1.05 for every one year less 
from median Age of 
54years

40

Abbreviation: SLD, sum of longest diameter.
aHazard ratio = exp

(
�predicor ⋅ XP

)
; for CHB, XP= −0.1 (10% decrease); for TTP, XP= (36–35) = 1 (week); for dSLD, XP= 0.1 (10% increase); for AGE, 	

XP= (53–54) = −1 (year) and �predicoris corresponding coefficient of effect.
bObtained from NONMEM R-matrix.
c
�ij, is the transition intensities.

dPast observed SLD derived metrics.
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predicting survival at an individual level compared to 
the base model (Figure  3) along with a systematic in-
crease in the AUC values (Table S1). For early predic-
tions, a landmark time of s = 3 months was useful, and 
the BS was 0.19 (sBS = 0.29, ~30% improvement com-
pared to base model) but with a smaller discrimination 
value (AUC = 0.19). The landmark time of s = 6 months 
provided best overall score for all prediction windows, 
when both BS (sBS ~0.2) and AUC metric (~ 0.25) were 
considered. The sBS for landmark time t = 0 was 0, in-
dicating with only baseline information, the base model 
and full model perform similarly. The AUC values for 
s  =  9  months were slightly better than the AUC for 
s = 6 months, however, the sBS was less than 0.15. The 
AUC improved (0.27 to 0.68) with a longer landmark 
times, whereas the sBS marginally affected by landmark 
time greater than 6 months.

DISCUSSION

Herein, a multistate model was developed to charac-
terize the different intermediate events as per RECIST 
response status and jointly describing the survival 
data. The developed multistate model allows for simul-
taneous estimation of transition rates along with their 
tumor model derived predictors and their effect on 
transition rates. Changes in tumor SLD were predictive 
of treatment response and progression, whereas the 
duration of response or time to progression was predic-
tive of hazard of death after progression.

Various metrics derived from longitudinal models 
(e.g., tumor or biomarker model) have been identified as 
predictors of OS.2,5–7,16,30,32–34 In contrast to traditional 
tumor-OS analysis, the multistate model framework is 
quite flexible model for describing the hazard of death 

F I G U R E  2   Visual predictive checks 
of the final multistate model. The sold 
line represents the observed data and blue 
shaded area is 95% confidence interval 
from 200 simulations

F I G U R E  3   The 95% confidence 
interval around median scaled Brier score 
(sBS) (left panel) and time dependent area 
under the curve for different landmark 
times in months (0 [blue], 3 [yellow], 6 
[green], 9 [light blue], 12 [purple], and 18 
[light green]). There is no improvement at 
landmark time t = 0, and sBS = 0
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with time and the metrics are investigated as predictors of 
the intermediate events. The intermediate events jointly 
described the hazard of death. In the current analysis, a 
large decrease in the relative change from baseline and an 
increase tumor size change from the previous two mea-
surements were associated with a high transition rate of 
λ12 and λ23, respectively. The metrics were evaluated in 
a prospective manner so that there will not be immortal 
time bias.

The hazard of death after progression was higher for 
patients who had early disease progression (shorter time to 
progression). Time to progression is a similar predictor to 
a frequently identified predictor of OS – time to re-growth 
(TTG).2,16,35–38 Time to re-growth is the time to achieve 
tumor nadir and calculated from model parameters. Time 

to progression is defined as an increase of greater than or 
equal to 30% in SLD from tumor nadir or identification of 
new lesions, or increase in nontarget lesions, and could 
be a different time than model derived TTG. The hazard 
of death from second-line treatment and from progression 
was not statistically different. However, depending on the 
cancer type and treatments the hazard could vary between 
patients who received second-line treatment compared 
to patients who did not receive treatment. A multistate 
model could be used to investigate the hazard of death 
associated with second-line treatment and simulate the 
OS associated with the primary therapies (clinical trial 
regimens) without the confounding effect of second-line 
treatment to provide a fair comparison of control versus 
treatment groups.

F I G U R E  4   Multistate model forecasted tumor size, intermediate events, and hazard of death of an individual. In each panel (a–f), left 
subpanel shows observed tumor data (cyan dots) along with model predicted tumor time course, grey shaded area represents 95% confidence 
interval around the predicted median (dashed red line) time course. The loss of tumor follow-up after disease progression is noted with 
“P” in panels e and f. The solid lines in the right subpanel shows the forecasted probability with time for stable (blue), response (green), 
progression (orange), second line (light blue), and death (red). The dashed lines in the right panel show the past transitions
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The multistate model could give detailed informa-
tion compared to traditional TS-OS analysis. This sin-
gle framework allows investigation of predictors and 
characterization of time to tumor response, duration of 
response, PFS and OS (Figure S3). From the developed 
multistate model herein for docetaxel therapy in patients 
with HER2-negative metastatic breast cancer, the median 
time to docetaxel response was 12  weeks (Figure  S3a; 
i.e., after 4 cycles of docetaxel therapy). Median duration 
of response (time in response state) was 26 weeks, and 
this could be interpreted as the median time to develop 
resistance to therapy and tumor regrowth (Figure S3b).

Traditionally, tumor shrinkage (response) or growth 
is evaluated as an early marker of efficacy of an antican-
cer therapy. In clinical trials involving newer therapies 
like immunotherapies and regimens involving multiple 
molecules, identifying the proportion of responders at an 
early stage as compared to a clinical trial with cytotoxic 
therapy could be challenging.39 Moreover, when patients 
are allowed to switch to secondary therapies, regardless of 
whether secondary therapies consisting of drugs are from 
the same class40 or a chemotherapy cocktail, the traditional 
survival analysis becomes weaker to identify any treatment 
benefit of the new treatment. Beyer et al.12 demonstrated 
the application of multistate models in oncology trials. 
Furthermore, the multistate model can be used to predict 
the probability of intermediate events (states) for a future 
clinical trial population. In drug development, forecasts of 
study populations’ treatment response trajectory and pre-
diction of time to disease progression/OS is very valuable 
information that could help in the optimization of the trial.

Multistate models can also be used for optimizing 
treatment at an individual level. The BSs showed that 
data collected until 3 months is enough to get good in-
dividual predictions up until 9 months (s = 3 months, 
t = 6 months) and if data until 6 months (s = 6 months) 
is used in the multistate model, individuals’ hazards 
of death were predicted accurately for the first 2 years. 
The forecasts from the multistate model using varying 
amount of follow-up data of a representative individual 
from the study population is given in Figure 4. The mul-
tistate model forecasts that at the first scheduled post 
baseline measurement (12  weeks), there is an ~  40% 
probability to observe response state (i.e., >30% decrease 
in tumor size from baseline; Figure 4a). The patient had 
an initial treatment effect (Figure  4b), however, at the 
second visit (at 24  weeks), the decrease in tumor size 
was not as high as what was observed at the first visit 
(at 12 weeks), and the multistate model predicts around 
30% risk of disease progression at the next scheduled 
visit, at week 36 (Figure 4c). After being assessed as pro-
gressive disease, and initiation of second-line therapy, 
the increase in hazard of death with time was forecasted 

reasonably by the model framework (Figure  4d–f). 
The prediction of treatment benefit duration and early 
identification of patients at higher risk of disease pro-
gression would guide early clinical interventions to en-
hanced benefits for patients.

There were 34 patients out of 58 excluded subjects 
who had no measurable target lesion at baseline but re-
ceived docetaxel until disease progression, whereas the 
remaining 24 patients had received bevacizumab before 
disease progression. These 24 patients were not consid-
ered for inclusion in the analysis because of treatment 
crossover. When 34 patients (who received docetaxel 
until disease progression) were included in the analysis, 
they had a longer “stable state” before they had disease 
progression, compared to the other patients, whereas 
the uncertainty of λ12 and λ13 increased. Moreover, 
these individuals could not be included in the tumor 
modeling and should be excluded during investigation 
of tumor model derived metrics as predictor of transi-
tion intensities thus they were not included in the final 
analysis. There were five patients who had stable dis-
ease after an observed response state (<30% decrease 
from baseline and <20% increase from nadir). In the 
multistate model, these patients were allowed to con-
tinue in the response state with the assumption that 
they have the same risk of death and progression as 
that of response to progression/death. Moreover, this 
assumption will not influence the PFS and OS derived 
from the multistate model.

CONCLUSION

The developed multistate model adequately described 
the transitions between different possible states in pa-
tients with HER2-negative metastatic cancer treated 
with docetaxel. The model jointly characterized the 
overall outcome events in the data, including both 
PFS and OS. The multistate model allows for simulta-
neous estimation of transition rates along with their 
tumor model derived predictors. The investigation of 
predictors and the characterization of time to develop 
response, duration of response, PFS, and OS can be per-
formed in a single multistate modeling exercise. This 
modeling approach can be applied to other cancer types 
and therapies to provide a better understanding of effi-
cacy of drug and characterizing different states, thereby 
facilitating early clinical interventions to improve anti-
cancer therapy.
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