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A prehospital diagnostic algorithm 
for strokes using machine learning: 
a prospective observational study
Yosuke Hayashi1, Tadanaga Shimada1, Noriyuki Hattori1, Takashi Shimazui1, Yoichi Yoshida2, 
Rie E. Miura1,3, Yasuo Yamao1,3, Ryuzo Abe1, Eiichi Kobayashi2, Yasuo Iwadate2 & 
Taka‑aki Nakada1,3*

High precision is optimal in prehospital diagnostic algorithms for strokes and large vessel occlusions. 
We hypothesized that prehospital diagnostic algorithms for strokes and their subcategories using 
machine learning could have high predictive value. Consecutive adult patients with suspected stroke 
as per emergency medical service personnel were enrolled in a prospective multicenter observational 
study in 12 hospitals in Japan. Five diagnostic algorithms using machine learning, including logistic 
regression, random forest, support vector machine, and eXtreme Gradient Boosting, were evaluated 
for stroke and subcategories including acute ischemic stroke with/without large vessel occlusions, 
intracranial hemorrhage, and subarachnoid hemorrhage. Of the 1446 patients in the analysis, 1156 
(80%) were randomly included in the training (derivation) cohort and cohorts, and 290 (20%) were 
included in the test (validation) cohort. In the diagnostic algorithms for strokes using eXtreme 
Gradient Boosting had the highest diagnostic value (test data, area under the receiver operating 
curve 0.980). In the diagnostic algorithms for the subcategories using eXtreme Gradient Boosting 
had a high predictive value (test data, area under the receiver operating curve, acute ischemic stroke 
with/without large vessel occlusions 0.898/0.882, intracranial hemorrhage 0.866, subarachnoid 
hemorrhage 0.926). Prehospital diagnostic algorithms using machine learning had high predictive 
value for strokes and their subcategories.

Stroke is an acute life-threatening disease that mostly occurs in out-of-hospital settings1. Emergency medical 
services (EMS) personnel, who are the first healthcare providers to respond to patients with a suspected stroke, 
evaluate the risk of stroke and transport those patients to hospitals. Early initiation of therapeutic approaches, 
including endovascular therapy for large vessel occlusion (LVO)2,3 is key to improving the clinical outcomes of 
strokes4. Thus, higher precision of stroke prediction in prehospital settings may contribute to improving the 
quality of stroke care and clinical outcomes.

Prehospital diagnostic algorithms for strokes, which are also known as stroke scales, have been developed 
substantially5–7. There could be a propensity to place importance on limiting the number of predictive values 
for simplification rather than enhancing predictive ability in the prediction precision for strokes or LVOs (area 
under the receiver operating characteristic curve [AUROC], stroke prediction, Cincinnati Prehospital Stroke 
Scale [CPSS] 0.8135, Japan Urgent Stroke Triage [JUST] Score 0.800–0.886; LVO prediction, 8 prehospital stroke 
scales 0.72–0.837). Recent advances in statistical approaches using machine learning have significantly improved 
the precision of predicting algorithms for acute diseases by using multiple predictive factors, including out-of-
hospital cardiac arrest, acute coronary syndrome, and sepsis8–10. However, few investigations have focused on 
prehospital stroke/LVO diagnostic algorithms using machine learning.

Therefore, we tested the hypothesis that prehospital stroke diagnostic algorithms using machine learning had 
a high predictive value. We prospectively enrolled a large cohort of patients with suspected stroke in prehospital 
settings and analyzed them using five machine learning algorithms.
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Results
Baseline characteristics and outcomes.  In a training cohort as a derivation cohort, 834 patients had a 
stroke (training cohort, Table 1). Patients with strokes had significantly increased age, increased past history of 
heart diseases (atrial fibrillation and hypertension), decreased past history of diabetes mellitus, and decreased 
past history of neurological diseases compared to non-stroke patients. In terms of vital signs, patients with 
strokes had decreased heart rates, increased arrhythmia, increased blood pressure, and decreased probability of 
impaired Glasgow coma scale (GCS) components compared to non-stroke patients. Patients with strokes had 
decreased dizziness and convulsion and increased upper limb paralysis, hemiparalysis, facial palsy, and dysar-
thria compared to non-stroke patients. Onset timing (hourly) was earlier in patients with strokes than in those 
without strokes. Similar differences were observed in the test cohort data as a validation cohort (test cohort, 
Supplementary Table S2).

Prediction of stroke.  In the primary analysis of stroke prediction using logistic regression, random forest, 
support vector machines (SVM), and eXtreme Gradient Boosting (XGBoost), XGBoost had the highest predic-

Table 1.   Baseline characteristics and clinical outcomes in the training cohort. JCS Japan coma scale, GCS 
Glasgow coma scale, THI thermo-hydrological index. Data are presented as median and interquartile range for 
continuous variables. P-values were calculated using Pearson’s chi-square test or the Mann–Whitney U test.

Stroke (n = 834) Non-stroke (n = 322) P value

Age, years 74.0 (65.0–82.0) 72.0 (57.2–81.0) 0.004

Male sex, n (%) 507 (60.8) 182 (56.5) 0.208

Past medical history

Atrial fibrillation, n (%) 70 (8.4) 14 (4.3) 0.003

Hypertension, n (%) 380 (45.6) 138 (42.9) 0.017

Diabetes mellitus, n (%) 109 (13.1) 53 (16.5) 0.015

Intracranial hemorrhage, n (%) 38 (4.6) 27 (8.4)  < 0.001

Cerebral infarction, n (%) 157 (18.8) 62 (19.3) 0.008

Epilepsy, n (%) 6 (0.7) 13 (4.0)  < 0.001

Psychiatric disorder, n (%) 21 (2.5) 23 (7.1)  < 0.001

Vital signs

Heart rate 82 (70–96) 84 (74–98) 0.033

Arrhythmia, n (%) 192 (23.0) 37 (11.5)  < 0.001

Systolic blood pressure 174 (155–200) 160(140–180)  < 0.001

Diastolic blood pressure 97(83–114) 90 (79–104)  < 0.001

Body temperature 36.5 (36.2–36.8) 36.5 (36.2–36.8) 0.725

Japan Coma scale = 0, n (%) 357 (42.8) 170 (52.8) 0.007

Glasgow Coma scale

 Eye opening = 4, n (%) 627 (75.2) 269 (83.5) 0.019

 Best verbal response = 5, n (%) 402 (48.2) 188 (58.4) 0.003

 Best motor response = 6, n (%) 608 (72.9) 257 (79.8) 0.018

Symptoms

Vomiting, n (%) 135 (16.2) 38 (11.8) 0.114

Dizziness, n (%) 49 (5.9) 46 (14.3)  < 0.001

Convulsion, n (%) 15 (1.8) 40 (12.4)  < 0.001

Upper limbs paralysis, n (%) 354 (42.4) 115 (35.7) 0.043

Lower limbs paralysis, n (%) 431 (51.7) 152 (47.2) 0.194

Hemiparalysis, n (%) 198 (23.7) 32 (9.9)  < 0.001

Conjugate deviation, n (%) 90 (10.8) 21 (6.5) 0.064

Visual field defects, n (%) 14 (1.7) 4 (1.2) 0.228

Facial palsy, n (%) 55 (26.3) 10 (12.3) 0.036

Ataxia, n (%) 23 (11.0) 8 (9.9) 0.824

Sensory impairment, n (%) 29 (13.9) 4 (4.9) 0.066

Aphasia, n (%) 69 (33.0) 22 (27.2) 0.411

Dysarthria, n (%) 69 (33.0) 11 (13.6) 0.001

Unilateral spatial neglect, n (%) 29 (3.5) 6 (1.9) 0.138

Onset timing Monday, n (%) 136 (16.3) 40 (12.4) 0.120

Onset timing (h) 12 (7–18) 14 (8–19) 0.023

Minimum THI 13.1 (7.7–18.7) 12.2 (8.2–18.8) 0.849
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tive values (AUROC 0.994 [confidence interval; CI 0.991–0.997]) in the training cohort. In the test cohort, the 
XGBoost model also had the highest predictive value of the five machine learning approaches (AUROC 0.980 
[CI 0.962–0.994]) (Table 2 and Fig. 1a, b). The SHapley Additive exPlanation (SHAP) summary plot revealed 
that the major predictive contributors for stroke were “sudden headache,” “upper limb paralysis,” “convulsion,” 
“sudden impaired consciousness or headache,” “systolic blood pressure,” “arrhythmia,” “conjugate deviation,” and 
“diastolic blood pressure” (Fig. 1c).

Prediction of stroke subcategories.  We next analyzed the prediction algorithms for stroke subcatego-
ries (acute ischemic stroke [AIS] with /without LVO, intracranial hemorrhage [ICH], and subarachnoid hemor-
rhage [SAH]) using XGBoost, which was the best approach in the primary analysis. The machine learning-based 
prediction algorithms had high predictive values (test data, AUROC [CI], AIS with LVO 0.898 [0.848–0.939], 
AIS without LVO 0.882 [0.836–0.923], ICH 0.866 [0.817–0.911], SAH 0.926 [0.874–0.971]) (Table 3 and Sup-
plementary Fig. S2). The SHAP summary plot of AIS with LVO revealed that the major contributors were “GCS 
V,” “onset hours,” “age,” “arrhythmia,” “hemiparalysis,” “systolic blood pressure,” “Japan Coma Scale (JCS),” and 
“minimum thermo-hydrological index (THI)” (Supplementary Fig. S2).

Discussion
In this study of prehospital stroke prediction using machine learning, the algorithm using XGBoost had a high 
predictive value for strokes and stroke subcategories including LVO. It can be technically feasible that EMS per-
sonnel input required data for the predicting algorithm at the scene using tablet PCs and that the EMS and hos-
pital personnel utilize the results of prediction, which may contribute to improving a quality of prehospital care.

Substantial investigations on prehospital predicting scales for strokes have been conducted with insufficient 
precision5–7. In a meta-analysis of the CPSS for stroke prediction (study n = 3, patient n = 1366), the CPSS had 
a summary AUROC of 0.8135. More recent investigation of the JUST score (patient n = 2236) documented 
AUROCs of 0.88 and 0.80 for stroke in the training (derivation) and test (validation) cohorts, respectively6. In 
accordance with these stroke predictions, insufficient predictive values of LVO prediction (AUROC 0.72–0.83) 
were documented in eight prehospital scales including the Rapid Arterial Occlusion Evaluation (RACE), Los 
Angeles Motor Scale, Cincinnati Stroke Triage Assessment Tool, Gaze-Face-Arm-Speech-Time, Prehospital Acute 
Stroke Severity, CPSS, Conveniently-Grasped Field Assessment Stroke Triage, and Face-Arm-Speech-Time plus 
severe arm or leg motor deficit test7. Thus, there is an unmet need for the improvement of the prediction preci-
sion for strokes/LVOs. The machine learning approach is a potential solution to improve precision, as we have 
demonstrated in this study. We found that the prediction algorithms using XGBoost had a high predictive value 
for strokes (AUROC 0.980) and stroke subcategories (AUROC 0.866–0.926) including LVOs (AUROC 0.898).

Substantial machine learning studies for diagnosis and prognosis in acute diseases have been documented8–10, 
while machine learning studies for strokes remain insufficient. To the best of our knowledge, investigations on 
predicting strokes by machine learning using a prehospital dataset have rarely been conducted. The majority of 
machine learning studies are focused on detecting strokes from computed tomography (CT) images, and machine 
learning studies focused on prehospital or hospital bedside prediction of strokes are limited11. In this study, we 
successfully developed prehospital stroke prediction algorithms using a machine learning approach with high 
precision. We found only one machine learning study that predicted LVOs with prehospital data. The study used 
24 variables including prehospital data on 777 adult AIS patients (LVO n = 300) who underwent CT angiography 
or MR angiography and received reperfusion therapy within 8 h from symptom onset in a single center. They 
compared artificial neural network (ANN) and conventional stroke prediction scales including the Cincinnati 
Prehospital Stroke Severity Scale, Field Assessment Stroke for Emergency Destination, and RACE. They found 
that the ANN had a higher predictive value than the conventional scales (AUROC, ANN 0.823, conventional 
scales 0.740–0.796)12. In addition, prediction algorithms for LVOs using machine learning were documented by 
You et al., whose study was not a prehospital study but a hospital study13. Their study included 300 adult stroke 

Table 2.   Prehospital stroke prediction using machine learning. AUROC area under the receiver operating 
characteristic curve, XGBoost eXtreme gradient boosting, SVM support vector machine.

Models AUROC Accuracy Sensitivity Specificity F1-score

Training cohort

XGBoost 0.994 0.978 0.990 0.947 0.985

Random forest 0.979 0.943 0.956 0.910 0.960

SVM (Radial basis function) 0.968 0.928 0.950 0.873 0.950

SVM (Linear) 0.889 0.835 0.915 0.627 0.889

Logistic regression 0.882 0.843 0.847 0.835 0.886

Test cohort

XGBoost 0.980 0.952 0.986 0.864 0.967

Random forest 0.953 0.907 0.933 0.840 0.935

SVM (Radial Basis function) 0.935 0.900 0.933 0.815 0.931

SVM (Linear) 0.904 0.862 0.928 0.691 0.907

Logistic regression 0.886 0.828 0.828 0.827 0.874
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patients (LVO n = 130) with 24 variables and compared the predictive values of XGBoost, logistic regression, 
random forest, and SVM. They found that XGBoost had the highest predictive value for LVOs (AUROC 0.809)13. 

Figure 1.   Receiver operating characteristic curve and the SHAP value of prehospital stroke prediction. (a) 
Training cohort (derivation cohort). (b) Test cohort (validation cohort). (c) SHAP value of stroke. AUROC (area 
under the receiver operating characteristic curve), CI (confidence interval), XGBoost (eXtreme Gradient 
Boosting), SVM (support vector machine), SHAP (SHapley Additive exPlanation), GCS M (Glasgow coma scale, 
best motor response), onset hour 
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In agreement with these findings, we also found that XGBoost had a higher predictive value for strokes compared 
to logistic regression, random forest, and SVM. Thus, XGBoost appears to be a better approach for this prediction.

Not only patients’ baseline factors, but also environmental factors, increased the risk of stroke14. In this 
study, of the 21 environmental factors screened, the onset timing factors including onset hour, day of the week 
(Monday), and minimum THI were analyzed. Stroke patients had earlier onset timing hours compared to non-
stroke patients in the univariate analysis (Table 1). In addition, the SHAP analysis in the XGBoost for the identi-
fied onset hour of a stroke had an impact on the algorithms. Regarding the minimum THI, a high impact was 
identified in the SHAP analysis for LVOs. Few prehospital stroke scales include environmental factors; however, 
adding environmental factors may contribute to improving precision of prehospital stroke/stroke subcategory 
prediction using machine learning.

There were some limitations to this study. First, the study was a multicenter study, but conducted in a single 
urban region in Japan. Therefore, it remains unclear whether the algorism would have high predictive value in 
different areas with different backgrounds, and generalization. Second, we excluded pediatric patients, which 
may be a limiting factor of the present study; however, the frequency of stroke in pediatric patients was not 
common compared to adult and approximately 1.0 in 100,000 per year15. In addition, the predictive factors for 
pediatric stroke appears to be different compared to adults15. Further studies targeting pediatric stroke studies 
may develop different predicting algorithms. Third, we aimed for a better performance rather than limiting 
the number of predictors. Further development of algorithms with limited number of predictors to keep high 
predictive value would strengthen the study results and may lead to future implementation. Further studies 
including wider regions or a limited number of predictors may strengthen the findings for the prediction of 
strokes by machine learning.

In the conclusions, the prehospital stroke diagnostic algorithm using machine learning had a high predictive 
value for strokes and their subcategories including LVOs. This machine learning approach could potentially lead 
to precise stroke recognition in prehospital settings.

Methods
Study setting and patients.  The current multicenter observational study was prospectively conducted in 
an urban area (Chiba city, population 1 million) in Japan, between September 2018 and September 2020. The 
Chiba City Fire Department covers this entire area with 26 ambulance squads, and has about 53,000 emergency 
dispatches per year. We included consecutive adult patients (≥ 20 years of age) with suspected stroke by EMS 
personnel who were subsequently transported to hospitals. There were 12 hospitals which can receive stroke 
patients in this entire area; all the 12 hospitals participated the study. We excluded pediatric patients, hypo-
glycemia proved by measurement of blood glucose, traumatic brain injury, drug abuse, undiagnosed patients 
who have not received diagnostic investigation based such as CT or magnetic resonance imaging (MRI). Of the 
1778 patients screened, 332 who had missing diagnostic data or multiple entries were excluded and 1446 were 
analyzed (Supplementary Fig. S1).

The Chiba University Hospital Certified Clinical Research Review Board approved this study (No.2733) and 
waived the need for written informed consent, in conformity with the Ethical Guidelines for Medical and Health 
Research Involving Human Subjects in Japan. We posted information about this study in each ambulance. We 
promptly excluded the collected data when a patient or family indicated that they did not wish to participate 
in this study.

Data collection and definition.  Data on variables for stroke prediction in the prehospital setting, includ-
ing symptoms, physiological data, and medical history, were collected (Supplementary Table S1). The variables 
cover each of the scoring components of the National Institutes of Health Stroke Scale16. Since onset timing 
(daily, especially Monday, and hourly) and meteorological conditions potentially altered the risk of stroke14,17, 
onset time and weather data were added to the analysis.

Table 3.   Prehospital stroke subcategory prediction using XGBoost. AUROC area under the receiver operating 
characteristic curve, XGBoost eXtreme gradient boosting, SVM support vector machine, AIS acute ischemic 
stroke, LVO large vessel occlusion, ICH intracranial hemorrhage, SAH subarachnoid hemorrhage.

AUROC Accuracy Sensitivity Specificity F1-score

Training cohort

AIS with LVO 0.896 0.893 0.384 0.977 0.504

AIS without LVO 0.916 0.837 0.840 0.835 0.736

ICH 0.910 0.853 0.679 0.906 0.684

SAH 0.974 0.971 0.574 0.993 0.673

Test cohort

AIS with LVO 0.898 0.897 0.488 0.964 0.571

AIS without LVO 0.882 0.814 0.810 0.815 0.703

ICH 0.866 0.834 0.618 0.901 0.636

SAH 0.926 0.952 0.333 0.985 0.417
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Stroke is defined based on the National Institute of Neurdological Disorders and Stroke III18. Stroke is further 
subclassified into AIS with LVO, AIS without LVO, ICH, and SAH. LVO is defined as acute occlusion of the 
internal carotid artery, M1 or M2 portion of the middle cerebral artery, and the basilar artery. Board-certified 
neurologists in registered hospitals made the diagnoses based on examinations including CT, MRI, CT angiog-
raphy, and MR angiography.

Missing values.  We used domain knowledge to impute missing values first. The mutually imputed pairs or 
groups of features based on the knowledge were as follows: (i) conjugate deviation and visual field defects, (ii) 
dysarthria and facial paralysis, (iii) aphasia, best verbal response of the GCS, the JCS, and consciousness-related 
features.

For the remaining missing values of highly correlated variables (correlation coefficient > 0.7), multivariate 
imputation was applied between the variables using a regressor model, in which each feature with missing values 
is modeled as a function of other features. The mutually imputed pairs or groups of features were as follows: (1) 
systolic and diastolic blood pressure, (2) left and right pupil sizes, (3) left and right pupillary light reflex, (4) the 
GCS, the JCS, and consciousness-related features, and (5) paralysis-related features. Other missing values of the 
numerical features were imputed with each median value. For any other categorical attributes, the missing values 
were replaced with a new subcategory “Unknown”.

Note that XGBoost can handle missing values, unlike the other methods. Therefore, we trained two XGBoost 
models, one with the data before and the other after applying imputation, and confirmed that the imputation did 
not cause a decrease in performance (paired sampled t-test’s P-value = 0.268 for tenfold cross validation scores). 
For the purpose of comparison between the other models (logistic regression, random forest, SVM) and XGBoost, 
we used the imputed data for all analyses in this study.

Feature selection.  Among the 59 features collected by EMS personnel and onset time variables, 51 features 
were selected after primitive cleaning of the feature candidates with a large fraction (over 40%) of missing values 
(2 features) or low variance (5% cutoff, 6 features).

For the meteorological features, we calculated Pearson’s chi-square values for all pairs between the stroke cat-
egory and the 21 meteorological features (Supplementary Methods) and selected the features with P-values < 0.05 
as feature candidates. These selected meteorological features were further reduced in number by a forward 
stepwise selection method, in which only features that improved the performance of the model were selected 
by repeatedly including the features one by one. Finally, only one meteorological feature, the ‘minimum THI on 
the onset day’ was selected.

Because we aimed to improve performance, rather than simply limit the number of predictors, we included 
52 features for all analyses in this study.

Statistical analysis.  Of the 1446 patients analyzed, 1156 (80%) were randomly included in a training cohort 
as a derivation cohort, and 290 (20%) were in a test cohort as a validation cohort. First, we developed the binary 
classification models for stroke classification as a primary outcome based on five common machine learning 
algorithms: logistic regression, random forest, SVM with linear or radius basis function kernels, and XGBoost. 
Then, as a secondary outcome, we built a multi-class classification model to predict each stroke category of AIS 
with/without LVO, ICH, and SAH. Based on the primary analysis that found XGBoost to be superior, we chose 
XGBoost for the secondary outcome analysis.

The parameters of the five machine learning models were selected by using the grid search method, in which 
we further split the training cohort into five folds, trained each of the five sets of data, and selected the param-
eters of the model that performed the best. It should be noted that the data are imbalanced. More weight must 
be set toward the minor classes in any model when the loss functions are calculated so that the major and minor 
classes are fairly evaluated.

The performance of the models was measured in terms of the AUROC as a superior metric, as well as sensitiv-
ity, specificity, and the F1 score. We used the SHAP algorithm19 of the XGBoost model to interpret the contribu-
tions of each feature to the predictive model. In the algorithm, the SHAP value was computed by a difference in 
model output resulting from the inclusion of a feature in the algorithm, providing information on each feature’s 
impact on the output. In the SHAP summary plots, every violin plot is composed of all data points of each feature 
with a higher value being redder, and a lower value being bluer. The violin plots are aligned with the SHAP value 
along the x-axis. Thus, a redder/bluer violin plot on the right side (i.e., higher positive SHAP value) suggests that 
the higher/lower the values of the feature are, the more the model predicts towards positive/negative impact.

Data are expressed as medians (interquartile ranges) for continuous values and absolute numbers and per-
centages for categorical values. Two-tailed P-values < 0.05 were considered significant. Analyses were performed 
using Python 3.7.6 packages (Scikit-learn 0.23.2, XGBoost 1.1.1, Pandas 1.1.5, and NumPy 1.19.2) to construct 
the machine learning models. The Python packages including Scikit-learn, XGBoost, Pandas, Numpy, and Mat-
plotlib, and the SHAP package are all open-source packages. Permission to use these packages is granted, free 
of charge, to any person (Python License: https://​docs.​python.​org/3/​licen​se.​html, SHAP: https://​github.​com/​
slund​berg/​shap/​blob/​master/​LICEN​SE). All figures in this study were drawn using the visualization package in 
Python, Matplotlib (3.3.4)20,21.

Data availability
The datasets used and analyzed during our study are available from the corresponding author upon reasonable 
request.

https://docs.python.org/3/license.html
https://github.com/slundberg/shap/blob/master/LICENSE
https://github.com/slundberg/shap/blob/master/LICENSE
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