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Abstract

Use of genomic assays to determine distant recurrence risk in patients with early stage breast 

cancer has expanded and is now included in the American Joint Committee on Cancer staging 

manual. Algorithmic alternatives using standard clinical and pathology information may provide 

equivalent benefit in settings where genomic tests, such as OncotypeDx, are unavailable. We 

developed an artificial neural network (ANN) model to nonlinearly estimate risk of distant 

cancer recurrence. In addition to clinical and pathological variables, we enhanced our model 

using intraoperatively determined global mammographic breast density (MBD) and local breast 

density (LBD). LBD was measured with optical spectral imaging capable of sensing regional 
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concentrations of tissue constituents. A cohort of 56 ER+ patients with an OncotypeDx score 

was evaluated. We demonstrated that combining MBD/LBD measurements with clinical and 

pathological variables improves distant recurrence risk prediction accuracy, with high correlation 

(r = 0.98) to the OncotypeDx recurrence score.
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1 | INTRODUCTION

Over 250 000 breast cancers are diagnosed annually in the U.S. and an estimated 90% 

of these will be diagnosed at an early stage, where the disease remains confined to the 

breast and axillary lymph nodes [1]. Following diagnosis, 50%–75% of early-stage patients 

undergo breast conserving surgery (BCS) followed by whole-breast radiation therapy. A 

persistent challenge of BCS and all breast oncologic treatment is the presence of clinically 

occult tumor cells that cause relapse—local recurrence and/or distant metastasis [2]. Over 

the past 15 years, the risk of distant recurrence has decreased and long-term survival 

has improved. Survival improvements have primarily been attributed to improved adjuvant 

treatments, including chemotherapy, directed HER2/neu therapy for HER2/neu + disease 

and estrogen receptor blocking agents and aromatase inhibitors for endocrine-positive breast 

cancer. Use of the most appropriate adjuvant or neoadjuvant therapy for a patient to reduce 

distant recurrence risk is an example of precision medicine that can reduce mortality, 

morbidity associated with over-treatment and healthcare cost [3–6].

Predicting the need for adjuvant or neoadjuvant therapy has improved over the past 15 

years with the use of genomic multigene assays. Genomic multigene assays originated with 
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an analysis of prior clinical tissue and data, wherein long-term outcomes from patient 

treatments were known and could be correlated with identified multigene arrays. The 

OncotypeDx assay was developed using data from the National Surgical Adjuvant Breast 

and Bowel Project (NSABP), particularly the B-20 and B-14 studies, which demonstrated 

that, while adjuvant chemotherapy improved disease-free survival, not all ER+/node­

negative tumors benefited from adjuvant chemotherapy [7–11]. Treatment decisions were 

modified in up to 30% of patients receiving a recurrence score, sparing patients with 

low-risk cancers unnecessary cytotoxic therapy [12–15].

The OncotypeDx recurrence score provides a numeric indicator of distant recurrence risk 

(1–100) that is used to categorically assign patients to low-risk (1–17), intermediate-risk 

(18–30) and high-risk (>30) groups [16]. Several review studies suggest a definite adjuvant 

chemotherapy benefit for node-negative patients in the high-risk group, but little to no 

benefit for those in the low-risk group [17–21]. For the intermediate-risk category, the recent 

TAILORx trial showed no significant association between chemotherapy and recurrence 

score, except for a significant benefit for chemotherapy for women less than 50 years 

old [22, 23]. Notably, the recent AJCC 8th Cancer Staging Manual suggested the use 

of genomics profiles or multigene panels in clinical decision-making, demonstrating the 

important connection between pathology and genomics. To address resource limitations in 

settings where a validated genomic test such as OncotypeDx is unavailable, efforts have 

been devoted to developing inexpensive algorithmic recurrence risk estimators that are 

based on correlations with standard clinical and pathological features. The rationale for 

using pathological features to provide recurrence predictions stems from the relationship 

between genetic markers in the OncotypeDx assay and cellular features determined 

using histopathology [24]. Categorical (low-/intermediate-/high-risk) and numeric (1–100) 

linear regression models have been reported that use combinations of pathological feature 

variables, though the Pearson correlation coefficients have not exceeded 0.7 [25–28]. One 

review [27], which used an independent data set as input to published linear models, found 

that strategically selected combinations of pathological variables could be used to generate 

a reliable OncotypeDx surrogate for high-risk patients. However, in the intermediate- and 

low-risk groups, the predictions were less reliable and were statistically unfit to safely 

replace the validated OncotypeDx recurrence score.

Other models have included imaging features from magnetic resonance (MR), ultrasound or 

mammography in an attempt to more accurately predict OncotypeDx scores. Multivariate 

logistic regression was used to identify pleomorphic calcifications on a mass in 

mammography images and posterior acoustic enhancement on a mass in ultrasound as 

features for accurately predicting OncotypeDx category [29]. Linear models using MR 

images [30–32] identified image features significantly correlating with OncotypeDx scores, 

and a nonlinear convolutional neural network showed an accuracy of 81% and specificity of 

90% for a three-class prediction [33]. These models demonstrate the value of using image 

features for OncotypeDx score prediction in both linear and nonlinear models.

Patients with elevated mammographic breast density (MBD) are predisposed to local 

recurrence [34–37]. Features relating to breast density could thus improve prediction of 

recurrence risk. In a previous study, patients in the high mammographic density group 
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experienced much greater risk of local disease recurrence than patients in the low-density 

group (10-year actuarial risks: 21% vs 5%; hazards ratio [HR], 5.7) [36]. In fact, previous 

studies have shown that tumorigenic signaling and cellular persistence is enhanced with 

increased collagen matrix stiffness and the nature of fiber matrix alignment within the 

breast [38–41]. Our group has previously developed a spectral imaging probe that can 

intraoperatively capture a measure of local breast density (LBD) for every square millimeter 

of a given breast tumor margin [35, 42]. While a clear association was established between 

LBD and surgical margin status—and thereby risk of local recurrence [34]—no association 

with distant recurrence risk has been established. Features related to breast density have yet 

to be explored in genomic assays or in models that include pathological and/or imaging 

inputs.

The use of artificial neural networks (ANN) for diagnostic purposes has become 

increasingly popular, with many clinical trials showing an increase in benefit to health care 

outcomes [43]. ANNs are an evolving branch of machine learning that seeks to leverage 

information processing methods similar to the human brain. ANNs incrementally learn from 

feature patterns characteristic of a natural phenomenon, effectively capturing all linear and 

nonlinear relationships between inputs and outputs. The diagnosis of cancer, cardiovascular 

disease and diabetes are some more popular uses for ANNs, since there are large data sets 

available for these diseases [44]. Applications of ANNs for these diseases include diagnosis 

of coronary artery disease, arrhythmias, distinguishing cancer types, cancer diagnosis, the 

extrapolation of glucose concentrations and measuring patient quality of life. A variety of 

inputs have been used in ANNs for cancer diagnosis, including demographic, oncologic, 

radiologic and biochemical data [44]. For breast cancer, the use of ANNs has focused 

mainly on the interpretation of mammographic images. A 3-layer ANN performed at 

a higher level than the averages of attending radiologists or residents when interpreting 

mammograms, with a resulting AUC of 0.95 [45]. Convolutional Neural Networks (CNNs) 

are similar to ANNs, but typically include a fully connected layer at the end of the network, 

as well as many convolutional layers. CNNs have also shown promise in the field of 

breast cancer diagnostics, particularly when images are included in the input. CNNs have 

been used to classify invasive ductal carcinoma breast cancer (AUC 0.99–1.00) [46], for 

evaluation of digital mammography to detect breast cancer (AUC 0.8490) [47], for detection 

of malignant soft tissue lesions in mammography (AUC 0.87–0.895) [48], and for breast 

cancer screening exam classification (AUC 0.895) [49]. Some limitations of CNNs in breast 

cancer imaging include inferior performance compared wth experienced radiologists [47], 

small sample sets [49], and degradation of performance between the training and testing data 

sets [48].

The goal of this study was to investigate the value of including global breast density 

measured using mammography and LBD measured using optical imaging for OncotypeDx 

score prediction. The relationships between composite pathological features (hormone 

receptor content, mitotic grade, nuclear grade, tubule formation grade), clinical features 

(body mass index [BMI], age) and imaging features (mammographic, optical breast 

density) and their influence on recurrence risk (local and distant), are likely complex 

and unstructured. Therefore, we developed a nonlinear ANN algorithm to predict risk 

of recurrence. We first demonstrated the improved effectiveness of the ANN model 
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compared wth published linear models for OncotypeDx score prediction—particularly for 

patients in the low and intermediate risk categories, where linear models underperformed. 

Next, we demonstrated improved OncotypeDx score prediction for the ANN model when 

breast density information (MBD and LBD) was incorporated in addition to clinical and 

pathological information. Models using a combination of global and LBD outperformed 

models using either one alone.

2 | MATERIALS AND METHODS

This study was performed in accordance with prospective clinical protocols approved 

by Duke University and The University of Wisconsin Institutional Review Boards 

(Pro00007857, Pro00028284). Patients over age 18 undergoing BCS granted written consent 

under the approved clinical protocol. For this study, 57 ER+, axillary lymph node-negative 

patients who underwent BCS, local optical tissue assessment and OncotypeDx testing were 

selected from the two institutions. The patient cohort was selected from a larger cohort 

of patients (n = 500) collected from November 2007 through March 2017. The eligibility 

criteria of this study were (a) patients undergoing a partial mastectomy for the treatment 

of an invasive or non-invasive breast malignancy; (b) subjects greater than 18 years of 

age; and (c) patients with a clinically detectable disease either by physical examination or 

radio-graphic studies. This group is representative of the general surgical population (mostly 

postmenopausal women with ER+ breast tumors). All subjects were recruited following the 

same eligibility criteria. For the investigation, we built two instruments that had identical 

specifications based on performance verification and placed at Duke University and at the 

University of Wisconsin-Madison [35, 42]. Patient variables and OncotypeDx recurrence 

scores were entered into a REDCap database at Duke University (n = 49) and the University 

of Wisconsin-Madison (n = 63). However, due to the stringent criteria (ER+ patients with an 

OncotypeDx test and negative margin that was imaged to obtain the LBD endpoints) used to 

select patients for this analysis, only 18 patients from the University of Wisconsin-Madison 

and 38 patients from Duke University were included in the analysis. Only consenting 

patients in whom optical images from pathologically confirmed negative margins (n = 56) 

were included in this study (no tumor within 2 mm of the edge).

The variables incorporated into this analysis can be categorized into clinical, pathological 

and imaging variable groups. The clinical characteristics recorded for each patient were 

BMI and age. Other clinical parameters such as menopausal status, prior surgeries and 

pregnancies were not used due to inconsistencies in reporting these parameters. The 

pathological features used included ER/PR levels as quantified by the Allred score; 

HER2 status; nuclear, mitotic and tubule formation grades; and tumor size. The combined 

Nottingham grade was also recorded; however, this parameter was used only in instances 

involving direct comparisons to previously developed predictive models. Similarly, the 

ER/PR “H-score,” which captures the percentage of cells presenting with weak, moderate, 

strong or no staining [28], was recorded for comparisons to published linear models. 

ER and PR expression was determined using standard immunohistochemistry where the 

percentage and intensity of nuclear staining of invasive tumor cells was used to calculate 

the composite Allred score and the H-score. Each patient had a positive ER status (AS >2). 

HER2 expression was categorized as negative, equivocal or positive using IHC combined 
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with fluorescent in situ hybridization (FISH) as described by the American Society of 

Clinical Oncology guidelines. The imaging variables included MBD and LBD from breast 

tumor margins. For MBD, a single radiologist (MSS) re-read all breast mammograms 

to ensure consistency in scoring across patients recruited from Duke University and 

the University of Wisconsin, Madison. Each patient was assigned a value based on 

their presurgery mammogram: 1 (fatty), 2 (scattered fibroglandular), 3 (heterogeneously 

dense) or 4 (extremely dense). LBD information was collected using optical surrogates 

previously shown to correlate to radio-graphic breast density and disease specific subtypes in 

lumpectomy specimens [34, 35, 50, 51].

2.1 | Optical imaging

Diffuse reflectance spectra were collected from excised breast tissue specimens from 106 

tumor margins using an optical probe described previously [34, 35, 42]. We measured 

two negative margins in all tumor samples except six patients due to intraoperative time 

constraints. Specimen orientation for lumpectomies (partial mastectomies) was determined 

according to surgically-placed reference features, including a surgical wire inserted into the 

center of the tumor, colored sutures and surgical clips. Specimen faces were defined as the 

faces of a cube and labeled relative to the specimen orientation in situ; the six measurable 

faces are clinically referred to as the superior, inferior, posterior, anterior, medial or lateral 

margins.

Immediately following tissue resection, lumpectomy specimens underwent intraoperative 

mammography to verify removal of the tumor mass. The specimen was then placed onto the 

imaging device. Following orientation, a raster-scanning procedure was initiated and diffuse 

reflectance spectra were collected across the visible spectrum (λ = 420–700 nm). Most 

often, the specimen was then flipped to its opposing margin and the scan was performed on 

a second margin. All margins measured in the study were pathologically negative.

Tissue optical property maps were reconstructed post-measurement using an inverse Monte 

Carlo model as discussed previously [51–53]. Briefly, the spatial-spectral information was 

used to fingerprint the tissue by providing direct measures of the β-carotene concentration 

(a surrogate for fat content) relative to the amount of tissue light scattering (a surrogate 

for fibroglandular content). The optical image was then compressed to six total descriptor 

variables that encapsulate the local density landscape of the tumor margin (Figure 1). 

Compression of the image was achieved by first generating a cumulative distribution 

function (CDF) of the entire optical image. The CDF was then fit to a modified logistic 

function, yielding three descriptive fit parameters: A, which represents the left/right shift of 

the CDF; B, which represents the CDF skew; and C, a numeric offset. In addition to these 

three parameters, the means, medians and variances of the images were also used to fully 

capture the optical parameter distribution of the margin. The image compression technique 

is illustrated in Figure 1.

2.2 | Nonlinear prediction model

The clinical, pathological and imaging variables were used in select combinations in a 

nonlinear ANN model to predict recurrence risk. A Machine Learning Toolbox in MATLAB 
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2017 was used to create the ANN used in this model. This toolbox contains apps and 

functions to create various architectures for neural networks. The sigmoid is the default 

activation function. Alternative activation functions were considered but were ultimately 

discarded as performance did not change significantly. The ANN model was constructed 

by using all pathology variables as a starting point and then systematically adding each 

additional variable to include all possible permutations. We investigated the effect of adding 

age and BMI individually (clinical endpoints), as well as each LBD variable (optical 

endpoints) and different combinations of these endpoints. The model was initially based 

on ~20 variables; therefore, the initial network was designed with 20 neurons. Performance 

was not statistically different when models with 10 and 30 were considered, so the model 

maintained the original choice of 20 neurons. The networks were constructed using 20 

neurons or nodes, meaning a 20 × n coefficient matrix (where n is the number of variables) 

was used as variable input weights. The vector of weights corresponding to each node 

was determined using nonlinear backpropagation (Levenberg–Marquardt) to minimize the 

mean-square-error between an estimated OncotypeDx score and the true OncotypeDx score 

for the patient cohort. This model is diagrammed in Figure 2. The desired effect was to 

faithfully recreate the OncotypeDx score directly from learned patterns of input variables. 

This is in contrast to weighted coefficients used as scaling factors in linear regression. 

Indeed, this approach is nontraditional and unlike previously published models correlating 

input variables to the OncotypeDx score using linear regression [26–28]. While linear 

regression is easy to understand, the adaptive ability of the ANN model affords accuracy 

in what would traditionally be considered outlier circumstances, in which patients have 

uncommon combinations of scores. A common concern with any machine learning approach 

is model overfitting, which was overcome by randomly selecting 60% of the cohort to train 

the network and testing the network on the remaining 40% of the samples. The random 

sampling and training of the model were completed 1000 times. This increased the capacity 

of the model, because it was forced to fit a variety of functions. The weights from the 

1000 fits were normally distributed about the mean, thus the mean weight was selected 

for the final model. The normal distribution of the weights indicates the model is not 

over-constrained or overfitted. The convergent network coefficients were then chosen as the 

trained network. Used in this manner, any combination of inputs can be trained to provide a 

single output score; in this case, the target score is the actual OncotypeDx recurrence score. 

Finally, the Pearson correlation coefficient (r) was calculated to indicate the accuracy of the 

predicted OncotypeDx recurrence scores when compared wth the true scores. Formally, r is 

the covariance of the predicted and true OncotypeDx scores divided by the product of their 

respective SD.

Variable combinations were considered in a stepwise fashion. Although every possible 

combination of parameters could be attempted, we chose to start with the combination 

of the best three predictors and added the remaining parameters cumulatively, one at a 

time, keeping only those which improved estimates. Specifically, each possible set of 

three clinicopathological parameters was regressed against the true OncotypeDx score 

and parameters with correlation coefficients better than random chance were used in 

combination with the remaining parameters. In practice, this amounted to iteratively scoring 

each additional variable in combination with the current best performing set, in which case 
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the best new set of variables was kept and this process continued for each remaining variable 

set. To eliminate random selection bias, the procedure was performed simultaneously with 

10 branches containing less predictive, though similar accuracy, cumulative combination 

sets. This exercise was performed for pathological, clinical and imaging variables. Finally, 

variables were combined strategically across categories by removing subgroups accounting 

for the greatest variance of the true OncotypeDx score.

The correspondence of the true OncotypeDx recurrence score to the predicted score 

generated using clinical, pathological and imaging variables was assessed using parametric 

statistics, primarily the Pearson correlation coefficient. The normality of clinical variables 

was determined using the Shapiro–Wilk test. To assess the feasibility of safely using this 

algorithm in lieu of the OncotypeDx score, concordance between low-, medium- and high­

risk classifications were assessed using weighted kappa statistics. Finally, receiver operating 

curves (ROCs) were generated to evaluate the sensitivity and specificity of classifying low- 

and medium-risk groups correctly, as this distinction is imperative for adoption of a low-cost 

alternative to the OncotypeDx score. Concordance of categorical risk classification between 

the OncotypeDx recurrence score and the ANN recurrence score was performed using the 

statistics toolbox in MATLAB, version 9.2.0.531146 (R2017a). The neural network was also 

developed in MATLAB R2017a using the machine learning toolbox.

3 | RESULTS AND DISCUSSION

3.1 | Distribution of pathological, clinical and imaging parameters of OncotypeDx patient 
cohort

Patient variables and OncotypeDx recurrence scores were obtained from the REDCap 

database at Duke University and the University of Wisconsin-Madison. Only consenting 

patients who had received LBD imaging (n = 56) were included in this study, where all 

tumor margins measured were negative (>2 mm). Patient information is detailed in Table 

1. OncotypeDx scores ranged from 3 to 39 with an average of 19 ± 6.8 (SD); 28 patients 

were classified as low-risk, 26 as intermediate-risk and 2 as high-risk. The average patient 

age was 59 ± 9.8; average BMI was 29.6 ± 6.3. The average tumor size was 2 ± 1.2 

cm. Analysis of pathology input parameter distributions conformed to the requirements of 

OncotypeDx assay eligibility: no patients had ER-tumors; 85% had an ER Allred score > 

7, the remaining 15% had an ER Allred score of 2–7. Approximately 9% of patients had 

a negative progesterone receptor (PR) Allred score. Only one patient was HER2+, 40 were 

HER2- and 15 were equivocal as determined by immunohistochemistry (IHC). Most patients 

had a combined Nottingham score of either 1 (17 patients) or 2 (33), a nuclear grade of 

either 2 (35) or 3 (17), a mitotic grade of 1 (44) and a tubule formation grade of either 2 (20) 

or 3 (29). Only 3 patients had extremely dense breasts (MBD = 4), with 10 patients having 

mostly adipose breasts (MDB = 1), 25 having scattered fibrous breasts (MBD = 2) and 17 

having heterogeneously dense breasts (MBD = 3). Though the models do not assume normal 

distributions for input parameters, the Nottingham, nuclear, mitotic and tubule formation 

grades were found to be normally distributed (Shapiro–Wilk test, P < .0001), indicating a 

non-biased patient cohort within the domain of ER positivity.
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Optical imaging surrogates for breast tissue morphology were normally distributed 

and correlated to the global MBD, reinforcing that optical imaging is measuring the 

fat-to-fibroglandular-content ratio. Figure 3 shows representative optical images with 

corresponding optical parameter distributions and summary variables, stratified by MBD. 

As MBD increases, the mean ratio of β-carotene and scattering decreases, causing the 

cumulative probability distribution (CDF) to shift to the left, captured as an increase in 

the A parameter. As MBD increases, the cumulative amount of fibroglandular content 

increases while fatty tissue decreases, resulting in increased tissue homogeneity, indicated as 

a narrower CDF and thus an increased slope. This effect is captured as an increase in the 

B parameter and can be thought of as microenvironment heterogeneity. The variance of the 

β-carotene-to-scattering ratio is also minimized in scattered fibroglandular tissue.

3.2 | Increased accuracy of the ANN model in predicting recurrence risk

Side-by-side comparison of the linear and ANN models revealed an impressive increase in 

prediction accuracy using the ANN model. The ANN model used the variables common to 

both of the previously published BCPS [26] and Magee [28] linear regression models: ER 

and PR status, nuclear grade, tubule grade and tumor size. We first evaluated the correlation 

between the predicted OncotypeDx recurrence score and the actual score using these two 

linear regression models with inputs from our data set. Correlation coefficients and variables 

used for each model are shown in Table 2. Regression lines and receiver operator curves 

(ROC) associated with the Magee2, BCPS and ANN models are shown in Figure 4. We 

first evaluated the correlation between the predicted OncotypeDX recurrence score and the 

actual score using two published linear regression models using our data set. While the 

BCPS model uses the Nottingham score and the Magee2, different cellular grades (mitotic, 

nuclear, tubule formation), these inputs are essentially describing the same features. The 

only input that is different is tumor size, which was included in the Magee2 model. The 

Pearson correlation coefficient for the BCPS model using our data set (r = 0.44) was lower 

than the reported value (r = 0.65), likely due to the smaller sample size of our data set 

than in the previous study. Similarly, application of the Magee2 equation to our data set 

resulted in a lower correlation coefficient than reported previously (r = 0.40 vs 0.66) [26, 

28]. While the application of the BCPS and Magee2 equation to our data set resulted in a 

lower correlation coefficient than reported previously [26, 28], the correlation coefficients 

were comparable between the models as was the case previously. Given that the BCPS 

model does not include tumor size, the ANN model was directly compared with the Magee2 

model as both use tumor size as one of the input variables. The ANN model outperformed 

the Magee2 by a factor of 2 (correlation coefficient increased from 0.4 to 0.82). It should 

be noted that comparable correlation coefficients were achieved when the ANN model was 

tested either with nuclear grade and tubule grade or the Nottingham score.

3.3 | Enhancement of ANN model predictions with inclusion of patient clinical inputs

Using BMI combined with pathology improved correlations vs age combined with 

pathology (r = 0.88 [0.81–0.93] vs r = 0.86 [0.77–0.92]). The combination of both BMI 

and age with pathological features resulted in the highest correlation coefficient (r = 0.89 

[0.82–0.94]). Figure 5 shows the regression lines associated with each of the clinical and 

pathological variable combinations.
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Measures of MBD and LBD each independently improved correlation coefficients to above r 
= 0.90 (0.91 and 0.93, respectively) when combined with clinical and pathological features, 

suggesting the significance of breast density in recapitulating the true OncotypeDx score, 

as shown in Figure 6. Incorporating both variables in the model resulted in the highest 

correlation coefficient (r = 0.98 [0.96–0.99]). The predictive accuracy of including MBD 

from mammography, LBD from optical imaging and the combination of the two resulted in 

an area under the curve (AUC) of 0.88 to 0.97. Table 3 lists the variables used in each model 

and the respective risk prediction accuracy and AUC.

In previous studies, we demonstrated that LBD (essentially reflects adipose relative to fibro­

glandular content) is correlated to global MBD [34, 35, 42, 50]. Because of the correlation 

between LBD and global MBD, comparable performance was achieved when either MBD 

or LBD was used in combination with the clinical and pathological variables (r = 0.91 and 

0.93, respectively). However, with the addition of only LBD, variance in the correlation 

coefficients in the medium-risk category is higher than that for the low-risk category and 

the opposite is observed when only MBD is included. The variance in the correlation in 

the low-risk and medium-risk categories decreases when both MBD and LBD are included. 

For the case where the full combination of variables was used, only 2 of 56 patients were 

on the borderline of the low- and medium-risk groups. Only one of these patients would 

be classified incorrectly based on the selection of the threshold, thus the percentage of 

patients that would be classified incorrectly is less than 2%. This demonstrates that an 

algorithm combining pathological, clinical and imaging parameters is able to reliably predict 

OncotypeDx Scores. When either MBD or LBD are used on their own, the correlation of 

the predicted and actual OncotypeDx scores are not significant. To achieve improvement 

in the linear correlation coefficient, the confidence interval of these correlations and the 

corresponding AUC, all six variables LBD variables were needed.

In this work, we present an ANN model for predicting recurrence risk in early stage 

breast cancer patients undergoing breast conservation surgery using clinical, pathologic and 

imaging parameters as input. The ANN model is superior to published linear regression 

models using the same input variables. Other groups have reported C-index (AUC) of 0.85–

0.89 using variables of age, tumor size, histologic tumor type, lymph-vascular invasion, 

grade and progesterone receptor status [25], 0.75 using the mammographic or sonographic 

imaging features [29] 0.68, 0.77–0.82 and 0.89–0.93 using MR imaging features [29, 30, 

32, 54]. Furthermore, we demonstrated that MBD as well as LBD evaluated at the time of 

surgery using optical imaging significantly improves the accuracy of predicting recurrence 

risk. The addition of optical measures of LBD to a feature set that included MBD improved 

the correlation coefficient from r = 0.89 to 0.98, suggesting that the local morphological 

tumor landscape is associated with the risk of distant recurrence.

A review of the literature on predicting recurrence risk using algorithmic models and 

comparing with the OncotypeDx assay suggests that linear models cannot reliably predict 

low- and intermediate-risk OncotypeDx recurrence scores [26–28, 55]. The inability to 

distinguish low- and intermediate-risk patients using linear models suggests that the 

genomic OncotypeDx assay captures diagnostic information that is not available in 

standard clinicopathological parameters. The analysis presented here indicates a possible 
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alternative: the OncotypeDx test may not capture more diagnostic information than 

standard clinicopathological endpoints, but instead, genomic profiles measured using the 

OncotypeDx assay may represent nonlinear, patternistic manifestations of these endpoints 

rather than direct correlations. Though this study does not prove this, the improvement 

in correlations of the nonlinear model vs linear models suggests this as a possibility. 

There are many examples within the literature that corroborate the diagnostic utility 

of patternistic models for capturing notoriously difficult-to-characterize pathophysiology; 

examples include the use of artificial intelligence to help radiologists diagnose breast cancer 

using mammography images [56], predict tumor drug response [57], understand tumor 

sensitivity to receptor inhibition [58] and detect early stage cervical cancer [59].

The distributions of pathological, clinical and optical parameters appear to follow normal 

distributions, suggesting that our 56-patient data set is representative of a typical ER+, 

node-negative patient cohort. A limitation of this study was the inability to compare the 

ANN model to many of the additional formulations of the Magee [28] equations, or to the 

handful of other linear models previously reported [28, 32, 55, 60–65], as these models rely 

on variables such as Ki-67 expression that are not consistently reported at our institutions. 

Application of the BCPS [26] and Magee2 [28] models to our data set resulted in similar yet 

notably reduced correlation coefficients compared wth previously published or as verified by 

review articles with larger independent data sets. One plausible explanation for the deviation 

between our data set and those reported stems from the shortage of HER2/neu + patients 

in our study (n = 2). HER2/neu status has a large influence on the predicted OncotypeDx 

score for the linear models and typically accounts for >20% of the variance of the estimated 

score. This suggests that the data set used here deviates from the typical HER2 presentation, 

causing a circumstance in which the linear models would categorically fail to be reliable. 

The nonlinear adjustment of weighting coefficients prevents mis-classification of patients 

with outlier values for variables, as the weighting for that variable is inherently reduced 

via reference to known patterns. Many authors have reported that most HER2+ patients 

fall into the high-risk category [26–28, 60, 66]. Interestingly, some have suggested the 

alternative, that is, that assays used to determine HER2 status have poor agreement with the 

OncotypeDx assay. (In some cases, the concordance is a mere 40% [67].) Taken together, 

this suggests that the HER2 parameter introduces considerable uncertainty in recurrence risk 

models.

The work demonstrates that nonlinear models are superior to linear models and that 

Oncotype Dx prediction benefits from the addition of breast density, a variable that 

has not previously been explored. The addition of breast density (either LBD or MBD) 

improves both the correlation coefficient and confidence intervals, thereby improving 

AUC. Further, breast density quantified using two separate approaches (LBD or MBD) 

provides comparable improvements in the correlation coefficients and confidence intervals 

underscoring the benefit of breast density in the prediction of the Oncotype Dx scores. 

Further, MBD or information related to breast density obtained via other imaging modalities 

(for example, MRI) could also be used on larger retrospective data set of ER+, node 

negative patients for which optical breast density is not available. In previous studies, we 

validated the correspondence of LBD (obtained by optical imaging to measure surrogates 

corresponding to the amount of adipose tissue relative to the fibrous tissue content) to 
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global MBD [34, 35, 42, 50]. The focus on breast density stems from an established link 

between density and increased risk of local recurrence and increased tumor aggressiveness 

[34, 37, 68, 69]. We hypothesized that these optical measures may also indirectly capture 

the morphology related to tumor invasiveness, and thus provide an additional indicator for 

distant recurrence risk. Indeed, the addition of LBD improved the nonlinear correlation 

coefficient from r = 0.89 to 0.98. The categorical predictive accuracy for the low-, medium- 

and high-risk groups was 100%.

These results suggest that the optically measured morphological landscape of the breast 

tumor margin directly captures the underlying tumor morphology, its corresponding 

microenvironment and possibly additional disease progenitors, faithfully reproducing 

recurrence risk estimates provided by the OncotypeDx recurrence score. In contrast, 

studies using MR imaging features have been unable to identify imaging features that 

accurately predict low- vs intermediate- and high-risk OncotypeDx score [70]. Further, 

studies acknowledge that the variability in acquisition parameters such as the magnetic field 

strength used in MRI scans has the potential to affect image quality [31–33], while the 

images in our data set were acquired using consistent settings on a single system.

However, our study does have limitations in applicability. The number of high-risk patients 

was limited (n = 2). Many other studies have also reported limited numbers of patients 

in the high-risk cohort [27, 29, 63, 70, 71]. Some of these studies have used random 

selection of patients in the low- and intermediate-risks groups to balance the data set for 

validation [30]; this was not done in this study due to the limited number of patients (n 

= 56). A limitation of this study is the small sample size. Accrual rates into the study 

were low because recruitment was limited to ER+ patients as these patients are the ones 

that undergo OncotypeDx testing, and additionally only a subset of these patients received 

the OncotypeDx test. Another reason for the small sample size was that the data set was 

restricted to negative surgical margins. That being said the studies to which we have 

compared our algorithm have comparable sample sizes, thus we can make meaningful 

comparisons to these other investigations [29, 63]. The greatest prediction accuracy achieved 

in this study requires the use of a novel optical spectroscopy system that would require non­

trivial integration into a standard surgical suite once a breast tumor is removed. This system 

has not been applied to patients undergoing mastectomy and therefore its incorporation into 

assessment of tumor microenvironment in this patient population is untested. The optical 

imaging system is a non-commercial, research-grade instrument. A larger clinical trial in 

which the rapid use of this optical system is incorporated into a diverse population of 

patients with early-stage estrogen-positive patients undergoing both breast conservation and 

mastectomy is required to validate the ANN model. Furthermore, integration into standard 

clinical practice would require commercialization of the optical technology.

The ANN framework developed here represents a first step toward implementation of a 

low-cost, rapid alternative for predicting distant recurrence risk in breast cancer. Although 

no significant benefit of chemotherapy is found for patients with intermediate recurrence 

risk except for women less than 50 years old, chemotherapy is still a consideration for 

adjuvant treatment. Mis-classification of patients within the intermediate group could lead to 

unnecessary cytotoxic treatment of those in whom recurrence is unlikely, and the converse, 
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a lack of treatment of those for whom chemotherapy would likely provide a survival benefit. 

With recent incorporation of genetic profiling in the AJCC staging system for breast cancer 

survival prediction, rapid assessment using the ANN model with existing clinicopathological 

variables together with optical assessment could provide prognostic information for a 

broader group of ER+ patients. Future investigation of this approach would include data 

sets that utilize other genomic tests from populations that are both ER+ and ER−, and 

an investigation into whether optical imaging could be used on core biopsy samples and 

resected breast conservation and mastectomy tissue.
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FIGURE 1. 
Microenvironment optical imaging. Clockwise: (1) Resected tissue specimens are placed 

on a scanning apparatus to capture spatial-spectral information (2, 3), which is processed 

using a Monte Carlo model to produce optical parameters (4). This process is repeated 

several times to capture the entire margin surface. When completed, the spatial distribution 

of the optical parameters is converted to a heat-map image (5). The cumulative distribution 

function (CDF) (6) is derived from this map, and the CDF is fit to a modified logistic 

function to obtain the optical parameter fit coefficients A, B and C
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FIGURE 2. 
Artificial neural network model. From left to right: clinical, pathological and imaging 

variables were used as input nodes. Each of these nodes has an associated weighting matrix 

in which the coefficients represent the influence of that variable on a second, hidden layer of 

nodes. Finally, the second layer of nodes was summed and scaled by a sigmoid function that 

maps the output to the OncotypeDx score range of values (1–100)
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FIGURE 3. 
Optical imaging captures local density and heterogeneity reflected in mammographic 

breast density. Heat-map images of the ratio of β-carotene and scattering, a measure of 

local breast density (LBD), for increasing mammographic breast density (MBD), along 

with corresponding cumulative probability distributions (CDF). In each row, the CDF 

corresponding to the first image (labeled 1 in the top row) is represented by a black CDF 

curve, while the second image (labeled 2 in the top row) is represented by a gray curve. 

Optical trends corresponding to each MBD patient cohort are shown as box and whisker 

plots of the mean, variance (σ2), and the coefficients A and B of the CDF curve

Nichols et al. Page 20

J Biophotonics. Author manuscript; available in PMC 2021 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
Correlation coefficients and performance of linear and ANN models based on pathology 

inputs. Regressions based on, A, the Magee2 equation, B, the BCPS method and, C, the 

ANN model, incorporating only pathological features common to the BCPS and Magee2 

models. D, ROC curves for, A, B and, C for classification of low- vs intermediate-risk 

OncotypeDx recurrence scores
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FIGURE 5. 
ANN model predictions for different combinations of clinical and pathology inputs. 

Regression lines associated with different inputs: A, patient age combined with pathology 

features, B, patient BMI combined with pathology features, and, C, both age and BMI 

combined with pathology features
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FIGURE 6. 
Improvement in prediction accuracy for the ANN model with inclusion of imaging 

parameters. Regression models based on, A, patient pathology, age, BMI and MBD; B, 

patient pathology, age, BMI and LBD; and A, patient pathology, age, BMI, MBD and LBD. 

D, ROC curves corresponding to panels A–C
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