Table 5.
Classifier | Accuracy | AUC | Specificity | Sensitivity | Model |
---|---|---|---|---|---|
EXP1 | |||||
LR | 0.76 | 0.76 | 0.80 | 0.71 | N.A |
RF | 0.71 | 0.73 | 0.83 | 0.43 | N.A |
k-nn | 0.71 | 0.69 | 0.80 | 0.57 | N.A |
EXP2 | |||||
LR | 0.70 | 0.69 | 0.54 | 0.83 | N.A |
RF | 0.66 | 0.65 | 0.55 | 0.75 | N.A |
k-nn | 0.77 | 0.78 | 0.64 | 0.92 | N.A |
EXP3 | |||||
LR | 0.67 | 0.60 | 0.80 | 0.40 | Just NLP |
k-nn | 0.80 | 0.75 | 0.90 | 0.60 | Just Keys |
RF | 0.75 | 0.68 | 0.90 | 0.40 | A |
k-nn | 0.80 | 0.75 | 0.90 | 0.60 | B |
RF | 0.73 | 0.65 | 0.90 | 0.40 | C |
Bold values denote the highest performing models. N.A., not applicable.