Skip to main content
. 2021 Feb 17;3:602683. doi: 10.3389/fdgth.2021.602683

Table 5.

Classification performance on predicting FDV “hands-off” offense types (best results are highlighted in green).

Models Resampling Epochs Accuracy ROC F1 Precision Setup Description
Naïve Bayes - - 0.4673 0.4708 0.5091 0.5778 -
MLP - 10 0.6034 0.5560 0.7359 0.6200 3 Dense; Dropout
- 10 0.5642 0.5575 0.6499 0.6300 3 Dense; L1 Reg.
50% 10 0.5673 0.5495 0.6665 0.6263 3 Dense; L1 Reg.
50% 10 0.6067 0.5551 0.7545 0.6075 3 Dense; Dropout; L1 Reg.
LSTM - 10 0.6036 0.5570 0.7369 0.6200 3 LSTM; Dropouts
10% 10 0.5928 0.5338 0.7298 0.6110 3 LSTM; Dropouts
50% 10 0.5459 0.5333 0.6284 0.6244 3 LSTM
50% 10 0.5939 0.5553 0.7150 0.6229 3 LSTM; Dropouts
50% 10 0.5892 0.5532 0.7094 0.6217 3 LSTM; L1 Reg.
Bi-LSTM - 10 0.5952 0.5632 0.7107 0.6300 3 Bi-LSTM; Dropouts; L1 Reg.
Bi-GRU - 10 0.6027 0.5641 0.7296 0.6200 3 Bi-GRU; Dropouts; L1 Reg.
BERT - 3 0.6072 0.5749 0.7367 0.6200 MaxLen = 400; Batch size = 12