Skip to main content
. 2021 Feb 17;3:602683. doi: 10.3389/fdgth.2021.602683

Table 6.

Classification performance on predicting FDV “ADVO breach” offense types (best results are highlighted in green).

Models Resampling Epochs Accuracy ROC F1 Precision Setup Description
Naïve Bayes - - 0.4504 0.5643 0.3775 0.8159 -
MLP - 10 0.6826 0.6220 0.8028 0.6900 3 Dense; Dropout; L1 Reg.
10% 10 0.6588 0.6067 0.7726 0.7054 3 Dense; L1 Reg.
10% 10 0.6706 0.6195 0.7935 0.6905 3 Dense; Dropout; L1 Reg.
50% 10 0.6776 0.6121 0.7994 0.6919 3 Dense; Dropout
50% 10 0.6693 0.6196 0.7827 0.7063 3 Dense; L1 Reg.
LSTM - 10 0.6824 0.6158 0.8024 0.6900 3 LSTM; Dropouts
- 10 0.6824 0.6237 0.8039 0.6900 3 LSTM; Dropouts; L1 Reg.
10% 10 0.6629 0.6277 0.7705 0.7162 3 LSTM; L1 Reg.
50% 10 0.6742 0.6210 0.7884 0.7048 3 LSTM; Dropouts
50% 10 0.6768 0.6280 0.7930 0.7014 3 LSTM; Dropouts; L1 Reg.
Bi-LSTM - 10 0.6836 0.6180 0.8024 0.7000 3 Bi-LSTM; Dropouts; L1 Reg.
Bi-GRU - 10 0.6774 0.6279 0.7927 0.7000 3 Bi-GRU; Dropouts
- 10 0.6822 0.6082 0.8047 0.6900 3 Bi-GRU; Dropouts; L1 Reg.
BERT - 3 0.6882 0.6576 0.8012 0.7100 MaxLen = 400; Batch size = 12