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Abstract

Developing mathematical models of the feedback control process underlying animal behavior is of

critical importance to understand their interactions with the environment and emotional responses.

For instance, fish geotaxis (the tendency to swim at the bottom of the tank) is known to be a highly

sensitive measure of anxiety, but how and why animals tend to display such a complex response is

yet to be fully clarified. Leveraging the theory of stochastic differential equations, we develop a

data-driven model of geotaxis in the form of a feedback control loop where fish use information

about the hydrostatic pressure to dive towards the bottom of the tank. The proposed framework

extends open-loop models by incorporating a simple, yet effective, control mechanism to explain

geotaxis. We focus on the zebrafish animal model, which is a species of choice in the study of

anxiety disorders. We calibrate the model using available experimental data on acute ethanol

treatment of adult zebrafish, and demonstrate its effectiveness across a wide range of comparisons

between theoretical predictions and empirical observations.

I. Introduction

How the brain elaborates and integrates sensory information that is ultimately used to

produce specific locomotory patterns is of crucial importance to understand the neural basis

of behavior [1], [2]. This process can be seen as a feedback control system, whereby animals

feed back information gathered from their surroundings and transform it into locomotion.

Uncovering such a feedback process can help understand how animals interact with their

environment and provide insight into their emotional responses.

Zebrafish (Danio rerio) –a freshwater species with a high genetic homology to humans [3]–

has been employed as a model organism for hypothesis testing that can be informative of

related human health [4]. In particular, experiments with zebrafish could help clarify the

underpinnings of anxiety disorders in humans, which is an emotional state mainly
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characterized by troubling feelings, worrying, and physical changes such as increase hearth

rate or blood pressure [5].

Zebrafish possess a complex anxiety-related behavioral phenotype, ranging from freezing,

which involves complete cessation of movement, except for eyes and gills, to geotaxis, that

is, the preference to swim at the bottom of the tank. Geotaxis is a very sensitive indicator of

anxiety in zebrafish [6] and can be quantified by measuring the distance travelled by the

subject at the bottom of the tank, or the frequency and duration of its visits to the bottom of

the tank. Within the existing literature, it has been shown that treating fish with anxiogenic

drugs can exacerbate their geotactic response. Contrarily, anxiolytic treatments reduce

geotaxis, which is similar to the habituation time of a fish in a new environment (novel tank

test) [7], [8].

Despite its extensive use as metric of anxiety in experimental assays, the mechanisms

underlying this complex anxiety-related behavior are yet to be fully understood.

Mathematical models of zebrafish locomotion, based on the theory of stochastic differential

equations (SDEs), have been shown to be a promising approach to understand the

mechanism underlying single [9]–[12] and collective [13]–[18] behavior. However, to the

best of our knowledge, there are not existing models that can capture the dynamics of

geotaxis. Particularly important is the study of time effects in geotaxis, which could be

indicative of habituation to a new environment or absorption of the administered drug [19].

In this paper, we developed a data-driven model of zebrafish geotaxis consisting of a

feedback control loop where fish use information of hydrostatic pressure (proportional to the

vertical position along the water column) and its heading angle to dive towards the bottom of

the tank. In particular, we extended the open loop zebrafish model in [12] to account for

geotaxis. The model consists of a set of coupled SDEs describing the time evolution of

speed and turn rate that can reproduce the fish motion on the front plane. We incorporated a

bias along the gravity vector as a feedback term acting on the turn rate dynamics. This

simple, yet effective, control mechanism enables the fish to adjust its turning maneuvers in

real time and perform geotaxis.

The model was calibrated using data on acute ethanol treatment of adult zebrafish from our

previous experiment [19]. The efficacy of the proposed model was validated by comparing

the average scoring of three different metrics; namely, distance from the bottom, speed, and

absolute turn rate on real and synthetic data. The comparison suggests that the model can not

only predict swimming at the bottom of the tank, but also time effects during geotaxis. The

main contribution of this paper is to extend the current literature on mathematical modeling

of zebrafish behavior to closed-loop systems, by specifically developing a data-driven model

of geotaxis. From a behavioral neuroscience perspective, this effort constitutes an additional

step toward in-silico experiments on anxiety response of zebrafish, which could benefit

animal research and welfare.

This paper is organized as follows: the description of the experiment, data acquisition, and

processing are given in Section II. The geotaxis model is presented in Section III. In Section

IV, we illustrate the model calibration process and demonstrate the effectiveness of our
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model by comparing theoretical predictions with experiments. Finally, concluding remarks

and suggestions for future work are summarized in Section V.

II. Experiments, data collection, and processing

We use data of the experimental condition from [19], where adult subjects were

administered acute treatment of ethanol 1.00%. The data set consists of video-recordings of

fifteen individual zebrafish swimming in a tank of 29 × 14 × 8.5 cm (length × height ×

width). The water depth was kept at 13 cm and the video recordings were obtained at 30

frames/s. The experiment was approved by the NYU Washington Square Campus University

Animal Welfare Committee (UAWC) under IACUC protocol 13–1424. All videos of the

experiments were processed in MATLAB (2019b) using a multi-target tracking system [20]

that outputs time series of the centroid positions on the front plane x kδt k = 0
n − 1, y kδt k = 0

n − 1

and their respective velocities vx kδt k = 0
n − 1, vy kδt k = 0

n − 1
, as depicted in Fig. 1. n = 10, 800

is the total number of samples, with sampling rate δt := 1/30 s, corresponding to the total

experimental time of 6 min (360 s). The centroid coordinates belong to the intervals x ∈
[−xmax, xmax] and y ∈ [−ymax, ymax], with xmax and ymax being the maximum length and

height of the test section (2xmax × 2ymax) = (29 cm × 13 cm).

All time series were processed using a Daubechies wavelet filter [21] to attenuate noise

introduced during tracking. Using the filtered outputs we calculate the fish speed υ(t) and

the turn rate ω(t). The speed was computed as a function of the velocity components along

the (𝒳, 𝒴) axes (see Fig. 1), v(t): = vx
2(t) + vy

2(t). For calculating the turn rate, we considered

the fish speed to be constant between two consecutive centroid positions, then, their

difference x kδt : = x (k + 1)δt − x kδt  and y kδt : = y (k + 1)δt − y kδt   should satisfy

x kδt = δtv kδt cos φ kδt  and y kδt = δtv kδt sin φ kδt  where φ(kδt) is the heading angle, as

shown in Fig. 1. The turn rate was estimated by ω(kδt) = δφ(kδt)/δt, where δφ(kδt) is the turn

angle increment between the V1 vector from the origin to x kδt ,  y kδt  and V2 vector from

the origin to x k + 1  δt ,  y (k + 1)δt . To quantify geotaxis, we measure the tendency of the

fish to swim at the bottom of the tank in terms of the normalized distance from the bottom of

the tank D(t) = |ymax + y(t)|/(2ymax).

In order to assess time variations during geotaxis, we split the 6 min time series of all trials

into three time windows of 2 min each. We selected 2 min as the time window to provide

enough data points for calibrating the proposed mathematical model. We calculated the time

average of the distance from the bottom D = D(t)  over each time window. Results are

shown in Table I.

Using the interquartile range rule [22], we identified two outliers on the first time window

and neglected from the analysis. We compared the average distance to the bottom D across

the three time windows using one-way analysis of variance (ANOVA) with time window as

the independent variable [22]. We found a significant statistical effect of time on the

tendency of the fish to swim at the bottom of the tank (F (2, 13) = 4.339; p-value< 0.05).
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Post hoc analysis indicated a significant difference between the first and third time windows.

This suggests that, due to the concurrent habituation to the tank and ethanol absorption,

geotaxis decreases over time.

III. Data-driven modeling of geotaxis

Exemplary fish swimming trajectories of subject four are shown in Figs. 2(a)–2(c) for three

different time windows of 2 min each. We also plot the respective heat maps by dividing the

tank in 9 × 4 rectangles of approximately 3.22 cm × 3.25 cm each, corresponding to a grid

of approximately 1 Body Length (BL) in size (3 cm). These diagrams indicate the preference

of staying in a particular box of the grid (encapsulated by the probability pi).

We note that for the initial time window (first two minutes) the animal tends to swim at the

bottom of the tank and explores less its surroundings when compared with the second and

third time windows, where the fish occupies a larger area. In fact, its spatial entropy (defined

as −∑i = 1
36 pi log2 pi ) is initially 3.153 bits and its activity is mostly concentrated at the

lower left corner of the tank, while for the second and third time windows the spatial entropy

increases to 4.021 and 4.645 bits, respectively. We document a similar phenomenon on the

plots of turn rate along the water column in Figs. 2(d)–2(e). In particular, the turn rate is

mostly concentrated at the bottom of the tank for the initial time windows, while it becomes

more scattered across the tank for the final window.

In the following, we show that this geotactic response can be captured by adding a time-

dependent bias along the gravity vector to the turn rate dynamics of the open-loop model

proposed in [11].

A. Zebrafish kinematics

We start with the equations of motion for the fish position (x(t), y(t)) and its heading angle

φ(t), in the form of the following set of ordinary differential equations [12]:

dx(t)
dt = v(t)cos(φ(t)), dy(t)

dt = v(t)sin(φ(t)), (1a)

dφ(t)
dt = ω(t) . (1b)

B. Modeling the time evolution of speed and turn rate

To describe the time-evolution of speed and turn rate we use a set of SDEs [11], [14], [17].

In particular, in [12] it was shown that the speed can be captured by the following logistic

model:

dv(t) = ηv(t) − g(ω(t))v2(t) dt + σvv(t)dWv(t), (2a)
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g(ω(t)) = 1
stdωBL ω(t) , (2b)

where η[s−1] and συ[s−1/2] are positive parameters. The former represents the linear rate of

growth of the speed, while the latter, is the strength of the added noise Wυ(t), which is a

standard Wiener process. The nonlinear function g(ω(t)) [cm−1] regulates the increase or

decrease of the speed according to the turn rate ω(t). This function captures the typical

relationship between speed and turn rate [12], that is, for higher turn rate activity the fish

should decrease speed while for lower turn rates it should increase the speed. Moreover, stdω
= std[ω(t)] is a constant representing the standard deviation of the experimental turn rate.

The time evolution of turn rate can be described by the jump persistent turning walker [11],

which consists of a mean reverting jump diffusion process given by

dω(t) = α ω*(t) − ω(t) dt + σdWω(t) + dJ(t), (3)

where α [s−1] is the relaxation rate associated with a fish ability to resume straight

swimming, and σ [rad s−3/2] is a positive parameter weighting the added noise Wω(t), which

is a standard Wiener process. The term J(t) is a compound Poisson process describing

sudden turning maneuvers of intensity γ [rad s−1] and frequency λ [s−1]. This term accounts

for sudden U, or C-turns which are typical of zebrafish swimming style [11]. Here,

J(t) = ∑ j = 1
N(t) X j t , where Xj(t) are independent and identically distributed Gaussian random

variables with zero mean and variance γ2. The intensity and frequency of sudden turns is

governed by the the stochastic counting process N(t), whose increments N(t″) − N(t′) are

Poisson random variables λ(t″ − t′) for any t′, t″ ∈ t with t″ > t′.

The term ω*(t) is given by

ω*(t) = ωW(t) + ωG(t), (4)

where ωW(t) describes the interaction with the walls while ωG(t) encapsulates the geotactic

contribution. Similar to [17], we consider the interaction with walls to be given by

ωW(t) =
Kw

awd(t) + 1sgn(ϕ(t)), (5)

where sgn(·) is the sign function, Kw [rad s−1] and aw [cm−1] are both positive parameters,

d(t) is the distance from the wall, and ϕ(t) is the projected angle to collision (for mode

details on the wall interaction term see [12], Fig. 5). In our numerical simulations we found

that selecting Kw = 15 rad s−1 and aw = 10 cm−1 reproduces realistic turns.

C. Modeling the geotactic control process

From the example shown in Fig. 2, we identify two main characteristics of a typical

geotactic fish; namely,

• the animal has a natural bias along the gravity vector
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• while the bias might be initially strong, it can decrease over time.

Based on these observations, we consider the geotaxis term ωG(t) to be a bias along the

gravity vector whose strength varies over time.

We propose the geotactic bias ωG(t) to be given by

ωG(t) = − Ah2(t)cos(φ), (6)

where A [rad cm−2 s−1] is a positive constant representing the strength of the geotactic term

and h(t) := y(t) − ymax is the height or position of the animal along the water column.

This simple turning mechanism is illustrated in Fig. 3 and affords zebrafish the ability to

direct its heading towards the bottom of the tank. This mechanism was observed in diving

maneuvers from geotactic zebrafish in which turning instances (clockwise or

counterclockwise) could be approximated by the function −cos(φ).

The resulting system of equations can be viewed as a feedback control system (see Fig. 4)

with the geotaxis bias being the control action driving the heading towards the reference

value −π/2. The geotaxis control depends also on the position h(t). This term is introduced

to account for a decaying swimming activity along the water column. That is, lower

swimming activity at the top and higher activity at the bottom, as reported in Figs. 2(d) and

2(e). The model requires the fish to be able to appraise its global position h(t) in the tank.

This is made possible by the lateral line and vestibular systems that can help estimate

pressure changes [23], proportional to h(t), thereby closing the loop.

IV. Model calibration and validation

Here, we first present the method for calibrating our mathematical model using the time

series of speed and turn rate. Then, we validate the model by comparing real versus in-silico
experiments.

A. Maximum likelihood estimation

Since the zebrafish geotactic response is time-dependent, as illustrated in the example in Fig.

1, we split the time series of speed and turn rate, into three time windows of 2 min each.

Then, for each time window we obtained estimates of the model parameters.

Following [11], we used the maximum likelihood method to estimate the set of parameters

Θ1 = [η, συ]T and Θ2 = [α, σ, γ, λ]T by solving the following two independent optimization

problems:

Θ1 = argmin
Θ1

− ∑
r = 0

n
log ℓv Θ1, ω rδt , v rδt , (7)

and
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Θ2 = argmin
Θ2

− ∑
r = 0

n
log ℓω Θ2, ω rδt , (8)

where the time series of speed and turn rate were truncated to only include instances away

from the wall (more than 1 BL). Here, ñ < n identifies the length of these truncated time

series, for which we used the same notation as the original ones with an abuse of notation.

The functions ℓv(Θ1, ω(rδt), v(rδt)) and ℓω(Θ2, ω(rδt)) are the likelihood functions obtained

from discretizing Eqs. (2a),(2b), and (3). These quantities are given by [12]

ℓv Θ1, ω rδt , v rδt = f q rδt , 0, σv
2δt , (9)

and [11]

ℓω Θ2, ω rδt   = λδt f ζ rδt , 0, s rδt + γ2 + 1 − λδt f ζ rδt , 0, s rδt , (10)

where f(·, m1, m2) is the Gaussian distribution with mean m1 and variance

m2
2, ζ rδt = ω (r + 1)δt − s rδt , s rδt = σ2/2α 1 − exp −2αδt , and

q rδt = − ηδt + 1 +
v rδt ω rδt δt

BLstdω
+

v (r + 1)δt
v rδt

. (11)

We used the optimization toolbox of MATLAB (2019b) for solving the optimization

problems in Eqs. (7) and (8). An initial guess of the parameters α and σ is given by the

Vasicek calibration method [24], while all the other initial parameter guess are set to zero.

The average calibrated parameters Θ1
⊤, Θ2

⊤  for all fish across each time window, neglecting

divergent points, were given by [0.577 s−1, 0.379 s−1/2, 5.435 s−1, 2.682 rad s−3/2, 4.868 rad

s−1, 0.876 s−1], [3.040 s−1, 3.567 s−1/2, 5.694 s−1, 0.998 rad s−3/2, 0.308 rad s−1, 0.325 s−1],

and [3.694 s−1, 4.322 s−1/2, 5.706 s−1, 0.825 rad s−3/2, 0.422 rad s−1, 0.327 s−1], respectively.

To calibrate the geotactic gain A, we plotted the time average of the distance to the bottom D
for different values A. We split the process into three main steps: (i) we carried out 50

simulations of our model using the average calibrated parameters and varying A on the

interval [0,0.1] rad cm−2 s−1. To solve the system of SDEs, we used the use the Euler-

Maruyama method [25] with a time step of 1/30 s, matching the sampling of the

experimental time series. (ii) Next, we computed D for all simulated trajectories and plotted

against A. We found a decaying exponential trend D 0.269exp( − 38.282A) + 0.192 that was

fitted with standard regression in MATLAB (2019b). (iii) Finally, using this exponential

function, we obtained the values of A according to the experimental value of D in Table I

from the first to the third time window, yielding A = 0.1, 0.01, and 0 rad cm−2 s−1,

respectively.
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B. Model validation

To validate our model, we compared the average of three metrics: average distance from the

bottom D, average speed v = v(t) , and average absolute turn rate ω = ω(t)  between

experimental and numerical data for the three different time windows. Our simulations

consist in solving the closed-loop system in Eqs. (1), (3), (5), (6) for each of the three time

windows of 2 min, yielding a total of 6 min of simulation time. During each time window,

we used the corresponding set of calibrated parameters found in the previous section. At the

beginning of the simulations, all initial conditions were randomly chosen, while for the

second and third windows the initial conditions correspond to the final values obtained from

the simulation in the previous time window.

The results are shown in Fig. 5. Therein, we notice a remarkable agreement between

numerical and experimental results. Not only does our model capture the tendency to swim

at the bottom of the tank, but also it predicts its time evolution, whereby fish tends to reduce

geotaxis as time progresses [6]. This time-dependent behavior was also observed in

independent experiments, where the initial strong geotactic activity is associated with a

defensive mechanism that gradually vanishes as the fish habituates to the novel environment

or the effect of the pharmacological manipulation decays [26], [27].

V. Conclusions

In this paper, we developed a data-driven mathematical model of geotaxis in adult zebrafish.

We extended previous zebrafish models by incorporating a feedback control loop that adjusts

the turn rate of the fish according to the position along the water column and its heading

angle. This simple, yet effective, control mechanism allows the fish to dive and perform

geotaxis. Our model was calibrated using a set of real data, and its effectiveness was tested

by comparing the average scoring of three different behavioral metrics evaluated with real

and synthetic data. Our results demonstrate that the proposed feedback mechanism can

reproduce the geotactic response of real experiments and their time evolution.

This study complements our previous work [12] that examined freezing response through

open-loop hybrid dynamics, by making a, critical step toward the ability to study anxiety-

related disorders through in-silico experiments. Future work should seek to integrate these

efforts toward a comprehensive three-dimensional model, that could capture freezing and

geotaxis, for the investigation of the effect of different pharmacological manipulations on

behavior.

Acknowledgments

This work was supported by the National Science Foundation under Grant # CMMI-1505832 and by the National
Institute of Health, National Institute on Drug Abuse under grant number 1R21DA042558-01A1 and the Office of
Behavioral and Social Sciences Research that co-funded the National Institute on Drug Abuse grant.

References

[1]. Heiligenberg W, “The neural basis of behavior: a neuroethological view,” Annual Review of
Neuroscience, vol. 14, no. 1, pp. 247–267, 1991.

Burbano-L. and Porfiri Page 8

Proc Am Control Conf. Author manuscript; available in PMC 2022 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[2]. Fetcho JR and Liu KS, “Zebrafish as a model system for studying neuronal circuits and behavior,”
Annals of the New York Academy of Sciences, vol. 860, no. 1, pp. 333–345, 1998. [PubMed:
9928323]

[3]. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S,
McLaren K, Matthews L et al. , “The zebrafish reference genome sequence and its relationship to
the human genome,” Nature, vol. 496, no. 7446, pp. 498–503, 2013. [PubMed: 23594743]

[4]. Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, and
Podlasz P, “Modulatory neurotransmitter systems and behavior: towards zebrafish models of
neurodegenerative diseases,” Zebrafish, vol. 3, no. 2, pp. 235–247, 2006. [PubMed: 18248264]

[5]. Psychiatric Association A, Diagnostic and statistical manual of mental disorders, 5th ed. American
Psychiatric Pub, 2013.

[6]. Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar
EJ, Roth A, Landsman S et al. , “Towards a comprehensive catalog of zebrafish behavior 1.0 and
beyond,” Zebrafish, vol. 10, no. 1, pp. 70–86, 2013. [PubMed: 23590400]

[7]. Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, and
Gould GG, “Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic
compounds and choice of Danio rerio line,” International Journal of Comparative Psychology,
vol. 23, no. 1, p. 43, 2010. [PubMed: 20523756]

[8]. Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, Kyzar E, Wu N, and Kalueff AV,
“Three-dimensional neurophenotyping of adult zebrafish behavior,” PLoS ONE, vol. 6, no. 3, p.
e17597, 2011. [PubMed: 21408171]

[9]. Gautrais J, Jost C, Soria M, Campo A, Motsch S, Fournier R, Blanco S, and Theraulaz G,
“Analyzing fish movement as a persistent turning walker,” Journal of Mathematical Biology, vol.
58, no. 3, pp. 429–445, 2009. [PubMed: 18587541]

[10]. Zienkiewicz A, Barton DA, Porfiri M, and Di Bernardo M, “Data-driven stochastic modelling of
zebrafish locomotion,” Journal of Mathematical Biology, vol. 71, no. 5, pp. 1081–1105, 2015.
[PubMed: 25358499]

[11]. Mwaffo V, Anderson RP, Butail S, and Porfiri M, “A jump persistent turning walker to model
zebrafish locomotion,” Journal of The Royal Society Interface, vol. 12, no. 102, p. 20140884,
2015.

[12]. Burbano-L D. and Porfiri M, “Data-driven modeling of zebrafish behavioral response to acute
caffeine administration,” Journal of Theoretical Biology, vol. 485, p. 110054, 2020.

[13]. Abaid N and Porfiri M, “Collective behavior of fish shoals in one-dimensional annular domains,”
in Proceedings of the 2010 American Control Conference. IEEE, 2010, pp. 63–68.

[14]. Gautrais J, Ginelli F, Fournier R, Blanco S, Soria M, Chaté H, and Theraulaz G, “Deciphering
interactions in moving animal groups,” PloS Computational Biology, vol. 8, no. 9, p. e1002678,
2012. [PubMed: 23028277]

[15]. Calovi DS, Lopez U, Schuhmacher P, Chaté H, Sire C, and Theraulaz G, “Collective response to
perturbations in a data-driven fish school model,” Journal of The Royal Society Interface, vol. 12,
no. 104, p. 20141362, 2015.

[16]. Collignon B, Séguret A, and Halloy J, “A stochastic vision-based model inspired by zebrafish
collective behaviour in heterogeneous environments,” Royal Society Open Science, vol. 3, no. 1,
p. 150473, 2016. [PubMed: 26909173]

[17]. Zienkiewicz AK, Ladu F, Barton DA, Porfiri M, and Di Bernardo M, “Data-driven modelling of
social forces and collective behaviour in zebrafish,” Journal of Theoretical Biology, vol. 443, pp.
39–51, 2018. [PubMed: 29366823]

[18]. Calovi DS, Litchinko A, Lecheval V, Lopez U, Escudero AP, Chaté H, Sire C, and Theraulaz G,
“Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct
alignment and attraction behaviors,” PLoS Computational Biology, vol. 14, no. 1, p. e1005933,
2018. [PubMed: 29324853]

[19]. Macrì S, Clément RJ, Spinello C, and Porfiri M, “Comparison between two-and three-
dimensional scoring of zebrafish response to psychoactive drugs: identifying when three-
dimensional analysis is needed,” PeerJ, vol. 7, p. e7893, 2019. [PubMed: 31637136]

Burbano-L. and Porfiri Page 9

Proc Am Control Conf. Author manuscript; available in PMC 2022 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[20]. Ladu F, Butail S, Macrí S, and Porfiri M, “Sociality modulates the effects of ethanol in zebra
fish,” Alcoholism: Clinical and Experimental Research, vol. 38, no. 7, pp. 2096–2104, 2014.

[21]. Mwaffo V, Butail S, Di Bernardo M, and Porfiri M, “Measuring zebrafish turning rate,”
Zebrafish, vol. 12, no. 3, pp. 250–254, 2015. [PubMed: 25844837]

[22]. Navidi WC, Statistics for Engineers and Scientists. McGraw-Hill Higher Education New York,
NY, USA, 2008.

[23]. Montgomery J, Bleckmann H, and Coombs S, “Sensory ecology and neuroethology of the lateral
line,” in The lateral line system. Springer, 2013, pp. 121–150.

[24]. Vasicek O, “An equilibrium characterization of the term structure,” Journal of Financial
Economics, vol. 5, no. 2, pp. 177–188, 1977.

[25]. Higham DJ, “An algorithmic introduction to numerical simulation of stochastic differential
equations,” SIAM Review, vol. 43, no. 3, pp. 525–546, 2001.

[26]. Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S, Goodspeed J, Suciu C, Tan J,
Grimes C et al. , “Analyzing habituation responses to novelty in zebrafish (Danio rerio),”
Behavioural Brain Research, vol. 208, no. 2, pp. 450–457, 2010. [PubMed: 20035794]

[27]. Rosemberg DB, Braga MM, Rico EP, Loss CM, Córdova SD, Mussulini BHM, Blaser RE, Leite
CE, Campos MM, Dias RD et al. , “Behavioral effects of taurine pretreatment in zebrafish
acutely exposed to ethanol,” Neuropharmacology, vol. 63, no. 4, pp. 613–623, 2012. [PubMed:
22634362]

Burbano-L. and Porfiri Page 10

Proc Am Control Conf. Author manuscript; available in PMC 2022 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1.
Illustration of a zebrafish swimming trajectory. The tracking software identifies the centroid

(x(t), y(t)) for each frame providing a time series of positions along with estimates of the

velocity components υx(t) and υy(t). Swimming trajectories are further utilized for

estimating the turn rate ω(t) and heading angle φ(t) of the fish.
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Fig. 2.
Example of geotactic behavior (ID= 15). The first, second, and third columns correspond to

the three time windows. Top panels are the swimming trajectories (x(t), y(t)) along with their

heat maps representing the frequency of positions in the tank. Blue colors indicate lower

preference, while yellow colors identify a higher one. Bottom panels are the turn rate ω(t)
along the water column position y(t).
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Fig. 3.
Illustration of the geotactic bias mechanism. For heading angles inside the blue region the

fish tends to turn clockwise, while inside the red region, turning tends to be

counterclockwise.
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Fig. 4.
Illustration of the feedback control process of geotaxis.
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Fig. 5.
Comparison of the average scoring of three different behavioral metrics for experimental

(red) and numerical (black) data. (a) Distance from the bottom, (b) speed, and (c) absolute

turn rate. Vertical lines represent standard error of the means (SEM).
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Table I

Average distance from the bottom D

Fish identity (ID)
Time window

1 2 3

1 0.2062 0.6484 0.7252

2 0.1169 0.4352 0.7742

3 - 0.9547 0.9498

4 0.0664 0.0604 0.1366

D ∈ [0, 1] 5 0.1298 0.1009 0.1176

6 0.5005 0.5809 0.7056

D = 1: Top 7 0.1636 0.271 0.2754

8 0.4591 0.6769 0.7573

D = 0: Bottom 9 0.0767 0.0921 0.1323

10 0.0978 0.5482 0.8201

11 0.1438 0.0942 0.1074

12 0.0878 0.0806 0.0806

13 0.1539 0.2324 0.3599

14 - 0.6501 0.659

15 0.1241 0.2783 0.3666

mean 0.2650 0.3802 0.4645

std 0.1335 0.2724 0.3029
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