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Research on goal priming asks whether the subtle activation of
an achievement goal can improve task performance. Studies in
this domain employ a range of priming methods, such as
surreptitiously displaying a photograph of an athlete winning
a race, and a range of dependent variables including measures
of creativity and workplace performance. Chen, Latham,
Piccolo and Itzchakov (Chen et al. 2021 J. Appl. Psychol. 70,
216–253) recently undertook a meta-analysis of this research
and reported positive overall effects in both laboratory and
field studies, with field studies yielding a moderate-to-large
effect that was significantly larger than that obtained in
laboratory experiments. We highlight a number of issues with
Chen et al.’s selection of field studies and then report a new
meta-analysis (k = 13, N = 683) that corrects these. The new
meta-analysis reveals suggestive evidence of publication bias
and low power in goal priming field studies. We conclude
that the available evidence falls short of demonstrating goal
priming effects in the workplace, and offer proposals for how
future research can provide stronger tests.
1. Introduction
Few topics in behavioural research have generated as much
controversy in recent years as the question of whether behaviour
can be influenced by subtle ‘primes’ [1]. Behaviour priming
research has a close connection to work on ‘nudge’ interventions
[2] and typically involves measuring the effects on some
performance measures of presenting a situational cue or signal
that is superficially unrelated to the task. A general theoretical
framework for behaviour priming views it as the automatic
activation of mental representations in the absence of awareness,
leading to influences on attitudes, judgements, goals and actions [3].

For example, in one of the earliest demonstrations, Srull &Wyer
[4] first asked their participants to unscramble sets of words to form
sentences that described hostile behaviours. When subsequently
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asked to rate the personality of a man named Donald, whose behaviour as described in a brief vignette was

ambiguously hostile, they rated him as more hostile than did participants who unscrambled neutral
sentences. Another famous example (money priming) is the apparent modification of people’s behaviour
on a variety of measures following exposure to images of money, or to tasks that involve subtle
activation of the concept of money. Vohs, Mead and Goode [5] reported that money priming causes
people to work harder on difficult tasks and to become less willing to help others.

Apart from its theoretical implications (e.g. [3,6,7]), the importance of this research lies in the
possibility of influencing behaviours in ways that align with individuals’ conscious preferences. Using
primes to increase healthy eating [8], pro-environmental behaviours [9], and so on has major social
implications, and indeed this research has fed into public policy [10]. The problem, however, is that
the robustness and reproducibility of many of these priming effects is under scrutiny. Not only have
there been numerous ‘typical’ experiments failing to replicate influential priming effects, there have
also been several pre-registered, high-powered multi-laboratory efforts with similar outcomes. For
example, a major replication study [11] sought but failed to reproduce money priming in a very large-
scale, multi-lab project and another failed to replicate Srull & Wyer’s hostility priming effect [12].

In addition to these replication failures, meta-analyses have cast further doubt on many priming
effects. For example, although Lodder et al. [13] found an overall small-to-medium-sized money
priming effect (Hedges’ g = 0.31, 95% CI [0.26, 0.36]) in a meta-analysis of 246 experiments, they also
obtained clear evidence of publication bias, with effect sizes being larger in studies with smaller
sample sizes (see also [14]). Furthermore, they found that 62% of all standard studies obtained
positive results but only 11% of pre-registered ones did, and published studies yielded larger effects
than unpublished ones. These patterns are consistent with studies employing small samples and
finding non-significant results being harder to publish. Another meta-analysis [15,16] similarly found
clear evidence of publication bias in 43 independent measures of another form of priming in which
risk-taking, gambling and other potentially harmful behaviours are claimed to be increased by primes
which activate evolutionary ‘mating’ motives (young male syndrome). In the demonstrable presence
of reporting and publication biases [17], exploitation of ‘researcher degrees of freedom’ (RDF) [18–20],
and inadequate power [21,22] in behavioural research, residual evidence for priming effects must be
regarded as weak and requiring confirmation in large-scale, pre-registered studies that can exclude
these and other sources of bias as an alternative explanation of the observed effects.

Against this background, Chen et al. [23] have performed an important service by conducting a meta-
analysis of research on a form of priming, distinct from but related to those mentioned above, namely goal
(or achievement) priming. Studies in this area examine the effects of subtle reminders of achievement or
goals, such as a photograph of a woman winning a race, on various task performance measures. In one
study, for example, showing this photograph to employees in a fund-raising call centre increased the
amount of money they raised by nearly 30% [24]. Chen et al.’s meta-analysis of 23 studies (n= 3,179)
reporting 40 effect sizes yielded an overall effect size (Cohen’s d) of 0.45 [0.38, 0.53], implying that this form
of priming is quite robust. They also found that the overall effect was moderated by the specificity of the
goal, modality (visual versus linguistic prime) and research setting (laboratory versus field). Of particular
interest is that field studies yielded significantly larger effects (d= 0.68 [0.55, 0.81], k= 8, total N= 357) than
laboratory studies (d= 0.42 [0.34, 0.50]). Chen et al. ([23, p. 236]) concluded that their results ‘clearly show
that a primed goal, relative to a control condition, increases performance’, and the meta-analysis seems to
provide support for practical advice, such as the recommendation that ‘when sending written materials to
employees, a photograph should be included that denotes effective job performance’ ([25, p. 410]).
2. Motivation for current research
On the other hand, there are a number of reasons to be cautious about these conclusions. Probably the
most similar domain in which priming effects have been studied is the artificial surveillance (or ‘watching
eyes’) literature. In a typical study, a photograph of a pair of watching eyes is placed at a location
proximal to where individuals engage in some form of prosocial behaviour such as making a
charitable donation or hand-washing. Despite many reports that artificial surveillance cues cause
people to behave more prosocially, as if they are being watched by real people, a recent and
comprehensive meta-analysis found no overall effect [26]. Although the behaviours studied in these
two sub-fields differ (task performance versus prosociality), the priming induction is often quite
similar (e.g. watching eyes versus a photograph of a woman winning a race). Because of this
similarity, the apparent absence of priming in the artificial surveillance domain encourages careful
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examination of the contrasting claim that goal priming is robust. Moreover, several attempts to replicate

particular goal priming effects have been unsuccessful (e.g. [27,28]).
Another important motivation for the present work is that Chen et al. did not report any tests for

publication bias among the studies they included, something explicitly recommended in the PRISMA
guidelines for conducting and reporting meta-analyses [29]. This is particularly important because
Chen et al.’s meta-analysis overlaps quite considerably with a much larger one undertaken by
Weingarten et al. [30] which did find evidence of publication bias in goal priming research. The
likelihood of bias is highlighted by the fact that Chen et al.’s estimate of the effect of implicit goal
primes in field studies (d = 0.68) is not only larger than the average effect size in psychological
research (approximately 0.40–0.50; (see [22,31])) but is also appreciably larger than the average effect
of explicit goals. In a meta-analysis of 384 effect sizes (N > 16,000), Epton et al. [32] estimated the effect
size of goal setting on behaviour change at exactly half this size (d = 0.34), suggesting at the very least
that the former is an overestimate. Chen et al. [23] provided several reasons to justify their belief that
this literature is free from reproducibility problems. However, if publication bias is present in the
studies included in their meta-analysis, then the meta-analytic effect size needs to be adjusted, ideally
by several bias-correction methods, in order to confirm this belief. In the absence of such a correction
(if needed), it cannot be inferred that goal priming is a reliable and reproducible effect. Stated
differently, bias-correction methods enable a sensitivity analysis on Chen et al.’s claimed findings.

Also, as elaborated below, Chen et al. did not include in their meta-analysis some studies that
clearly meet their selection criteria and included others which do not. Again at variance with
the PRISMA guidelines, they provided no information about a number of other important aspects
of their meta-analysis. For instance they did not describe their precise search protocol1, did not
describe the statistical model they adopted for combining results (fixed-effect versus random effects),
the software they used, or any measures of consistency/heterogeneity such as I2. They did not report
or make openly available a data table of the effect sizes underlying their meta-analytic estimates.2

Meta-analysis is a complex technique [33] and without full and transparent reporting, other
researchers may find it very difficult to reproduce the results of a meta-analysis [29,34]. Indeed
Lakens et al. [35] found that 25% of meta-analyses randomly selected from prestigious psychology
journals could not be reproduced at all, and many results in the remainder could not be reproduced.
Failure to make the underlying data available also precludes any future updating of Chen et al.’s
meta-analysis as new data become available: updating meta-analyses is an important tool for
cumulative science [36].

In the light of these issues, we present a critical appraisal of their meta-analysis. We then report a
revised meta-analysis, with the underlying data being openly available, of all field studies on goal
priming that meet the appropriate inclusion/exclusion criteria. We explain below why the field
studies, the main focus of this comment, are particularly important. To preview, this reveals clear
evidence of publication bias and low power in goal priming field studies, leading us to conclude that
the available evidence falls short of demonstrating goal priming effects in the workplace.
3. Inclusions and exclusions in Chen et al.’s overall meta-analysis
We argue that the principles underlying Chen et al.’s selection of studies for inclusion/exclusion are
unclear, placing a question mark over the interpretation of their main meta-analysis (note that
henceforth we refer to their main analysis, with k = 40 effects, as their ‘overall’ one). There are several
strands to this argument. We begin with some simple cases that do not require careful scrutiny of
their stated selection criteria.

Like Weingarten et al. [30] before them, one of the apparently successful studies included in Chen
et al.’s meta-analysis was by Eitam et al. [37]. A high-powered, pre-registered and near-exact
replication attempt of this particular study was conducted as part of the Reproducibility Project:
Psychology [38] but was unsuccessful [39]. Chen et al. did not include this replication study.
1Chen et al. (p. 230) stated that they “searched databases such as PsycINFO… for empirical experiments using the following key words:
prime, priming, primed, subconscious, nonconscious, unconscious, and performance. The search was conducted for experiments
conducted between 2006 and 2019… In our initial screening, we examined all titles and abstracts for relevant studies.” PsycINFO
alone yields nearly a quarter of a million hits for the disjunction of these keywords. The rules by which the ‘screening’ process
reduced so many reports down to an initial set of 52 are not described.
2We thank Chen and colleagues for sharing their dataset with us.
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Chen et al. included several laboratory experiments by Itzchakov and Latham [25,40] in their meta-

analysis. However, each of these articles also includes a field study (Experiment 4 in [25], Experiment
3 in [40]) which was omitted from the meta-analysis without a compelling justification.

In addition to these problematic decisions, Chen et al.’s meta-analysis included and excluded other
studies in what appears to be an idiosyncratic fashion. For example, despite including nine effects on
creativity, they omitted experiments by Zabelina et al. [41], Maltarich [42] and Marquardt [43]. In all
of these experiments, achievement goals were primed using the same types of manipulations as in the
remaining studies and the outcome was a measure of creativity. Even a more careful examination of
the stated dependent variable inclusion criteria does not shed light on these idiosyncrasies:
/journal/rsos
R.
‘Organizationally relevant dependent variables. We excluded studies that focused on dependent variables arguably
irrelevant to organizational behavior such as neurophysiological or physiological measures…, and self
predictions or intentions…We included articles that focused on: (a) job/task performance, (b) creativity,
(c) motives…, and (d) (un)ethical and fairness behavior… we merged the experiments that focused on
performance and creativity to test the average overall effect of priming achievement on performance (k = 34)’
[23, pp. 230–231].
 Soc.Open

Sci.8:210544
Although the heading suggests that the meta-analysis is restricted to ‘organizationally relevant’
dependent variables, this category is not further defined, and more importantly the subsequent list
and its implementation are inconsistent with this restriction. For instance, many of the included
studies employed highly constrained measures of creativity, such as listing uses for a common object
such as a coat hanger. Creativity is certainly important in the workplace, but so are attention,
planning, decision making, multi-tasking and a large set of other basic mental abilities, so it cannot be
argued that creativity has any privileged relevance to organizational behaviour. Moreover, Chen et al.
included in their meta-analysis a study with non-creativity, laboratory dependent measures. In the
study already mentioned, Eitam et al. [37] primed their participants with achievement-related words
and then required them to perform one of two implicit learning tasks. To highlight how far removed
these tasks are from job performance, consider the serial reaction time task used in Eitam et al.’s
second experiment. In this task, a target stimulus appears at one of four locations on a computer
screen across 350 trials and the task was to press a button as fast as possible to indicate each location;
the target followed a repeating sequence and the task permits learning of this sequence to be
measured. A large literature exists on this form of perceptual-motor learning [44].

It is hard to see how this kind of research can fall within Chen et al.’s stated inclusion criteria, unless
those criteria are essentially unconstrained (which is perhaps what task performance means in the quoted
passage above). Almost everything psychologists ask participants in their research to do can be described
as a ‘task’. But then if one laboratory study measuring a basic perceptual-motor learning ability [37]
meets the inclusion criteria, why don’t similar studies? For instance, Hassin et al. [45] reported
experiments in which the effects of goal priming on performance in the Wisconsin Card Sorting and
Iowa Gambling Tasks were studied, and Capa et al. [46] examined effects of goal priming on another
learning task involving educational materials. Chen et al. omitted both of these studies from their
meta-analysis.

When the effects included in a meta-analysis are incomplete and lack coherence, interpretation of the
derived meta-analytic effect size estimate is undermined. We contend that this is the case with Chen
et al.’s overall meta-analysis, in the light of these question marks over their inclusion/exclusion
decisions. These problems would potentially have been avoided if Chen et al. had followed key
PRISMA guidelines [29] relating to precise specification of the eligibility criteria.

A response to these concerns might be to propose a modest revision of Chen et al.’s dataset, adding in
the studies discussed above. But the studies we have cited are merely examples and not the result of a
planned literature search. In reality, fixing these issues would require an entire new meta-analysis.
4. Chen et al.’s meta-analysis of field studies
Field studies in which priming effects are evaluated in applied settings obviously have particular
importance. Although laboratory studies typically enable closer experimental control of extraneous
variables, their generalizability beyond the laboratory is often unknown. Another reason for focusing
on field experiments is that laboratory research on goal priming has already been extensively
considered in Weingarten et al.’s [30] much larger meta-analysis. The major difference is that
Weingarten et al. included only experiments that employed verbal primes whereas Chen et al.
included both verbal and non-verbal (e.g. photograph) primes.
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Chen et al. do not provide a definition of a ‘field study’ other than to frequently juxtapose this category

with laboratory experiments. They do, however, say (p. 223) that ‘Field experiments, with random
assignment to conditions, are arguably the ‘gold standard’ in organizational psychology. This is because
they yield findings with both internal and external validity that can be readily adopted by
managers (Eden, 2017)’. In Eden’s [47] review, field experiments are characterized as ones conducted
‘among members of an organization fulfilling their organizational roles’ (p. 99). A much more
comprehensive definition and taxonomy of field experiments was developed by Harrison & List [48],
who distinguished between laboratory experiments at one extreme and natural field experiments at the
other. True field experiments take place in the context in which the participants naturally undertake the
tasks of interest, and they are unaware that they are in an experiment. Between these extremes, artefactual
field experiments are just laboratory experiments carried out with atypical participant pools, while framed
field experiments move beyond artefactual ones in studying tasks that are natural to that field setting.

As we elaborate below, Chen et al.’s meta-analysis of field experiments is undermined by the same
idiosyncratic selection problems described above. It excluded six studies which meet their own
definition of the key features of a field study while at the same time including another effect which
does not. In the context of a very small number of effects (k = 8), these selection decisions substantially
distort the set of included effects.

We have already noted that—despite including laboratory experiments by Itzchakov & Latham
[25,40]—Chen et al. omitted from their meta-analysis the two field experiments included in these
reports (Experiment 4 in [25], Experiment 3 in [40]). Both of these were conducted in a call centre (like
the majority of the included studies) and one of them employed exactly the same prime stimulus as in
many of the included studies (see below). Both had a measure of job performance (customer
satisfaction) as their dependent measures. Indeed the authors of these reports explicitly described
them as field studies of goal priming effects. They comprehensively meet Chen et al.’s stated search
criteria (including the time period, as one was published online in 2018 and the other in 2019).

This is not the only problematic omission. Recall that Shantz & Latham [24] reported that the amount
of money raised by employees in a fund-raising call centre was increased by the presence of a photograph
of a woman winning a race. It is clear that this is a natural field experiment: it took place in an
organizational setting and the dependent measure was directly related to job performance. Chen et al.
omitted from their meta-analysis, in contrast, a near-identical experiment conducted by Stajkovic et al.
[49]. These omissions are surprising given the overlap in authorship. They also omitted one of three
field experiments reported by Bipp et al. [50], despite including the other two and despite including
all three of these effects in their overall meta-analysis. Lastly, two experiments on election canvassing
by Lenoir & Matthews [51] were omitted.

The above definitions of field research are important because they demarcate the contexts and
conditions in which a study can meaningfully be described as a field study. Against this backdrop, it
is clearly inappropriate to include—as Chen et al. did—a study in which ‘adults… were approached…
one at a time, in a train/subway station in a large metropolitan city, on their way to work’ and asked
to think of uses for a coat hanger ([24, p. 11]). The participants were not members of an organization
[47] nor was the measured behaviour part of a field setting—this was an artefactual field experiment
in Harrison & List’s [48] taxonomy. Thinking of uses for a coat hanger may be a valid measure of
creativity but it is not a measure of workplace performance. Whether or not it was appropriate of
Chen et al. to include this study, our point is that this should not be a matter of subjective
interpretation. As the PRISMA guidelines [29] emphasize, the inclusion criteria should be sufficiently
clear that anyone applying those criteria would reach the same decisions.

In summary, these issues concerning inclusion/exclusion mean that interpretation of Chen et al.’s
meta-analysis of field studies is clouded, just like their overall meta-analysis. Importantly, we
emphasize that the issue is not about the particular studies reviewed above and their inclusion/
exclusion, it is about the explicit principles underlying Chen et al.’s selection of studies for inclusion/
exclusion. We argue that Chen et al. have failed to present a meaningful synthesis and meta-analysis
of the available body of field experiments on goal priming, and that the meta-analytic effect size they
reported (Cohen’s d = 0.68 [0.55, 0.81]) is therefore uninterpretable.
5. An updated meta-analysis of field studies on goal priming
Given the relatively small number of relevant studies, it is far more tractable to compile an updated set of
effect sizes for field studies than it is to revise Chen et al.’s overall meta-analysis. Furthermore, our
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primary interest is in the field experiments, for several reasons. We have already noted that Weingarten

et al. [30] have conducted a much larger meta-analysis of laboratory goal priming research (k = 143). And
as Chen et al. themselves note, the implications of field experiments are highly important, comprising as
they do ‘the ‘gold standard’ in organizational psychology’ yielding ‘findings with both internal and
external validity’ [23, p. 223]. Accordingly, the conclusion that ‘field experiments suggest that priming
is a cost-effective managerial technique for enhancing human resource effectiveness’ [23, p. 229] has
significant implications for the workplace.

We therefore updated Chen et al.’s meta-analysis of field studies. We included the omitted studies
noted above and dropped the study inappropriately included [24]. Our selection method was hence to
take Chen et al.’s sample of studies as our primary source and to revise it on the basis of internal
scrutiny (all but one of the experiments we added came from sources cited by Chen et al. which
provided other effects to their meta-analysis). We supplemented this inclusion protocol in two ways:
we searched Web of Science (6/1/2020) using the term ‘(prime or priming or primed) and
(subconscious or nonconscious or unconscious) and performance’, an implementation of Chen et al.’s
[23] search descriptor, for articles published from 2006 onwards; this search yielded the Lenoir &
Matthews [51] article; and we conducted a cited-reference search of [24], the first study to report a
goal priming effect in the field.

The final set of studies, described in table 1 (k = 13, total N = 683), comprises 63% more effects from
nearly twice as many participants as Chen et al.’s meta-analysis. Note that although the number of effects
is modest and limits the ability to explore moderators, it is actually more than the median number of
studies (k = 12) included in meta-analyses in psychology [54]. One study employed words as the
prime [49], one used a photograph of employees wearing headsets and answering calls [25], one ([52],
context-specific prime) showed a photograph of employees telephoning potential donors and one
used a photograph of an election canvasser knocking on a potential voter’s door ([51], canvasser
prime). The remainder used the same photograph of a female athlete (Sonia O’Sullivan) winning a
race (the photograph is reproduced in [40], Fig. 1; [51], Fig. 2; [52], Fig. 1; and [24], Fig. 1).

All studies employed a between-subjects manipulation of prime type. Apart from one study in which
the dependent measure was academic performance [50] and another which measured the number of
addresses visited by election canvassers, all took place in call centre offices and measured a direct
indicator of call centre job performance (e.g. amount of money raised from donors) as their dependent
variables.

We determined effect sizes for all studies based on the relevant descriptive statistics (for details, see
the complete dataset at https://osf.io/5cjzp). In all cases where required data were missing from
the primary reports, the original authors kindly provided additional information. We were able to
closely reproduce Chen et al.’s effect size calculations (mean absolute discrepancy in estimated
Cohen’s d = 0.024).

We conducted a random effects meta-analysis using the ‘rma()’ function in the R ‘metafor’ package
[55]. The individual effect sizes are shown in table 1 and figure 1 shows the forest plot. Across all
experiments, the mean effect size is d = 0.64, 95% CI [0.41, 0.88] and is slightly smaller than the effect
reported by Chen et al. (d = 0.68)3. The effects are moderately heterogeneous, τ2 = 0.11, I2 = 61.4%,
Q(12) = 30.33, p = 0.0025. From the bottom two rows of figure 2, it can been seen that even though our
meta-analysis includes considerably more effects than Chen et al.’s, their confidence interval is
narrower. The explanation of this paradox is that the small set of effects Chen et al. included yields an
underestimate of the true heterogeneity. When we run a random effects meta-analysis on their
dataset, we obtain I2 = 18.2%.

Although the updated meta-analysis yields an overall large mean effect, considerable caution should
be exercised in interpreting it: the funnel plot in figure 2 reveals a striking small-study effect. The figure
shows all effect sizes plotted against their standard errors (experiments with larger samples and hence
smaller standard errors appear higher on the vertical axis), and plainly there is an inverse relationship
between precision (standard error) and effect size. This relationship is confirmed by Egger’s test for
funnel plot asymmetry, z = 4.31, p < 0.0001.
3The dataset includes three non-independent pairs of effects in which a single control group is compared to two treatment groups
[50–52] (note that the sample sizes in these control groups have only been counted once in the calculation of the total N quoted
above). To assess the impact of this non-independence, we ran a multi-level meta-analysis, nesting these dependent effects within
experiments, via metafor’s ‘rma.mv()’ function. This yielded a mean effect size of d = 0.69 [0.43, 0.94], close to the value from the
standard univariate meta-analysis. For the two methods that can be adapted to multi-level data, the bias-corrected estimates
reported below in table 2 were identical (PET) or very similar (PEESE: multilevel intercept = 0.01 [−0.28, 0.31]). We therefore focus
on the univariate analysis in the remainder of the article.

https://osf.io/5cjzp
https://osf.io/5cjzp
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Figure 1. Forest plot. The rows denote the effect sizes (Cohen’s d) and lower and upper 95% confidence intervals of goal priming
effects. The final rows report the meta-analytic effect in the updated meta-analysis and in Chen et al.’s meta-analysis.

Table 1. Details of experiments included in the meta-analysis.

study prime type dependent variable N (prime) N (control)

effect

size (d )

Bipp et al. ([50], Exp. 1) photograph exam grade 42 41 0.46

Bipp et al. ([50], Exp. 2, photo runner) photograph exam grade 33 36 0.13

Bipp et al. ([50], Exp. 2, photo grade) photograph exam grade 29 36 0.77

Itzchakov & Latham ([25,40], Exp. 4) photograph customer satisfaction 19 18 1.61

Itzchakov & Latham ([25,40], Exp. 3) photograph customer satisfaction 31 31 1.10

Latham & Piccolo ([52], context-specific

prime)

photograph number of donor

pledges

17 18 1.20

Latham & Piccolo ([52], general

achievement prime)

photograph number of donor

pledges

19 18 0.65

Lenoir & Matthews ([51], runner) photograph canvassing 51 53 0.27

Lenoir & Matthews ([51], canvasser) photograph canvassing 54 53 0.06

Shantz & Latham ([24], Field Exp.) photograph money raised 40.5 40.5 0.49

Shantz & Latham ([53], Study 1) photograph money raised 10 10 0.95

Shantz & Latham ([53], Study 2) photograph money raised 22 22 0.60

Stajkovic et al. ([49], Exp. 1) words call-handling time 23 23 0.82
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Bias detection methods such as this are known to be generally underpowered [56], so this asymmetry
is strongly suggestive of publication bias and/or the exploitation of RDF [20] in this literature. It is true
that factors other than publication bias/RDFs (such as effect size heterogeneity) can cause small-study
effects [57]. If researchers conduct pilot work to estimate the effect size likely to emerge in their main
experiment, for example, and then allocate more participants to experiments exploring small effects,
effect sizes and standard errors will be correlated even in the absence of selection bias. However, the
studies included in the meta-analysis provide no reason to believe that such pilot work was
undertaken. Most of the sample sizes are described as being determined by access constraints.
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An example of an RDF is data exclusion. For instance, Bipp et al. ([50], Experiment 2) removed four
participants from their analysis on the basis that their exam grades made them outliers, and these
participants also reported low motivation. These exclusions may have been perfectly reasonable in the
context of the research hypothesis, but in the absence of a full pre-registration of the planned
experimental and analytic methods or an explicit disclosure statement (e.g. [58]) we cannot know
whether these exclusion rules were formulated in advance or only after examining the data. Similarly,
in their field experiment, Shantz & Latham [24] applied a square-root transformation to their
dependent variable, a transformation applied in none of the other field experiments.4 Again, this
might be an entirely valid statistical procedure, but it might equally have been decided after
examining the data. To be clear, we intend no aspersions on the integrity of these researchers—
exploitation of RDFs is widespread across psychological researchers (ourselves included). The point is
that these practices can shift an experimental result rightward in the space depicted in figure 2,
possibly even taking it across the p = 0.05 boundary, hence contributing to the asymmetry of the
funnel plot. This process can be additional to the selective reporting of statistically significant results,
whereby studies that lie in the lower left region of figure 2 are missing from the scientific record.

A potential alternative interpretation of funnel plot asymmetry assumes that there may be systematic
methodological or participant characteristics that generate the correlation between effects sizes and
sample sizes.5 It seems natural to enquire what features distinguish small studies with large effects
from large studies with small effects. To test whether there are any systematic features that provide an
alternative explanation of the funnel plot asymmetry, we coded all the experiments in the updated
meta-analysis according to the theoretically motivated moderators included in Chen et al.’s [23] meta-
analysis: whether the prime was specific or general, was visual or linguistic, and the time lag
(seconds, minutes, hours, days) between presentation of the prime and the measured outcome. Details
of these moderators can be found in Chen et al. [23], as well as the justifications of their hypotheses
that priming would be greatest for specific, visual primes at longer lags. Our analyses show that none
of these moderators made a significant difference to effect sizes, largest Q(1) = 1.13, p’s > 0.28.
Furthermore, including these moderators in Egger’s test for funnel plot asymmetry did not change the
results: asymmetry remained significant in all cases, smallest z = 3.89, p’s < 0.0001. In other words,
these moderators did not account for the funnel plot asymmetry. Particularly striking is that the
majority (7/13) of studies employed a general/visual prime with a lag of hours, and even this small
set of effects from studies with highly similar methods still showed distinct funnel plot asymmetry,
z = 1.73, p = 0.08.

We submit that this analysis lends support to the publication bias conclusion. It might seem
reasonable to ask whether there are features that distinguish small studies with large effects from
4Latham & Piccolo [52] and Shantz & Latham [59] used a logarithmic transformation.
5Details of the analysis described in this paragraph can be found at https://osf.io/5cjzp/.

https://osf.io/5cjzp/
https://osf.io/5cjzp/
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large studies with small effects, but there is no set of such factors. The most straightforward explanation

for the association is that studies with small samples and small effects have been excluded from the
published literature. In other words, there is no evidence to suggest that the relationship in figure 2
says something about the underlying studies—it does not. The likely ‘missing’ studies—if they could
be found—would almost certainly change the pattern of effects in the figure and the association
would disappear.
lishing.org/journal/rsos
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6. Applying bias-correction methods to the updated meta-analysis
The regression line plotted in figure 2 suggests that an ideal study with a very large sample size (and
standard error therefore close to zero) would obtain a negligible priming effect. But this is just one of
several methods for correcting meta-analytic effect sizes for bias. There is a very long and rich
literature on bias-correction methods (see [59], for a recent review; for an authoritative early source,
see [60]). Among the many lines of evidence that these methods improve the accuracy of meta-
analytic effect size estimates, they have been found to yield estimates that are closer to ‘gold standard’
effect size estimates obtained in pre-registered multiple-laboratory replication projects. Kvarven et al.
[61] recently collated all available meta-analyses for which pre-registered experiments measuring the
same effect have been conducted. These experiments precisely estimate effect sizes in the absence of
publication bias. Every meta-analysis overestimated the effect size of its comparison pre-registered
experiment, but this overestimation was reduced when bias-correction methods were applied to the
meta-analytic effect estimates.

Unfortunately, it is clear that no single method is better than others in general, and moreover, the
methods often do not concur on the presence or absence of publication bias [56,62,63]. This means
that the typical practice of simply reporting the outcome of one or perhaps two such methods is
unjustified. If the methods yield divergent outcomes, there is a significant risk of meta-analysts
choosing to report only those correction methods that yield outcomes consistent with their theoretical
predispositions. In this section, we describe a sensitivity analysis [62] that applies available methods in
a principled way to minimize any possibility of this type of p-hacking of method application and
reporting.

Validating bias-correction methods is not an easy task, as the true population effect size for the
studies in a meta-analysis is by definition unknown. For this reason, simulation studies are essential
because for these, both the true effect size and the underlying biases are known. In a comprehensive
analysis, Carter et al. [62] simulated datasets typical of psychological research, varying the number of
included studies, the true underlying effect size, the heterogeneity of the observed effects and the
extent of simulated publication bias and RDFs. For each of over 400 combinations of these factors,
data were simulated and several bias-correction methods fitted, and the proximity of the bias-
corrected effect size estimate to the true effect size was recorded. Publication bias was modelled by
calculating the p-value for a simulated study and retaining or rejecting it from the dataset on the basis
of a range of more or less complex rules based on that p-value. RDFs were modelled by a range of
rules that permitted different levels of outlier removal, optional stopping of data collection, switching
between two dependent variables and so on.

These analyses yielded a complex pattern in which each of the methods worked satisfactorily in some
conditions and unsatisfactorily in others. For example, focusing on datasets comprising k = 10 studies (the
closest to the number in the present meta-analysis), the popular p-curve [64] and trim-and-fill [65]
methods yielded false-positive rates (probability of falsely rejecting H0 = no true effect) of over 50%
when publication bias was strong and heterogeneity high, rendering them invalid methods in such
circumstances.

Carter et al.’s analyses provide the motivation for a sensitivity approach in which the starting point is
a description of the ‘plausible’ conditions that pertain in a meta-analysis, and using these conditions to
constrain the choice of and weight given to bias-correction methods. For our meta-analysis, we define
these plausible conditions as follows. First, the heterogeneity of the study effects is based on values
from the two largest and most relevant meta-analyses of priming effects [13,30] which obtained values
of τ = 0.34 and τ = 0.38, respectively, close to one of the simulation conditions (τ = 0.4). Next, we
assume that publication bias may lie anywhere between none and medium levels. It seems unlikely
that publication bias is extreme in this literature, bearing in mind that the dataset includes effects that
are not statistically significant. Lastly, we assume that RDFs span the full possible range between none
and high levels.



Table 2. Meta-analytic estimates. Note: PET = precision-effect test; 3PSM = 3-parameter selection model; PEESE = precision-effect
estimate with standard errors.

method mean effect size (d ) 95% CI worst-case false positive rate (%)

random effects 0.64 0.41, 0.88 63

methods identified as satisfactory by sensitivity analysis

PET –0.71 –1.30, –0.12 16

3PSM 0.30 –0.11, 0.70 14

methods identified as unsatisfactory by sensitivity analysis

trim-and-filla 0.40 0.12, 0.68 39

PEESE 0.03 –0.29, 0.35 29

PET-PEESE 0.03 –0.29, 0.35 22

p-curveb 0.64 88

p-uniform 0.38 –0.86, 0.89 63
aTrim-and-fill imputes five missing effects on the left of the funnel plot.
bp-curve does not provide a confidence interval on its effect size estimate.
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Under these plausible and wide conditions, Carter et al.’s simulations (as derived from the online
simulator available at http://www.shinyapps.org/apps/metaExplorer/; these are also provided in
their Fig. 3) specify that only two methods, the precision-effect test (PET) and 3PSM selection model,
perform satisfactorily in this context, which we define as returning a false-positive rate lower than
20%. The 20% threshold is a trade-off between conservatism and applicability. As we lower the
threshold, we are less likely to make a false-positive inference, but it becomes more likely that all
methods are rejected. All other methods yield higher false-positive rates under at least some
combinations of the plausible conditions specified above. Hence we base our bias-corrected estimates
on the PET and 3PSM models, although in table 2, for full transparency, we also report the corrected
estimates of the other methods.

The PET test formally takes the intercept of the Egger regression (figure 2) as its estimate and when
applied to our dataset yields a value of –0.71 [–1.30, –0.12]. We do not assign any significance to the fact
that this is negative, which is presumably due to sampling error. We do attach significance, however, to
the fact that the confidence interval is not above zero. On the basis of their simulations, Carter et al. [62,
p. 134] concluded that ‘A statistically significant PET-PEESE estimate in the unexpected direction
probably is incorrect, but researchers should be aware that when they obtain such an estimate, there is
likely to be some combination of QRPs and publication bias and, perhaps, a null effect’.

Selection models including 3PSM start from the assumption that studies may exist that have not been
included in the meta-analysis and that it is a study’s p-value and direction that determines the likelihood
of inclusion. As a consequence, the mean observed effect size becomes artificially inflated. The Vevea &
Hedges [66] 3PSM selection model corrects for the resulting inflation of effect sizes created by this
selection process. This model assumes that the distribution of observed effect sizes depends not only
on their mean effect and the heterogeneity across studies, but also on the probability that studies with
non-significant results end up being published. This probability is modelled as an additional free
parameter. When this model is applied to the updated set of field study effects, via the R ‘weightr‘
package [67], it returns an adjusted effect size that is appreciably closer to zero than the random
effects estimate and no longer statistically significant, d = 0.30, 95% CI [–0.11, 0.70], though the small
number of studies means the precision of the estimate is very low. Importantly, the likelihood ratio
comparing the fit of the selection model to that of a standard random effects meta-analysis is
significant, χ2(1) = 5.44, p = 0.020. Hence, a model that allows for publication bias fits the data better
than an unadjusted model.

Table 2 reports results from five other methods, trim-and-fill, PEESE, PET-PEESE, p-curve and
p-uniform. Details of these methods can be found in [62]. Only two of these methods reject the null
hypothesis: trim-and-fill yields an estimate with a confidence interval that excludes zero (though still
appreciably lower than the random effects estimate, and imputing five missing effects), and p-curve
(which in Carter et al.’s implementation does not generate a CI) yields a value identical to the random
effects estimate. The rightmost column of table 2 details the basis on which these methods are

http://www.shinyapps.org/apps/metaExplorer/
http://www.shinyapps.org/apps/metaExplorer/
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identified by the sensitivity analysis as producing unacceptably high (greater than 20%) false-positive

rates under at least some plausible conditions. For example, the rate is nearly 90% for p-curve,
meaning that for this percentage of randomly generated datasets, p-curve rejects the null hypothesis
even when the true effect is zero.6 Given that a false positive of 60% or so is likely, the results also
emphasize that it is indefensible to draw conclusions from a standard, uncorrected random effects
analysis, as Chen et al. did.7

In summary, a sensitivity analysis suggests that two bias-correction methods are acceptable in the
plausible conditions of the meta-analysis, namely PET and 3PSM. When applied to the data, these
methods yield much lower estimates of the overall effect size and indeed indicate that the null
hypothesis that there is no true priming effect cannot be rejected (since zero is included in the 95%
confidence intervals of both estimates). The overwhelming likelihood that the true effect size is lower
than the value Chen et al. obtained has a further implication, namely that the studies in this literature
are almost certainly underpowered. As table 1 shows, the sample sizes in these studies are very small
(mean and median per cell = 30). If we take the larger of the two corrected estimates of the mean
effect size (i.e. d = 0.30 from 3PSM), we can calculate that experiments with these sample sizes have
power of only 0.31 to detect (one-tailed) a population effect size of this magnitude. If we take an even
more optimistic view and assume that the true effect size is d = 0.50, power is still only 0.61.

We do not for one moment underestimate the difficulty of conducting field studies and fully
recognize the challenges of collecting data in workplace settings. Nevertheless, before collecting any
data, researchers in this area could calculate that with the average sample size they are able to recruit
(N = 30), achieving a conventional level of power (0.80) would require goal priming to be of a
magnitude (d = 0.65) that is over twice as large as the effects of ibuprofen on pain relief (d = 0.28) and
also appreciably larger than the tendency of men to weigh more than women (d = 0.54) (estimates
from [68]). This level of effect size is implausible, especially bearing in mind that even under the
carefully controlled confines of the laboratory, the magnitude of goal priming is barely half this level
(d = 0.31, from Weingarten et al.’s meta-analysis). In the event, it would not be surprising if the effect
sizes of some published studies are inflated by sampling error, or that some studies failing to find
statistically significant effects go unpublished.
7. Conclusion
We share some important points of agreement with Chen et al. [23], not least that an overall meta-analysis
of goal priming studies on performance measures is potentially illuminating, and that a meta-analysis of
the nested set of field studies is of even greater potential significance. Field studies revealing translation
of laboratory research into applied settings are challenging to undertake, and hence it is important to use
tools such as meta-analysis to ensure that the maximum information is extracted from what is inevitably
a fairly small body of studies. When it comes to the implementation of these aims, however, we begin to
diverge sharply from Chen et al. Our detailed examination of the studies they included in both their
larger overall meta-analysis and the meta-analysis restricted to field studies reveals issues concerning
some of their inclusion/exclusion decisions. The net effect of these is to undermine the
meaningfulness of the meta-analytic effect size estimates they reported.8

To remedy this shortcoming in the analysis of field experiments, we collated a modified set of effect
sizes that conforms, we argue, to a much more comprehensive and rigorous selection protocol. At first
glance supporters of goal priming might find the results of this revised meta-analysis particularly
congenial as it reveals an effect size almost as large as that reported by Chen et al. However, the clear
6The exact set of plausible conditions in which each method achieved its worst-case false-positive rate differed across the methods.
Thus for p-curve the most challenging conjunction is no RDFs combined with medium publication bias, whereas for the random-
effects method, it is high RDFs combined with medium publication bias.
7In a response to other commentaries on their article, Chen et al. [23] acknowledged the importance of testing for publication bias in
their overall meta-analysis and reported that a trim-and-fill analysis, while confirming the existence of missing studies, nonetheless
yielded a corrected effect size greater than zero. Just as with the field study meta-analysis described in this section, however, trim-
and-fill is an invalid correction method for the overall dataset. Carter et al.’s [62] simulations show that under conditions that are
appropriate for the overall meta-analysis (severity of publication bias =medium, τ = 0.4, RDFs =medium, number of studies = 30),
trim-and-fill has a false-positive rate of over 60%. Even if the true effect size was zero, trim-and-fill would frequently conclude
otherwise.
8Putting aside these issues, it is worth noting that when applied to Chen et al.’s set of k = 8 field studies, both PET,M = 0.12 [−0.90, 1.13]
and 3PSM, M = 0.46 [0.29, 0.62], generate appreciably lower bias-corrected estimates.
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signals of publication bias and/or exploitation of RDF, documented by two bias-correction methods

known to provide valid estimates in the range conditions that plausibly apply in this dataset [62],
point to a very different conclusion: these studies are biased, either because only significant effects
have reached the published literature or because their findings have been inflated by exploitation of
RDF. Chen et al. estimated the population effect size for goal priming in the field at Cohen’s d = 0.68
[0.55, 0.81]. We submit that a more credible estimate, based on the PET (PET) and the 3PSM selection
model [66], is much smaller than this (if it is greater than zero at all) and that the average power of
the experiments in this domain is accordingly likely to be very low. Our findings are aligned with
those of Weingarten et al. [30] who also found clear evidence of publication bias, including funnel plot
asymmetry, in their meta-analysis of experiments that employed verbal goal primes.

We do not wish to overstate our findings. The number of studies in the meta-analysis is modest, and
publication bias in this field is an inferred rather than a concretely proven fact. We believe it would be
unwise to attach substantial weight to the exact bias-corrected effect size estimates, though of course we
suggest that they are more credible because they take rightful account of a property of the studies—
publication bias—that Chen’s et al.’s estimate does not. We are not claiming that goal priming in the
workplace does not exist. Instead our more modest conclusion is that the available evidence falls short
of demonstrating it to an appropriate level of confidence, and that further research is urgently needed.
What requirements should this research fulfil in order to move beyond our current state of knowledge?
The answer to this is straightforward: future studies need to be high-powered and pre-registered.
Published studies have average sample sizes that are so small that even if goal priming is a genuine
medium-sized effect (approximately equal to 0.5), their success in rejecting the null hypothesis would be
little better than a coin flip. Moreover, studies with such small samples are unable to estimate the effect
size with any precision. This is starkly illustrated in figure 1 where, for example, it can be seen that the
95% CI in one study’s estimate of the priming effect covered the range from 0.06 to 1.84 ([53], Study 1).
In addition to much higher power, future studies should be pre-registered to protect against any
suspicion of p-hacking and published regardless of the results to protect against publication bias [18].
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