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Abstract

A promoter is a region in the DNA sequence that defines where the transcription of a gene by RNA polymerase initiates,
which is typically located proximal to the transcription start site (TSS). How to correctly identify the gene TSS and the core
promoter is essential for our understanding of the transcriptional regulation of genes. As a complement to conventional
experimental methods, computational techniques with easy-to-use platforms as essential bioinformatics tools can be
effectively applied to annotate the functions and physiological roles of promoters. In this work, we propose a deep
learning-based method termed Depicter (Deep learning for predicting promoter), for identifying three specific types of
promoters, i.e. promoter sequences with the TATA-box (TATA model), promoter sequences without the TATA-box (non-TATA
model), and indistinguishable promoters (TATA and non-TATA model). Depicter is developed based on an up-to-date,
species-specific dataset which includes Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana
promoters. A convolutional neural network coupled with capsule layers is proposed to train and optimize the prediction
model of Depicter. Extensive benchmarking and independent tests demonstrate that Depicter achieves an improved
predictive performance compared with several state-of-the-art methods. The webserver of Depicter is implemented and
freely accessible at https://depicter.erc.monash.edu/.
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Introduction
Gene expression refers to the process of synthesizing functional
gene products from genetic information, during which the ini-
tiation of transcription is of vital importance [1]. In eukaryotes,
there are three types of RNA polymerases responsible for tran-
scription of different subsets of genes: (i) RNA polymerase I (RNA
pol I) transcribes genes encoding ribosomal RNA (rRNA); (ii) RNA
polymerase II (RNA pol II) transcribes mRNA, miRNA, snRNA,
and snoRNA genes; and (iii) RNA polymerase III (RNA pol III)
transcribes genes encoding transfer RNA (tRNA) [2, 3]. According
to the type of RNA polymerases, eukaryotic promoters are clas-
sified into three different categories: RNA pol I promoters, RNA
pol II promoters and RNA pol III promoters, of which the RNA
pol II promoters are more essential for transcribing all protein-
coding and many noncoding genes [4, 5]. Promoter sequences
are short, conserved, noncoding DNA sequences and usually
located around the transcription start site (TSS), which define
where transcription of a gene by RNA polymerase begins [5, 6].
TSS is embedded in the core promoter sequence encompassing
∼40 bp upstream and ∼40 bp downstream or ∼50 bp upstream
and ∼100 bp downstream, which is deemed as the gateway to
transcription and largely dependent on the core promoter ele-
ments or motifs [7, 8]. The location diagram of the TSS and core
promoter is shown in Figure 1B. Inr (initiator), TATA box, BREu

and BREd, TCT (polypyrimidine initiator), downstream promoter
element (DPE), motif ten element (MTE), specificity protein 1
(Sp 1) and other core promoter elements (such as the X core
promoter element 1 (XCPE1) and XCPE2 motif, the downstream
core element, three downstream elements, termed GLE, DPE-L1,
and DPE-L2, the downstream transcrsiption initiation element
(DTIE)) are well-known sequence motifs discovered in several
eukaryotes [1, 9]. In addition, there are some other promoter
elements, such as ‘CpG island’ and ‘ATG desert’ in mammalian
promoters. For the detailed information about these motifs,
please refer to the reviews [10]. TATA box is the most distinctive
core promoter element and also is regarded as the most ancient
for it is present in organisms ranging from yeast to plants and
metazoans [11]. For eukaryotes, promoters are usually classified
into TATA-containing and TATA-less or non-TATA according to
whether containing TATA-box in their sequences. In the work of
Yella and Bansal [10], they showed that there are three obviously
distinct structural properties, e.g. DNA duplex stability, bend-
ability and curvature in TATA-containing and TATA-less promot-
ers of six eukaryotes. Promoters have demonstrated essential
roles in the regulation of gene expressions, such as alternative
splicing [12], the stability of transcripts [13], mRNA localization
[14] and translation. Therefore, the identification of promoters
is essential not only for recognition of the complete structure of
a gene, but also for further understanding the mechanisms of
gene transcription and expression regulation [15].

A variety of computational methods based on traditional
machine learning and deep learning techniques have been pro-
posed to identify promoters in different species. A consensus
of these studies is to analyze the data and extract relevant
and useful information to make accurate decision and facilitate
knowledge discovery [16, 17]. Here, we summarize and catego-
rize the strategies of information extraction into three major
types, which extract the information based on DNA structure,
shape and sequence, respectively. DNA structural features such
as flexibility/bendability, curvature, base stacking and duplex
stability have been used to characterize promoter regions [18–
20]. DNA shape features are more helpful for understanding
and characterizing transcription factor binding sites, origins of

replications and other genomic regions [21]. Sequence-based
features are extracted from the genomic context of the promoter,
such as the biological signal of core promoter elements (Inr,
TATA-box), the statistical properties of k-mer composition and
the characteristics of DNA secondary structure [22]. Using the
extracted information, the majority of the existing approaches
are developed based on conventional machine learning algo-
rithms such as support vector machine (SVM) [23, 24], random
forest (RF) [25], logistic regression (LR) [26] and gradient boosting
decision tree (GBDT) [27], etc. Among these, iProEP is the most
recently developed predictor [24], which employed the SVM algo-
rithm to train the classifier for predicting promoter sequences of
multiple species by utilizing pseudo k-tuple nucleotide composi-
tion and position-correlation scoring matrix to capture sequence
information. However, it does not take into account the pro-
moters in plant species, and requires domain knowledge-related
features to get information from DNA sequences.

Deep learning is a cutting-edge machine learning technique
which has proved to be extraordinarily powerful for mining
valuable information through multiple layers of feature rep-
resentations from the raw biological sequence data (i.e. DNA,
RNA or protein sequences) without any domain knowledge in
constructing feature vectors [28–32]. Due to its breakthrough
performance in various machine learning applications, deep
learning has recently been increasingly employed in the bioin-
formatics field [33]. To the best of our knowledge, there are
three deep learning-based predictors for the promoters, namely
CNNProm [34], DeeReCT-PromID [35], DeePromoter [36], respec-
tively. Different from previous approaches, CNNPorm divided
the promoters into two classes: TATA and non-TATA promot-
ers [37] and then constructed the convolution neural network
prediction model for H. sapiens, M. musculus and A. thaliana.
DeePromoter [36] is developed based on the combination of CNN
and bidirectional long short-term memory to further improve
the recognition ability. Evaluated on their own independent test
datasets, DeePromoter achieved an MCC of 0.88 for TATA pro-
moters and 0.92 for non-TATA promoters of H. sapiens, an MCC
of 0.87 for TATA promoters and 0.82 for non-TATA promoters
of M. musculus, respectively. Rather than focusing on the high-
precision of classification, DeeReCT-PromID [35] can be used to
predict the exact locations of TSS in the genomic sequences by
detecting each possible location. In contrast to the traditional
machine learning algorithms that require complicated feature
engineering and various feature selection schemes, the three
deep learning methods only use the one-hot encoding scheme,
and then directly input to the multiple convolutional neural
networks.

Although extensive studies have been conducted on this
topic, several issues remain to be addressed. Firstly, a large
amount of new genomes has been recently annotated and col-
lected; secondly, the species for which each promoter identifica-
tion model was specifically designed are not uniform; thirdly, the
predictive performances of some tools are still unsatisfactory,
especially for identifying non-TATA promoters of M. musculus
and A. thaliana; and lastly, three different models would need
to be specifically designed for TATA promoters, non-TATA pro-
moters and indistinguishable promoters (i.e.TATA and non-TATA
promoters) according to cater for users’ requirements as some-
one may be not interested in the specific type of promoters. To
address these problems, in this work we propose Depicter, which
employs the connected architecture of CNN and capsule net-
work, to identify TATA promoters and non-TATA promoters of H.
sapiens, M. musculus, D. melanogaster and A. thaliana. To illustrate
the effectiveness of this architecture, we visualized the analysis
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Figure 1. Depicter overview. (A) Depicter studies species including H. sapiens, M. musculus, D. melanogaster and A. thaliana. (B) Genetic structure of eukaryotic cells. (C)
Overall architecture of Depicter. (D) Models evaluation and validation, and the part of the figure show the average performances of 5-fold cross-validation running

five-time on the benchmark datasets for the TATA and non-TATA type.

results using t-distributed Stochastic Neighbor Embedding (t-
SNE). The performance of Depicter was compared with different
promoter prediction models at the species-specific level and
is shown to provide a superior performance compared with
the existing methods on newly constructed independent test
datasets. In order to facilitate community-wide research efforts,
a user-friendly webserver of Depicter is developed and made
freely used at https://depicter.erc.monash.edu/, with the source
code and datasets freely available at https://github.com/zhuya
ner/Depicter/.

Materials and methods
Overall framework

In this study, we propose a computational framework named
Depicter to predict species-specific TATA promoters and non-
TATA promoters. There are four major steps involved in the
development of Depicter, including data collection and prepro-
cessing (Figure 1A), one-hot encoding, training (Figure 1C) and
model performance evaluation (Figure 1D). At the first step, we
construct reliable and rigorous benchmark and independent test
datasets for model training and performance validation. At the
second step, each DNA sequence fragment is transformed to
the input feature matrix using the one-hot encoding scheme. At
the third step, we build a novel deep learning framework con-
sisting of two one-dimensional convolutional layers and a one-
dimensional convolutional capsule layer, and a fully connected
layer to train the prediction model based on the input feature
matrix (Figure 1C). Finally, we assess and evaluate the predictive
performance of Depicter based on the independent test datasets.

The schematic representation of the Depicter approach is shown
in Figure 1.

Data collection and preprocessing

Constructing a rigorous and objective benchmark dataset is a
fundamental step to establish a robust and forceful prediction
model [38]. In this study, we collected promoter sequences for
four different species, including Homo sapiens (H. sapiens), Mus
musculus (M. musculus), Drosophila melanogaster (D. melanogaster)
and Arabidopsis thaliana (A. thaliana) from the EPDNew database
(http://epd.vital-it.ch, last update October 2019), which is an
update version of the Eukaryotic Promoter Database (EPD) that
collects experimentally validated eukaryotic promoters [39]. We
developed prediction models for these four eukaryotic species as
they have sufficient numbers of promoters to ensure statistical
significance. All collected eukaryotic promoter sequences have
a length of 300 bp which were extracted from 249 bp upstream
to 50 bp downstream regions of TSS (TSS is regarded as the
0-th site). There are two reasons why we chose a promoter
region 300 bp (−249 bp to +50 bp) for eukaryotes: (i) the core
regulatory elements of transcription recognized by the poly-
merase in eukaryotes are located between −250 bp and + 50 bp
of TSS [40]; (ii) the promoter region 300 bp (−249 bp to +50 bp)
has been extensively used in [36, 41]. Therefore, we selected
this region to make an objective comparison with these mod-
els. Subsequently, according to whether a promoter sequence
contained a TATA-box at the position −28 (±3 bp) from the
TSS, these collected sequences were labeled as TATA promoters
and non-TATA promoters [42]. To construct the corresponding
negative datasets, we collected exon sequences of H. sapiens,

https://depicter.erc.monash.edu/
https://github.com/zhuyaner/Depicter/
https://github.com/zhuyaner/Depicter/
http://epd.vital-it.ch
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Table 1. A statistical summary of the curated promoter datasets for four different species in this study

Kingdom Species TATA Original
data

CD-HIT-EST
(80%)

Promoter Training
dataset

Independent
test dataset

Location Non-
promoter

Eukaryotes
(300 bp)

H. sapiens With 3065 2927 2927 2634 293 [−249,+50] 2927

Without 26 533 25 460 25 460 22 914 2546 [−249,+50] 25 460
M. musculus With 3305 3077 3077 2769 308 [−249,+50] 3077

Without 21 805 21 040 21 040 18 936 2104 [−249,+50] 21 040
D. melanogaster With 2598 2585 2585 2326 259 [−249,+50] 2585

Without 14 372 14 035 14 035 12 631 1404 [−249,+50] 14 035
A. thaliana With 6405 6323 6323 5691 632 [−249,+50] 6323

Without 16 298 15 858 15 858 14 272 1586 [−249,+50] 15 858

intron sequences of M. musculus, exon and intron sequences
of A. thaliana from the Exon–Intron Database (EID) [6], exon
sequences of D. melanogaster from FlyBase (release 6.3) (ftp://
ftp.flybase.net/genomes/dmel/current/fasta/). In order to avoid
the oversampling or downsampling process of negative samples,
which may affect the predictor [43], we select the number of exon
or intron sequences that match the positive samples as negative
samples for the four species, respectively. The downloaded exon
or intron sequences were treated as negative samples, whose
length was also 300 bp, which was of the same length as the
eukaryotic promoter samples.

The original sample sequences obtained from the databases
should be preprocessed to remove noise samples and ensure the
robustness of the prediction model [44]. For each species, we
used CD-HIT-EST [45] with the cut-off value of 0.8 to exclude
highly similar promoter sequences [46]. The negative samples
were similarly treated and then the same number of negative
samples as positive samples was randomly selected. A statistical
summary of the negative samples is provided in the Supple-
mentary Table S1. We then combined the positive and nega-
tive samples and randomly divided them into the training sets
(including training and validation datasets) and independent
test datasets with the dataset size ratio of 9:1 between the former
and the latter. The statistical summary of the promoter and
nonpromoter (the last column) datasets for four different species
in our study are shown in Table 1. All datasets curated in this
work can be freely downloaded at https://github.com/zhuyaner/
Depicter/.

Training the deep learning model

In this section, we describe the framework design of Depicter
in detail. We use the processed gene sequences as the input,
employ the one-hot encoding scheme to construct the sparse
feature matrix, and then concatenate the convolutional neural
network and capsule network. These major steps are introduced
in the following sections in detail.

One-hot encoding of the input gene sequence

The one-hot encoding scheme has been widely applied in
deep learning and has demonstrated its effectiveness in the
research areas of computer science [47–49] and bioinformatics
[50–53]. The one-hot encoding transforms each nucleotide to a
4-dimensional binary vector, that is, A is transformed to (1, 0, 0,
0), C is transformed to (0, 1, 0, 0), G is transformed to (0, 0, 1, 0)
and T is transformed to (0, 0, 0, 1), respectively [54].

Architecture design of Depicter

A critical factor for promoter identification is to determine the
specific locations in the promoter region where some promoter
elements, such as the GC-box, TATA-box, CAAT-box and so on,
are localized [35]. Although such positional information is impor-
tant for promoter recognition, the average pooling layer or the
maximum pooling layer used in CNN tends to deteriorate the
positional information of the sequences to some extent [55]. A
useful strategy to address this is to use the capsule network,
which was proposed by Geoffrey Hinton in NIPS 2017 (Sabour,
et al., 2017). Its improvement lies in the application of dynamic
routing instead of the primitive pooling. Dynamic routing can
deliver the information selectively through protocols between
the lower layer and the higher layer, whereas the maximum
pooling focuses only on the maximum value and the averag-
ing pooling focuses on the average of the feature point in the
neighborhood.

Therefore, we constructed the Depicter architecture based
on two one-dimensional convolutional layers and a one-
dimensional convolutional capsule layer, and a fully connected
layer (i.e. the promoter classification capsule). The first two
layers are the conventional convolutional layers, which serve
to capture middle-level features from the one-hot encoding
matrix. Then they feed into the following capsule network
layers for representative feature extraction and more accurate
classification. Depicter is implemented using the Keras 2.1.1
package with a Tensor Flow 1.3.0 backend in Python 3.7.
Detailed parameter settings of these layers can be found in the
Supplementary Information (File S1).

Deep capsule neural network training

In this section, we apply several strategies to avoid the over-
fitting issue of the trained model and automatically tune
parameter setting of the number of epochs. These strategies
include: first, use the ReLU activation function [56] in the first
two layers that may repair the vanishing gradient issue in the
back-propagation training algorithm. Second, adopt the dropout
mechanism [57] to randomly remove certain neurons when
training neural networks. Third, the ‘early stopping’ [58–60]
strategy is applied to halt the model training when the loss
is no longer dropping or the extent of dropping is less than a
specific threshold. By doing this, we can address the problem
of manually setting the number of epochs and minimizing the
overfitting risk of the neural network on the training datasets.
The ‘Adam’ optimizer [61] with the separate margin loss function
was used for training the model [62]. To examine the fitting

ftp://ftp.flybase.net/genomes/dmel/current/fasta/
ftp://ftp.flybase.net/genomes/dmel/current/fasta/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://github.com/zhuyaner/Depicter/
https://github.com/zhuyaner/Depicter/
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effect of Depicter, we also draw the loss and accuracy curves of
each model in Figure S1 that demonstrates the model training
process.

Parameter optimization

Identifying the optimal parameters is one of most crucial aspects
of establishing a valid prediction model because the selection of
parameters will affect the predictive performance of the trained
model significantly [63]. However, it is impossible to manually
select and test each combination of parameters exhaustively.
In this work, we adopt a two-step parameter adjustment strat-
egy. We randomly partition the processed training datasets into
10 subsets with the ratio of 9:1 (nine subsets are merged as
the training dataset and the remaining subset will be used as
the validation dataset) for parameters search. First, the initial
parameters are set according to a previous work [64] to roughly
compare the prediction results. Then Bayesian optimization [65]
is used to fine-tune the key parameters including learning rate,
batch size, dropout rate, etc. Finally, the optimal parameters are
selected according to the area under curve (AUC) value. The
finally selected parameters of the models for each species and
their corresponding AUC values are provided in Table S2.

Performance evaluation

In order to comprehensively assess the performance of promoter
prediction, six generally applied statistical measures [66–70] are
adopted in this work, including sensitivity (Sn), specificity (Sp),
precision (Pre), accuracy (Acc), Matthew’s correlation coefficient
(MCC) and F1 score. They are defined as follows:

Sn = TP
TP + FN

(1)

Sp = TN
TN + FP

(2)

Pre = TP
TP + FP

(3)

Acc = TP + TN
TP + TN + FP + FN

(4)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(5)

F1 score = 2 × Pre × Sn
Pre + Sn

(6)

where TP represents the number of promoters correctly clas-
sified, TN represents the number of nonpromoters correctly
classified, FN represents the number of promoters incorrectly
classified as nonpromoters, and FP represents the number of
nonpromoters incorrectly classified as promoters, respectively.
Accordingly, Sn (also called true positive rate) measures the
percentage of promoters correctly classified; Sp calculates the
percentage of nonpromoters correctly classified analogously;
Pre indicates the ratio of true promoters that are classified
as promoters by Depicter; F1 score comprehensively considers
precision and recall; MCC represents the balance quality of
the positive and negative data. In addition, receiver-operating
characteristic (ROC) curves and the area under ROC curve (AUC)
are also applied to assess the overall classification performance.
The AUC value closer to 1 indicates a close-to-perfect prediction,
for which the ROC curve would be localized closer to the upper
left corner.

Results and discussion
Visualization of learning characteristics in different
periods

When using traditional machine learning methods or deep
learning techniques to train and optimize the prediction model,
the intermediate process executed by hidden layers is often
invisible, just like a ‘black box’. This leads to the difficulty
to interpret the various components of the machine learning
model and understand how the prediction decision is made
[71, 72]. Accordingly, substantial efforts have been devoted to
improving the interpretability of learning process and providing
explanations for the predictions [73]. In this study, we employed
a popular visualization algorithm termed t-distributed t-SNE
to visualize the intermediate results [74]. T-SNE is a nonlinear
dimensionality reduction algorithm aiming to embed high-
dimensional data for visualization in a two-dimensional or
three-dimensional space [75].

Using the t-SNE algorithm, we mapped the high-dimensional
feature space to the two-dimensional space. The results are
shown in Figure 2A, which provides a visual comparison of the
feature representations of for the one-hot encoding and after the
capsule layers of TATA models for H. sapiens. Mixing of the two
types of dots in Figure 2A (a) indicates that it is difficult to dis-
tinguish promoters from nonpromoters. In contrast, the selected
and processed features by the convolutional capsule layers could
be clearly separated as shown in Figure 2A (b). Comparison of
t-SNE visualizations of promoter predictions for all species is
shown in Figures S2–S5. Taken together, we conclude that the
Depicter framework can effectively learn the informative feature
representations from the one-hot encoding mapped from the
DNA sequences.

Five-fold cross-validation test on the benchmark
datasets

As there were a total of 12 models with a large amount of data
in the experiments, we performed 5-fold cross-validation test
by running five times to examine the robustness of Depicter,
and then provided the corresponding prediction results in the
Supplementary Table S3. Moreover, the average results of three
models of each of the four species on five times 5-fold cross-
validation tests are shown in Figure 2B. It can be seen from
Table S3 and Figure 2B that our Depicter models achieved an
outstanding predictive performance. More specifically, Depicter
achieved the average Sn of 89.14%, Sp of 89.96%, Pre of 89.58%,
Acc of 89.34%, MCC of 0.7889, and F1 score of 0.8924 for H. sapiens;
the average Sn of 98.64%, Sp of 98.33%, Pre of 98.32%, Acc of
98.48%, MCC of 0.9696, F1 score of 0.9848 for M. musculus; the
average Sn of 93.63%, Sp of 92.66%, Pre of 92.28%, Acc of 92.98%,
MCC of 0.8613, and F1 score of 0.9286 for D. melanogaster; the
average Sn of 95.58%, Sp of 96.35%, Pre of 96.36%, Acc of 95.95%,
MCC of 0.9192, and F1 score of 0.9596 for A. thaliana, respectively.

Effective performance evaluation on the framework of
Depicter

The attention mechanism in the deep neural network is also an
important component. It has been extensively applied in many
bioinformatics studies and achieved superior performances.
Therefore, we attempted to combine the attention layer after the
one-dimensional convolution neural network layer to examine
the possibility of further improving the predictive performance.
The output from the third hidden state of CNN is directly input

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
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Figure 2. Using Depicter to explore comparative performance. (A) T-SNE plots for the one-hot encoding vector (a) and feature representation after capsule layer (b), in

which red dots represent promoters and yellow dots represent nonpromoters, respectively. (B) The average performances of all four species on five times 5-fold cross-

validation tests using the benchmark datasets. (C) Comparison of AUC values of attention model and Depicter on the benchmark datasets. (D) T-SNE visualization of the

one-hot encoding feature representation (a), feature representation after the attention layer (b), and feature representation for the 2nd fully connected layer (c). (E–H)

Performance comparison between Depicter and other existing methods on the independent test sets for H. sapiens (E), M. musculus (F), A. thaliana (G) and D. melanogaster

(H).

into the attention mechanism, and its trans-position form is
input into another attention mechanism analogously. Then
the outputs of the two attention mechanisms are combined
and input into the first connected neural network layer. The
second fully connected layer is a single neural network layer
with the softmax output. The same training set and one-hot
encoding scheme were used by Depicter to train and calculate
the variable indices. Refer Figure S6 for details. We compared
the predictive performance of the attention model with Depicter
on the benchmarking dataset for different species, and all the
performance comparison results are listed in Table 2. The AUC
values of the two frameworks are shown in Figure 2C. As can be
seen for H. sapiens, D.melanogaster and A. thaliana, the average
AUCs of Depicter were 0.062, 0.023 and 0.067, respectively higher
than those of attention model on three types of models. On the
other hand, it should be noted that for M. musculus, Depicter
secured the best AUC values on TATA and non-TATA types of
promoters, whereas the attention model achieved the best AUC
value on TATA and non-TATA type of promoters. Figure 2D and
Figures S7–S10 provide the t-SNE plots that include the mapped
feature representations for the one-hot encoding, after the
attention layer, and for the 2nd fully connected layer. From
Figure 2A (b) and Figure 2D (c), we can clearly observe that
Depicter could more correctly classify the promoter samples
than the attention model in the final classification layer.

Performance comparison on the independent test
datasets

We uniformly and comprehensively compared the predic-
tive performance of Depicter against other state-of-the-art

prediction tools on the independent test datasets that were
built for different types of promoters. There were three key
points related to the performance comparison. The first point is
that the data used in all other tools are not unified due to the
continuous updating of the data; the second point is that several
tools only focus on one species; the third point is that most
approaches do not distinguish the specific types of TATA, non-
TATA, and TATA and non-TATA. In this section, we compare the
performance of Depicter with other state-of-the-art approaches
across the four different species.

It should be noted that the prediction webserver of PromPre-
dict required a minimum of 1000 nucleotides for making the
prediction [18] whereas CNNPorm required that eukaryotic
sequences had a length of 251 bp [34]. Therefore, we first
processed our independent test sequences to keep the length
consistent and then compared with PromPredict and CNNPorm.
To meet the requirement of PromPredict, we extended the
promoter sequences from 300 bp to 1001 bp according to the
whole genome sequences. Whereas for the introns and exons,
we retained those with the lengths of longer than 1001 bp, and
then deleted the redundant sequences a the threshold of 0.8
by applying CD-HIT-EST. Lastly, we randomly selected the same
number of negative samples as the selected positive samples
to constitute the new negative test dataset. For CNNPorm,
we extracted promoter sequences from the region of 200 bp
upstream to 50 bp downstream regions of TSS, and extracted
the negative samples with the length of 251 (1:251) bp from the
corresponding original negative dataset.

For H. sapiens, Depicter was compared with iProEP, DeeP-
romoter, PromPredict and CNNPorm, which are most recently
reported prediction tools [18, 34, 36, 41]. However, as CNNPorm

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
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Table 2. Performance comparison of the attention model and Depicter on the validation datasets

Species Types Model Sn (%) Sp (%) Pre (%) Acc (%) MCC F1 score

H. sapiens TATA Attention 96.75 92.17 91.54 94.31 0.8873 0.9407
Depicter 96.60 98.47 98.46 97.53 0.9508 0.9752

Non-TATA Attention 85.47 79.07 77.53 82.00 0.6431 0.8131
Depicter 88.61 89.14 89.46 88.87 0.7774 0.8903

TATA and
non-TATA

Attention 78.63 82.54 83.81 80.45 0.6102 0.8114
Depicter 88.22 89.95 90.25 89.06 0.7814 0.8922

M. musculus TATA Attention 98.56 97.11 97.15 97.83 0.9568 0.9785
Depicter 99.29 99.63 99.64 99.46 0.9892 0.9947

Non-TATA Attention 99.41 96.74 96.70 98.05 0.9613 0.9804
Depicter 99.20 97.13 97.12 98.15 0.9633 0.9815

TATA and
non-TATA

Attention 99.15 97.83 97.78 98.48 0.9697 0.9846
Depicter 98.38 98.17 98.15 98.27 0.9654 0.9826

D. melanogaster TATA Attention 92.21 96.85 96.98 94.42 0.8896 0.9454
Depicter 93.17 100.00 100.00 96.35 0.9295 0.9647

Non-TATA Attention 90.33 89.75 89.16 90.03 0.8005 0.8974
Depicter 94.10 91.12 90.37 92.52 0.8509 0.9220

TATA and
non-TATA

Attention 89.58 88.98 88.30 89.27 0.7853 0.8893
Depicter 92.09 91.42 90.90 91.74 0.8348 0.9149

A. thaliana TATA Attention 96.04 85.49 84.06 90.17 0.8101 0.8965
Depicter 97.09 98.38 98.44 97.72 0.9544 0.9776

Non-TATA Attention 91.55 85.46 84.30 88.27 0.7677 0.8778
Depicter 95.00 9456 94.53 94.78 0.8956 0.9477

TATA and
non-TATA

Attention 91.83 87.48 86.76 89.53 0.7918 0.8922
Depicter 96.06 95.38 95.34 95.72 0.9144 0.9570

Bold value in the table represents the maximum value for each performance metric.

Figure 3. ROC curves of Depicter models for: (A) TATA types promoters; (B) non-TATA types promoters; and (C) TATA and non-TATA types promoters on the independent

test datasets.

could only predict TATA promoters, we compared the perfor-
mance of its Depicter for predicting the other types of promot-
ers with that of the other three methods iProEP, DeePromoter
and PromPredict. The detailed comparison results are listed in
Table S4. We can see that among these five predictors, Depicter
achieved the best performances with an average AUC of 0.940
over the three types of promoters across all the four species
(Table S5). When compared with the second best iProEP, Depicter
increased the AUC of 0.185 for predicting TATA promoters, 0.136
for non-TATA promoters, and 0.075 for TATA and non-TATA
promoters, respectively. In addition to the AUC, Depicter also
achieved the best performance in terms of all major measure-
ments with the only exception of Sn for predicting the TATA
type of promoters, which was 2.65% lower than that of CNNPorm
(Figure 2E).

For M. musculus, Depicter was compared with CNNPorm,
PromPredict and DeePromoter on the independent test dataset
because the method iProEP did not consider this species. As a
result, Depicter achieved an average AUC of 0.997 over the three
types of promoters, which was 0.07 higher than that of CNNPorm
(Table S5). More specifically, Depicter increased the AUC by 0.027
on TATA promoters, 0.098 on non-TATA promoters, and 0.085 on
TATA and non-TATA promoters, respectively. In addition to the
AUC, Depicter demonstrated the best performance in terms of
all other six performance measurements, as shown in Figure 2F
and Table S6.

For A. thaliana, Depicter was compared with PromPredict on
the independent test datasets. The performance comparison
results are provided in Table S7. Depicter attained the best per-
formance with an average AUC of 0.983 on the three types of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data


8 Zhu et al.

Figure 4. Screenshot of the webserver interface of Depicter. (A) The input interface of Depicter. (B) The output interface of Depicter, which shows the predicted results

for the query sequences.

promoters (Table S5). Specifically, Depicter increased the AUC by
0.196 for TATA promoters, 0.166 for non-TATA promoters, and
0.182 for TATA and non-TATA promoters, respectively. Apart from
the AUC score, Depicter demonstrated the best performance in
terms of all performance metrics (Figure 2G).

For D. melanogaster, Depicter was compared with the other
two methods iProEP and PromPredict, with the performance
comparison results provided in Figure 2H and Table S8. As can
be seen, Depicter also achieved a better predictive performance
than iProEP and PromPredict in terms of Sp, Pre, Acc, MCC
and F1 score, with the only exception of Sn for predicting pro-
moters, which were slightly lower than those of PromPredict.

Nevertheless, PromPredict achieved lower Sp than the other
predictors. This was presumably due to the fact that PromPredict
only considered the DNA duplex stability and did not consider
the sequence statistics information. Moreover, Depicter achieved
an average AUC of 0.980 on the three types of promoters, which
was 0.096 higher than that of iProEP, and 0.267 higher than that
of PromPredict, respectively (Table S5).

Overall, the empirical benchmarking tests indicate that
Depicter provides improved predictive performances for
predicting the three types promoters from H. sapiens, M.
musculus, A. thaliana, and D. melanogaster, which is superior
to the performance shown by the currently available models.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa299#supplementary-data
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Furthermore, we plotted and displayed the ROC curves of
Depicter on the independent test datasets for all the four species
in Figure 3. It can be seen that Depicter performed the best for
prediction of three specific types of promoters for M. musculus
than the other three species. It might be that the sequence-level
signals of promoter sequences of M. musculus can be more easily
captured by the machine learning than other species. Whereas
for H. sapiens, an AUC score of 0.883 was achieved for TATA and
non-TATA promoters, which was much lower than that for TATA
promoters (AUC = 0.994) and non-TATA promoters AUC = 0.944.
A possible reason might be that the one-hot encoding cannot
extract sufficient information to discriminate TATA and non-
TATA promoters from the data. Potentially useful strategies,
such as adding the flexibility, base stacking, duplex stability and
other structural features need to be developed to improve this
respect in future work.

Webserver implementation

As an implementation of the proposed Depicter method, we
have developed a user-friendly online webserver, which is freely
available at https://depicter.erc.monash.edu/. To utilize the web-
server, users need to upload the DNA sequences or paste them
in the sequence window in the FASTA format at the prediction
web page. The generated prediction results for all the submitted
jobs will be presented in a table with detailed information about
the sequence information and the predicted promoter type. In
addition, the webserver also provides a probability score ranging
from 0 to 1 to indicate the probability of the prediction results.
The score close to 1 means the result is most reliable, whereas
the score close to 0 means the result is least reliable. The pre-
diction results can be copied directly or downloaded in the CSV,
Excel or PDF formats. Moreover, the input of our webserver is
not limited to a DNA sequence with a length of 300 bp. Users can
also input multiple full-length DNA sequences. The webserver
will automatically intercept in units of 300 bp and generate the
prediction output for each full-length DNA sequence. Then, the
user can move the mouse to a specific position with a higher
score and the position of the predicted promoter will be will
be highlighted. Step-by-step instructions for using the Depicter
server can be found at the help page of the webserver. Figure 4
shows an example of the prediction webpage of the web server
with the detailed prediction outputs.

Conclusion
In this work, we have developed a novel approach called Depicter
based on deep capsule neural networks for identifying specific
types of promoters (including TATA, non-TATA, and TATA
and non-TATA) across four eukaryote species that have most
abundant promoter data. The up-to-date and reliable datasets
for H. sapiens, M. musculus, D. melanogaster and A. thaliana were
collected and processed. Then the training and independent
datasets were rigorously established to train the models and
evaluate the predictive performance. The concatenation of CNN
and capsule network was utilized to build the framework of
Depicter, which showed its superiority when compared to the
connecting framework of CNN and the attention mechanism.
In addition, we also provided a visual illustration to show
that Depicter could effectively learn feature representations
to accurately differentiate the different types of promoters. We
performed empirical assessment of Depicter with several other
state-of-the-art methods for the four species. Remarkably, in
terms of seven performance measurements and three specific

types of promoters across the four different species, there were
a total of 84 performance results. Amongst these, Depicter
achieved 78 better predictive performance results compared
with the other existing methods. The user-friendly web server
and the source code of Depicter are freely available at https://
depicter.erc.monash.edu/. Both are designed to facilitate users
to perform the prediction analysis and retrieve the results in
an intuitive and accessible fashion. We expect that this deep
capsule learning framework will be exploited as a powerful and
useful alternative to address other sequence-based prediction
tasks, such as prediction of enhancers and other functional
elements from the DNA or RNA sequence data.

Key Points
• Accurate identification of the gene transcription start

site and the core promoter is essential for our under-
standing of the transcriptional regulation of genes.

• We reviewed main existing methods for promoter
recognition and categorized these methods into two
major groups according to the operating algorithms.

• A deep capsule neural network framework termed
Depicter is designed to identify eukaryotic promoters
across four species including Homo sapiens, Mus mus-
culus, Drosophila melanogaster and Arabidopsis thaliana
from the DNA sequences.

• Comprehensive benchmarking tests demonstrate that
Depicter outperforms several existing state-of-the-art
methods.

• The online webserver of Depicter is implemented and
freely accessible at https://depicter.erc.monash.edu/.

Supplementary data

Supplementary data are available online at https://academi
c.oup.com/bib.
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