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SUMMARY

CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known 

about the interplay between responses and its impact on T cell function and tumor control. In 

mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein 

CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells 

responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated 

with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T 

cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ 

cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing 

datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated 

with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved 

the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen 

responses against tumors.

Graphical Abstract

IN BRIEF

Burger et al. Page 2

Cell. Author manuscript; available in PMC 2022 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Analysis of antigen dominance hierarchy and dynamics in a lung cancer model highlights the 

opportunity of optimizing T cell responses against subdominant neoantigens for better checkpoint 

blockade response through vaccination that adjusts T cell progenitor subpopulations
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INTRODUCTION

Accumulating evidence indicates that peptides derived from mutated proteins presented on 

major histocompatibility (MHC) molecules, termed neoantigens, drive productive T cell 

responses to tumors (Schumacher et al., 2019). Neoantigen-specific CD8 T cells expand 

in response to immune checkpoint blockade (ICB) therapies (e.g. anti-PD1/anti-PDL1) and 

patient responses correlate with high neoantigen and/or mutational burden (Keenan et al., 

2019). Additionally, adoptive T cell therapies targeting neoantigens can promote meaningful 

tumor regression (Tran et al., 2017; Zacharakis et al., 2018). These observations provide 

strong rationale for development of immunotherapies directly targeting neoantigens and, 

in particular, have fueled recent large-scale efforts to develop neoantigen-targeted cancer 

vaccines (Hollingsworth and Jansen, 2019).

To identify therapeutically actionable neoantigens for immunotherapies, computational 

pipelines have been developed to predict immunogenic epitopes from exome sequencing 

of patient tumors (Peters et al., 2020; Wells et al., 2020). While these algorithms identify 

tens to hundreds of potential neoantigens, the vast majority of these epitopes do not elicit a 

detectable T cell response. Studies profiling T cell reactivity against predicted neoantigens 

have generally identified only a few, and sometimes zero, bona fide T cell-reactive epitopes 

across most cancer types (Linette et al., 2019; McGranahan et al., 2016; Scheper et al., 

2019; Simoni et al., 2018). If this low frequency of T cell reactivity reflects the number 

of neoantigens capable of eliciting an anti-tumor response, this could pose a significant 

challenge in the selection of relevant neoantigens for immunotherapies.

Poor T cell reactivity against computationally predicted neoantigens may be in part 

attributable to shortcomings of prediction algorithms or detection limits of T cell assays. 

There are also plausible biological explanations, including selection against tumor cells 

expressing immunogenic neoantigens, resulting in loss of T cell-reactive antigens over time 

(i.e. immunoediting). Immunoediting has been observed in mouse models (DuPage et al., 

2012; Matsushita et al., 2012; Milo et al., 2018) and in conjunction with clinical response 

to ICB and adoptive T cell therapies (Anagnostou et al., 2017; Verdegaal et al., 2016). 

While it is difficult to quantify the extent of immunoediting during tumor progression in 

humans (Rosenthal et al., 2019), evidence in mice suggests it may depend on the tumor 

type or tissue context (DuPage et al., 2011; DuPage et al., 2012; Matsushita et al., 2012). 

In addition, antigen immunodominance may be established during anti-tumor immune 

responses (Schreiber et al., 2002). As observed in acute viral infection, one or two epitopes 

may saturate the T cell response and suppress responses to additional antigens (Yewdell, 
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2006). Supporting this idea, healthy donor T cells can respond to tumor antigens that did 

not elicit a response from endogenous tumor infiltrating T cells, suggesting that responses 

against some antigens are depleted or suppressed during tumor progression (Stronen et 

al., 2016). Further, vaccines against melanoma neoantigens generate de novo responses, 

highlighting a degree of unrealized neoantigen immunogenicity in tumors (Carreno et al., 

2015; Ott et al., 2017; Sahin et al., 2017). Thus, T cell responses against some neoantigens 

might outcompete others and narrow the T cell response to fewer epitopes.

To study the dynamics of anti-tumor T cell responses, our group previously engineered 

a Kras/p53-driven (KP) autochthonous mouse model of lung adenocarcinoma to express 

tumor-specific neoantigens (DuPage et al., 2011; DuPage et al., 2009). Tumors are initiated 

from single transformed cells in situ and develop over approximately five months, allowing 

ample time for tumor-immune crosstalk and longitudinal sampling of the T cell response 

at different tumor stages. Two model CD8 T cell neoantigens are expressed in tumor 

cells as a fusion to Luciferase: SIINFEKL (SIIN) from chicken ovalbumin and a synthetic 

peptide, SIYRYYGL (SIY) (termed LucOS). In this KP LucOS model, the CD8 T cell 

response initially slows tumor progression, but exhausts over time. Importantly, neoantigen 

and MHC expression is sustained in advanced tumors, indicating mechanisms other than 

immunoediting hinder the T cell response.

In the LucOS model, SIIN and SIY are concurrently expressed, providing an experimental 

model to study the interaction of distinct neoantigen-specific CD8 T cell compartments in 

the context of an anti-tumor response. Here, we find an antigen dominance hierarchy is 

established between SIIN and SIY in lung tumors that limits expansion of the subdominant 

CD8 T cell response and represses differentiation from a progenitor to an exhausted cell 

state. Progenitor CD8 T cells are correlated with response to ICB in mice and humans 

(Philip et al., 2021), yet their biology remains poorly understood. We uncover a previously 

undescribed subpopulation of progenitor cells that can arise from antigen subdominance and 

correlates with impaired functionality and poor response to ICB. Therapeutic vaccination 

eliminates this subpopulation and greatly expands the subdominant response, highlighting 

vaccination as a strategy to optimally engage simultaneous CD8 T cell responses against 

multiple neoantigens in tumors.

RESULTS

Longitudinal Analysis Uncovers Heterogeneity Between CD8 T Cell Responses to Different 
Neoantigens in Lung Adenocarcinoma

To investigate how CD8 T cell responses to tumor neoantigens may interact, we 

longitudinally characterized SIIN- versus SIY-specific CD8 T cells in tumors initiated 

by intratracheal instillation of lentivirus containing LucOS and Cre recombinase in 

KrasLSL-G12D/+;p53fl/fl mice (Figure 1A; Dupage et al., 2011). At the peak of the response 

(5 weeks), we observed that SIIN drove substantially greater CD8 T cell expansion 

compared to SIY in the tumor-bearing lung (Figures 1B, 1C, S1A and S1B). The SIIN 

response contracted sharply thereafter, whereas the SIY response persisted better over time, 

resulting in similar numbers of SIIN- and SIY-specific cells by 12 weeks. Both populations 

increasingly displayed hallmarks of dysfunction over time, exhibiting progressive decline in 
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proliferation (Ki67) and upregulation of multiple inhibitory receptors (PD1, LAG3, TIM3; 

Figure 1D, 1E, S1C and S1D). Notably, inhibitory receptor expression was lower on SIY­

specific cells at 5 and 8 weeks compared to SIIN-specific cells, suggesting SIY-specific 

cells exhibit slower kinetics of dysfunction. A greater proportion of SIY-specific cells also 

expressed a marker of long-lived T cells, IL-7R, which may contribute to their persistence 

(Figure 1F). 30% of SIIN-specific cells produced IFNɣ compared to 15% of SIY-specific 

cells at 5 weeks, indicating that SIIN-specific cells have greater effector function early in 

the response (Figure 1G). However, few cells were IFNɣ+ TNFɑ+, or “polyfunctional”, a 

phenotype associated with better tumor control (Spranger et al., 2014). Additionally, only 

a small proportion of cells expressed the cytotoxicity-associated molecule Granzyme B 

(GZMB; SIIN 7% versus SIY 4%; Figure 1H). These data are consistent with both SIIN- 

and SIY-specific CD8 T cells having poor anti-tumor activity overall; however, SIIN-specific 

cells have greater effector function compared to SIY-specific cells.

Single-Cell RNA-Sequencing Reveals Enrichment of a TCF1+ Progenitor Cell Phenotype 
Amongst SIY-Specific CD8 T Cells

To further investigate phenotypic differences between SIIN- and SIY-specific CD8 T 

cells, we performed single-cell RNA-sequencing (scRNA-seq) with paired T cell receptor 

(TCR) sequencing at 5 weeks post-tumor initiation. Comparison of transcriptional profiles 

by uniform manifold approximation and projection (UMAP) and unsupervised clustering 

revealed similar distribution of SIIN- and SIY-specific cells; however, some clusters were 

significantly enriched for cells directed against one antigen versus the other (Figures 

2A–2C; Table S3). To explore this transcriptional heterogeneity, we classified single 

cells using “ProjecTILs” T cell atlases (Andreatta et al., 2021) derived from mouse 

lymphocytic choriomeningitis virus (LCMV) infection and B16 melanoma and MC38 

colorectal carcinoma tumor infiltrating lymphocytes (TILS; Figures 2D and S2A; Table S1). 

Consistent with Figure 1, SIIN-specific cells were enriched for “effector” and “exhausted” 

T cell signatures, while SIY-specific cells were enriched for signatures of less differentiated 

“naïve” and “memory precursor” states. Further, cluster 7, which was almost exclusively 

composed of SIY-specific cells, displayed hallmarks of suppressed activation, including 

poor clonal expansion and high expression of AY036118.1 (ETS-related transcription factor 

1, ERF1), a transcriptional repressor of c-myc and cell proliferation (Figures S2C, S2E 

and S4B; Verykokakis et al., 2007). Intriguingly, SIY-specific cells were also enriched 

for signatures of “progenitor” cells, a population marked by stem-like ability to replenish 

more cytotoxic, but terminally-exhausted cells (Figure 2D and Table S3; Utzschneider et 

al., 2016). Recent studies have shown ICB acts to promote differentiation of progenitor 

cells, rather than to reverse dysfunction of terminally-exhausted cells (Kurtulus et al., 2019; 

Miller et al., 2019; Sade-Feldman et al., 2019; Siddiqui et al., 2019); hence, progenitor 

cells appear to be the therapeutically relevant target of ICB therapy. Progenitor cells are 

commonly defined by expression of the transcription factor T cell factor 1 (TCF1) and 

the absence of terminal exhaustion markers, such as Havcr2 (TIM3; Miller et al., 2019). 

SIY-specific cells were preferentially assigned to clusters 4 and 8 (C4 and C8) that were 

enriched for progenitor gene signatures and expressed Tcf7 (encoding TCF1) and other 

progenitor markers, including Il7r (Figures 2C–2E and S2C; Tables S1 and S3). Conversely, 
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SIIN-specific cells were preferentially assigned to clusters C2 and C3, which expressed 

markers of cytotoxicity and exhaustion, including Gzmb and Havcr2.

The proximity of clusters C4 and C8 to C2 and C3 on the UMAP suggests transcriptional 

similarity between these populations, consistent with the previously proposed lineage 

relationship between progenitor and exhausted cells (Figure 2B; Siddiqui et al., 2019). 

We further examined this relationship by analyzing the distribution of TCR clonotypes 

(≥ 5 cells) with at least one cell assigned to progenitor clusters C4 or C8 (Figure 

2F). Unsupervised hierarchical clustering largely segregated SIIN and SIY clonotypes, 

revealing antigen-specific distribution patterns across clusters of cell states (Figure 2F). 

SIIN clonotypes were distributed across most clusters, but were enriched for cells assigned 

to exhausted cluster C2 (Figures 2F and S4C). This supports a lineage relationship between 

progenitor and exhausted cell states and suggests SIIN clonotypes containing progenitor 

cells are well-progressed on the path to exhaustion. In contrast, both progenitor cell­

containing and total SIY clonotypes were biased in cell distribution to progenitor clusters C4 

and C8 (Figures 2F, S4A and S4C), suggesting SIY-specific cells are skewed towards a less 

differentiated state. Further, while SIIN and SIY clonotype numbers were comparable (≥ 2 

cells: SIIN 153, SIY 149), we observed that SIY clonotypes were smaller in size, indicating 

that clonal expansion may be repressed amongst the SIY response (Figures S4B).

Flow cytometric analysis confirmed that SIY-specific cells were enriched for a progenitor 

cell phenotype, referred to hereafter as “TCF1+ progenitor” and defined as CD8ɑ+ CD44+ 

TCF1+ TIM3− cells (Figure 2G). Consistent with previous reports (Miller et al., 2019; 

Siddiqui et al., 2019), the majority of these cells expressed the inhibitory receptor PD1 

(Figure S2F). Few expressed GZMB, indicating they are generally not cytotoxic, but they 

were more proliferative than TCF1− cells and produced IFNɣ and TNFɑ (Figure 2G, 

2H and S2G). SIY-specific cells were enriched for TCF1+ progenitor cells compared to 

SIIN-specific cells at 5 and 8 weeks; however, their proportion became similar by 12 

weeks (Figure 2I). The percentage of TCF1+ cells increased over time, but the absolute 

number decreased, mirroring the overall contraction of the CD8 T cell response (Figure 2I). 

Altogether, these data indicate that SIY-specific cells are enriched for a less differentiated, 

TCF1+ progenitor state early in the response to KP LucOS lung tumors, while SIIN-specific 

cells differentiate more rapidly to an exhausted cell state.

Enrichment of TCF1+ Progenitor Cells in the SIY Response is Driven by an Antigen 
Dominance Hierarchy

Having observed that SIIN drove a larger CD8 T cell response than SIY, we hypothesized 

that competition between the T cell responses might underlie enrichment of TCF1+ 

progenitor cells amongst the SIY response. To test this, we engineered lentiviruses to 

express SIIN-only or SIY-only as fusions to luciferase (LucSIIN and LucSIY; Figure 3A). 

Strikingly, in LucSIY mice, SIY-specific cells expanded similarly to SIIN-specific cells 

in LucOS and LucSIIN mice (Figures 3A, 3B and S3A). Furthermore, enrichment for 

TCF1+ progenitor cells in the SIY response was no longer observed (Figures 3C and S3B). 

A higher proportion of SIY-specific cells in LucSIY mice expressed markers of effector 

memory and exhausted cells (CX3CR1, GZMB, PD1, LAG3, TIM3; Figures S3C–S3F). 
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Thus, the SIY response in LucSIY mice more closely resembled the response against SIIN 

in LucOS and LucSIIN mice. These data demonstrate that an antigen dominance hierarchy 

can form in tumors and this significantly influences the phenotype of cells responding to 

the subdominant antigen. Competition with SIIN promotes a TCF1+ progenitor phenotype 

amongst SIY-specific cells and hinders differentiation to effector and exhausted cell states.

In acute viral infection, several factors underlie antigen immunodominance, including: 

relative stability of peptide-MHC (pMHC) complexes, number of pMHC complexes on 

the surface of antigen-presenting cells, and functional avidity of the T cell repertoire for 

each antigen (Yewdell, 2006). SIINFEKL is known to bind H-2Kb MHC molecules with 

greater affinity and stability than SIYRYYGL (Eisen et al., 2012); thus, we hypothesized 

that differential MHC binding might contribute to the observed dominance hierarchy. To test 

this, we created lentiviruses expressing SIINYEKL (Y5), a point mutant of SIIN that binds 

H-2Kb molecules with reduced stability (Koff) and affinity (Kd) (Figure 3D–3F and S3G; 

Howarth et al., 2004). The Y5 mutation conserves key TCR contact residues and is largely 

cross reactive with the SIIN T cell precursor pool (Figure 3G and S3H; Bentzen et al., 2018). 

By comparing SIIN and Y5, we can decouple the contribution of pMHC binding and TCR 

repertoire/avidity to antigen dominance. Remarkably, when Y5 and SIY were expressed 

together (LucY5S), we found the antigen dominance hierarchy was reversed compared to 

LucOS, favoring SIY as the immunodominant antigen (Figures 3D and 3H). SIY-specific T 

cells expanded substantially more than Y5-specific cells and the Y5 response was enriched 

for TCF1+ progenitor cells (Figures 3H and 3I). When Y5 was expressed alone (LucY5), 

expansion of Y5-specific cells rebounded and enrichment for TCF1+ progenitor cells was 

no longer observed. These results demonstrate that differential pMHC binding can establish 

an antigen dominance hierarchy in cancer, and subdominant responses, irrespective of the 

antigen, are enriched for a TCF1+ progenitor cell phenotype. Y5 bound H-2Kb with higher 

affinity, but lower stability than SIY (Figure 3E and 3F), suggesting pMHC stability plays a 

larger role than affinity in establishing Y5 subdominance.

To evaluate the dynamics between antigens with similar MHC binding properties, we 

expressed two neoantigens derived from point mutations in murine methylcholanthrene 

(MCA)-induced sarcoma, mALG8 and mLAMA4 (Figure S3K; Gubin et al., 2014). 

Compared to mLAMA4, mALG8 binds H-2Kb with similar, but slightly lower affinity 

and stability (Figures S3I and S3J). Expression of mALG8 or mLAMA4 alone (LucA and 

LucL, respectively) in tumors resulted in responses of equivalent magnitude (Figure S3L). 

However, when co-expressed (LucAL), neither response became dominant in terms of T cell 

expansion, but both decreased in magnitude compared to the single-antigen setting (Figure 

S3L). The proportion of TCF1+ progenitor cells was also increased for both responses 

(Figure S3M), trending towards greater enrichment for the mALG8 response, the slightly 

weaker MHC binder. Thus, antigens with similar MHC binding properties are largely co­

dominant, but their competition can drive enrichment for a TCF1+ progenitor phenotype, 

similar to subdominant antigens.
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Subdominant Antigen-Specific T Cells Do Not Preferentially Benefit from anti-PD1/CTLA4 
Therapy

Given TCF1+ progenitor cells play a key role in CD8 T cell responses to ICB therapy, 

we investigated whether SIY-specific cells in LucOS mice might preferentially benefit from 

ICB. In response to one week of anti-PD-1/CTLA-4 treatment, SIIN- and SIY-specific T cell 

expansion was greatest at 5 weeks, diminished at 8 weeks and absent by 12 weeks, mirroring 

the kinetics of T cell dysfunction and contraction of TCF1+ progenitor cells described above 

(Figures 4A and 4B). ICB treatment shifted cells away from a TCF1+ TIM3− phenotype 

and towards a TCF1− TIM3+ phenotype, consistent with increased differentiation to an 

exhausted state (Figure 4C). The absolute number of TCF1+ TIM3− cells increased, despite 

their decreased proportion, indicating that TCF1+ progenitor cells also expand with ICB 

(Figure 4D). ICB treatment also increased cell proliferation (Ki67) and cytotoxicity (GZMB; 

Figures 4E and 4F). Surprisingly, despite being enriched for TCF1+ progenitor cells, SIY­

specific cells did not respond better to ICB compared to SIIN-specific cells. A somewhat 

greater shift in TCF1+ TIM3− to TCF− TIM3+ cells was observed, but did not translate into 

greater T cell expansion or increased effector functions (Figures 4B–4F).

Recent studies in chronic LCMV infection and cancer have identified the chemokine 

receptor CX3CR1 as a marker of cells recently differentiated from TCF1+ progenitor cells 

(Hudson et al., 2019; Zander et al., 2019). CX3CR1 expression correlates with cytotoxic 

function and depletion of CX3CR1+ cells results in a loss of disease control. CX3CR1 

was expressed on a subset of SIIN- and SIY-specific TCF1+ cells and likely marks cells 

that are actively differentiating (Figure 4G). CX3CR1 expression was lower on SIY-specific 

TCF1+ cells and SIY-specific cells overall, suggesting SIY cells are repressed in their 

differentiation from a progenitor to an exhausted cell state (Figure 4G). ICB treatment 

was able to rescue much of this deficit, consistent with ICB promoting differentiation of 

progenitor cells (Figure 4G). Similarly, expression of SIY alone in LucSIY mice rescued 

CX3CR1+ cells to SIIN levels, which suggests that competition with the SIIN response 

represses SIY cell differentiation (Figure S3D). Notably, however, ICB was insufficient to 

fully rescue differentiation of SIY-specific cells, as the SIY response matched, but did not 

exceed the SIIN response, disproportionate with the enrichment of TCF1+ cells amongst the 

SIY response.

The Subdominant CD8 T Cell Response is Enriched for a CCR6+ TCF1+ Progenitor Cell 
Subset with a Tc17 Differentiation Trajectory

One possible explanation for a worse than expected SIY response to ICB is that SIY-specific 

TCF1+ progenitor cells are intrinsically less functional than their SIIN counterparts. To 

explore potential heterogeneity in progenitor cell phenotype or differentiation, we performed 

a separate analysis of progenitor clusters C4 and C8 and exhausted clusters C2 and C3 from 

the scRNA-seq data (Figure 5A). Both C4 and C8 were enriched for a number of genes 

previously associated with TCF1+ progenitor cells (e.g. Tcf7, Xcl1, Slamf6, Ccr7), but were 

localized distally on the UMAP and were characterized by unique gene signatures (Figure 

5B; Table S3). C8 was marked by genes associated with memory T cells, including Klf2, 
S1pr1 and Il7r, while C4 expressed markers of T cell dysfunction, tolerance and anergy, and 
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most notably, showed strong enrichment for a gene signature of Tc17 cells (Figure 5B, 5C, 

S5A and S5B; Tables S2 and S3).

Tc17 cells, marked by expression of the chemokine receptor CCR6, are an IL17A-producing 

CD8 T cell subset commonly associated with autoimmune inflammation (Srenathan et 

al., 2016). Ccr6 was highly expressed in progenitor cluster C4 and overlapped with 

Tcf7 expression; however, cells exhibiting other hallmarks of Tc17 cells, including Rorc 
(RORɣT) and Il17a expression, were predominantly found adjacent to Tcf7-expressing cells 

within C4 (Figure 5D). Monocle3 analysis of putative lineage trajectories (Cao et al., 2019; 

Trapnell et al., 2014) predicted a trajectory connecting Tcf7/Ccr6-expressing cells with the 

Tc17 population (Figure 5D). Further, unsupervised clustering of TCR clonotypes revealed 

a group of five clonotypes, clonotype cluster 7, that predominantly contained cells spanning 

both the Tcf7/Ccr6 and Rorc/Il17a regions of C4 (Figure 5E, S4A and S4D). Only a small 

number of TCR clonotypes expressed Il17a and might suggest a subset of TCRs promote 

Tc17 differentiation (Figure S4A). However, the majority of these clonotypes expressed 

Il17a in a small proportion of cells and were distributed across multiple clusters, indicating 

Tc17-associated clonotypes also give rise to other cell states.

Flow cytometry analyses confirmed the presence of CCR6+ SIIN and SIY-specific cells 

and revealed enrichment amongst the SIY response (Figure 5F). The majority of CCR6+ 

cells expressed TCF1 as well as SLAMF6, another marker used to define TCF1+ progenitor 

cells (Figure 5G and S5D; Miller et al., 2019). Most CCR6+ cells also expressed RORɣT 

and about half of these expressed TCF1 (Figure 5G). SIY-specific cells produced more 

IL17A compared to SIIN-specific cells, especially amongst the RORɣT+ and CCR6+ 

populations, indicating increased Tc17 differentiation of SIY-specific cells (Figure 5H). 

Comparing functionality of CCR6+ TCF1+ versus CCR6− TCF1+ cells, we found both 

populations proliferated similarly (Ki67), but GZMB expression was largely restricted to a 

small proportion of CCR6− TCF1+ cells (Figures S5E and S5F). CCR6+ TCF1+ cells had 

higher expression of tolerance/anergy markers (CD200, EGR2, CD83), inhibitory receptors 

(PD1, LAG3, TIGIT) and costimulatory receptors often upregulated on exhausted cells 

(ICOS, OX40) compared to CCR6− TCF1+ cells (Figure S5C). CCR6+ TCF1+ cells also 

expressed higher levels of TOX, a transcription factor closely tied with T cell dysfunction 

(Scott et al., 2019). Altogether, these results uncover previously undescribed heterogeneity 

amongst TCF1+ progenitor cells. High expression of markers of dysfunction/tolerance, 

low GZMB expression and Tc17 differentiation suggest CCR6+ TCF1+ cells represent an 

unconventional TCF1+ population with reduced functionality.

Remarkably, the CCR6+ subset made up nearly 40% of SIY-specific TCF1+ progenitor 

cells, accounting for much of the enrichment of TCF1+ progenitor cells amongst the 

SIY response at 5 and 8 weeks (Figures 5I and S5G). The proportion of CCR6+ TCF1+ 

progenitor cells increased over time for the SIIN response, correlating with the kinetics 

of dysfunction and loss of ICB response (Figure 5I and S5G). Thus, a higher proportion 

of CCR6+ TCF1+ versus CCR6− TCF1+ progenitor cells correlates with worse ICB 

response and suggests the CCR6+ subset has reduced capacity to respond to ICB. This 

may explain why SIY-specific cells do not respond better than SIIN-specific cells to ICB 

despite enrichment for TCF1+ progenitor cells. Consistent with this, the proportion of 
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CCR6+ TCF1+ cells was reduced after one week of anti-PD1/CTLA4 ICB treatment (Figure 

5J). Since total TCF1+ cell numbers increase with ICB response (Figure 4D), this indicates 

that ICB preferentially expands or recruits CCR6− TCF1+ cells. Additionally, little to no 

expression of CX3CR1 was observed on CCR6+ TCF1+ cells, while up to 20% of CCR6− 

TCF1+ cells expressed CX3CR1 (Figure 5K and S5H). This suggests CCR6+ TCF1+ cells 

are impaired in conventional differentiation to a cytotoxic state.

To assess the functionality of CCR6+ TCF1+ derived Tc17 cells, we utilized an IL17A 

reporter allele to permanently mark cells that have expressed IL17A with Tomato 

fluorescence (Figure 5L; Hirota et al., 2011). Consistent with the flow cytometry data, 

the majority of SIY-specific CCR6+ and RORɣT+ cells expressed Tomato (Figure S5I). 

Around 30% of TCF1+ cells also expressed Tomato and harbored most of the CCR6+ 

population (Figure S5I). Strikingly, Tomato+ cells expressed no GZMB, even following one 

week of anti-PD-1/CTLA4 ICB therapy (Figure 5L). This indicates cells that have expressed 

IL17A do not differentiate into cytotoxic cells. Further, the proportion of Tomato+ cells was 

reduced following ICB treatment and suggests ICB reduces differentiation down the Tc17 

pathway (Figure S5J). Altogether, these data suggest that CCR6+ TCF1+ and Tc17 cells 

constitute functionally inferior cell states that contribute poorly to therapeutic response to 

ICB.

Therapeutic Vaccination Breaks Antigen Dominance and Eliminates the CCR6+ Subset of 
TCF1+ Progenitor Cells

CCR6 upregulation and Tc17 differentiation in autoimmune diseases is driven by reactivity 

to self-antigens (Srenathan et al., 2016). Hence, we hypothesized that suboptimal T cell 

priming conditions might induce this phenotype in tumors and sought to improve T cell 

priming conditions by therapeutic vaccination of LucOS mice with SIIN and SIY long 

peptides (Figure 6A). Vaccination vastly improved the SIIN- and SIY-specific CD8 T cell 

responses in the tumor-bearing lung, increasing T cell expansion, proliferation (Ki67) and 

cytotoxicity (GZMB) (Figure 6B–6D). Greater fold expansion was observed for the SIY 

versus SIIN response, suggesting SIY-specific cells preferentially benefit from vaccination. 

Spatial profiling by tissue-based cyclic immunofluorescence (t-CyCIF) showed increased 

infiltration of CD8 T cells into tumors post-vaccination, with greater proportions expressing 

Ki67 and GZMB (Figures 6E–6G, S6B and S6C). This correlated with decreased tumor 

size, particularly when immune cell infiltrate was excluded (Figure 6F and S6A). The 

effects of vaccination were antigen-specific, with no contribution of adjuvant alone (Figure 

S6D). Interestingly, little response was observed in the lung 7 days after the initial vaccine 

dose (Figures 6H and S6E). However, antigen-specific T cells were expanded in the 

blood, inguinal lymph nodes and spleen, especially for the SIY response (Figure 6I and 

S6F). These data indicate that vaccination acts predominantly by increasing priming and/or 

expanding activated cells in the periphery rather than boosting the existing response in the 

lung.

Comparison of the SIIN/SIY pooled vaccine to SIIN-only and SIY-only vaccines 

demonstrated that the benefits of vaccination were restricted to the targeted antigen (Figure 

6J and S6G). However, the SIY-only vaccine was able to increase the magnitude and 
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functionality of the SIY response to a similar extent as the SIIN/SIY vaccine (Figure 6J 

and S6G). This indicates that targeting a subdominant antigen alone with vaccination can 

be sufficient to rescue the subdominant response to the level of the dominant response. The 

SIY response remained enriched for TCF1+ progenitor cells compared to the SIIN response 

after vaccination against SIIN/SIY or SIY-only (Figure 6K and data not shown); however, 

CCR6+ TCF1+ progenitor cells were all but eliminated (Figure 6L and S6G). Amongst 

the remaining CCR6+ cells, fewer expressed RORɣT, suggesting reduced propensity for 

Tc17 differentiation (Figure 6M). Altogether, these results provide strong evidence that 

CCR6 expression amongst TCF1+ cells and Tc17 differentiation is driven by suboptimal T 

cell priming. Moreover, they demonstrate that vaccination can “break” antigen dominance, 

improving the overall contribution and quality of the subdominant T cell response.

We further assessed whether vaccination could break the antigen dominance hierarchy 

between SIY and Y5 in LucY5S mice. Surprisingly, vaccination expanded only the 

dominant SIY response while subdominant Y5-specific cells remained low in number 

(Figure S6H). Still, Y5-specific cells benefitted functionally, with similar increases in 

GZMB and Ki67 expression and depletion of CCR6+ TCF1+ cells compared to SIY-specific 

cells (Figure S6H). Because Y5 is much less stable on MHC compared to SIY and SIIN 

(see Figure 3F), this suggests a minimum threshold of pMHC stability may be required to 

overcome antigen dominance in response to vaccination. Still, the functional enhancement of 

Y5-specific cells indicates that inclusion of unstable MHC binders in vaccines may still be 

beneficial overall.

CCR6+ TCF1+ Progenitor and Tc17 Cells are Found Across Human Cancers

To extend our findings to human cancer, we scored clusters from the mouse scRNA-seq 

dataset for enrichment of gene signatures (Table S4) derived from three published human 

CD8 T cell scRNA-seq datasets spanning lung, melanoma, colon, endometrial and renal 

cancers (Guo et al., 2018; Sade-Feldman et al., 2019; Wu et al., 2020). The mouse 

TCF1+ progenitor cluster, C8, was strongly enriched for gene signatures from clusters 

associated with progenitor and memory cell phenotypes, most notably two clusters described 

as containing TCF1+ progenitor cells in melanoma (Sade-Feldman CD8_4- and CD8_6­

Memory/Effector) but also Guo CD8_C2-CD28 and C3-CX3CR1 and Wu 8.6.KLRB1 

(Figures 7A and S7A). In contrast, mouse cluster C4, containing CCR6+ TCF1+ cells, 

showed weak to no enrichment for these signatures and was instead enriched for signatures 

of T cell exhaustion, including Sade-Feldman CD8_1-Exhaustion/CellCycle and Guo 

CD8_C6_LAYN (Figures 7A and S7A; Table S4). In a reciprocal analysis, we scored 

the tumor CD8 T cell subset of the Wu et al. pan-cancer dataset with gene signatures of 

mouse clusters C8 and C4 and found strong enrichment of C8 in the “progenitor region” 

of the UMAP, marked by TCF7 expression and cells assigned to the published progenitor­

like cluster, 8.6.KLRB1 (Figures 7B and S7B). The C4 signature was weakly, but more 

broadly enriched across the UMAP, including in regions with HAVCR2 expression and 

cells assigned to published clusters with exhausted phenotypes, 8.3.Trm and 8.5.Mitosis 

(Figures 7B and S7B). These results suggest that both C8 and C4 cell populations resemble 

populations in human cancer; however, the C8 population is better aligned with progenitor 

cell states described in humans.
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In the reanalysis of the Wu et al. dataset, we further identified cells co-expressing TCF7 and 

CCR6, some of which also expressed RORC, indicating that CCR6+ TCF1+ cells are indeed 

found in human cancer (Figure 7C; Table S6). IL17A-expressing cells, some co-expressing 

TCF7, CCR6 and/or RORC, were also found (Figure 7C; Table S6). While CCR6+ TCF7+ 

cells were predominantly localized to the progenitor region of the UMAP, IL17A-expressing 

cells were distally localized in the region expressing HAVCR2 and exhibiting a more 

differentiated phenotype. We identified similar cell populations with analogous localization 

patterns in four additional scRNA-seq datasets from individual cancer types, including lung 

cancer, melanoma and basal cell carcinoma (Figure S7C; Guo et al., 2018, Sade-Feldman 

et al., 2019, Tirosh et al., 2016, Yost et al., 2019). We further validated the presence of 

CCR6+ TCF1+ cells in human tumor tissue by t-CyCIF imaging and found these cells 

made up 2% of CD8 T cells on average across early-stage lung adenocarcinoma and 

metastatic melanoma samples (Figures 7D and S7D; Tables S5 and S7). Our observations 

in mouse lung adenocarcinoma indicate that while only a small percentage of TCF1+ cells 

are antigen-experienced, the majority of CCR6+ cells are contained within the activated, 

tumor antigen-specific response (Figure S7G). Hence, despite comprising a small proportion 

of total CD8 T cells, CCR6+ TCF1+ cells likely constitute a larger fraction of tumor-reactive 

CD8 T cells compared to CCR6− TCF1+ cells in humans.

Finally, we directly investigated a correlation between CCR6+ TCF1+ cells and response 

to ICB by reanalyzing the CD8 T cell subset of the Sade-Feldman et al. melanoma dataset 

from patients treated with ICB (Sade-Feldman et al., 2019). Consistent with published 

observations, cells derived from responder versus non-responder patients segregated 

spatially on the UMAP, with responder cells colocalizing with TCF7 expression and 

progenitor-associated clusters CD8_4 thru CD8_6 (Figure 7G and S7C). Scoring the dataset 

with signatures derived from CCR6+ TCF7+ versus CCR6− TCF7+ cells from the mouse 

scRNA-seq data revealed significant enrichment of the CCR6− TCF7+ signature in clusters 

CD8_4 and CD8_6 and cells from responder patients (Figures 7H–7J). In contrast, the 

CCR6+ TCF7+ signature was enriched in exhaustion-associated cluster CD8_1, and no 

significant enrichment was observed in responder cells. These data indicate that CCR6− 

TCF1+, and not CCR6+ TCF1+ cells, are positively correlated with patient response to ICB. 

This is consistent with our findings in mouse lung adenocarcinoma and suggests CCR6+ 

TCF1+ cells contribute poorly to ICB response in human patients.

DISCUSSION

Neoantigens can drive potent anti-tumor T cell responses, yet T cell reactivity against 

predicted neoantigens is starkly limited across most cancers (Schumacher et al., 2019). Our 

study demonstrates that antigen dominance hierarchies in tumors may contribute to this 

narrowly focused CD8 T cell response. In KP mouse lung adenocarcinomas expressing 

pairs of immunogenic neoantigens, we found that CD8 T cell responses against different 

neoantigens compete and can result in the establishment of an immunodominant antigen. 

This profoundly impacted the response against the subdominant antigen, suppressing T cell 

expansion, differentiation and effector function. These findings demonstrate that CD8 T cell 

responses against concurrently expressed tumor neoantigens are interdependent, and their 

competition can limit the overall diversity and effectiveness of the anti-tumor response.
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Multiple factors may contribute to the establishment of antigen dominance hierarchies 

in tumors (Schreiber et al., 2002; Yewdell, 2006). Here, using the Y5 mutant of SIIN 

that poorly binds MHC, we demonstrated that pMHC binding plays a central role. It has 

previously been shown that only tumor peptides with high affinity for MHC are efficiently 

cross-presented (Engels et al., 2013); hence, weak pMHC binding may limit opportunities 

for good interactions with antigen presenting cells (APCs). The subdominant SIY and 

Y5 responses in KP LucOS and LucY5S mice, respectively, were rescued when these 

antigens were expressed alone, despite pMHC binding being unchanged. Thus, it may be 

that competition between CD8 T cell responses for interactions with APCs amplifies a 

deficit in MHC binding and results in formation of antigen dominance hierarchies.

Subdominant T cell responses in our model were associated with enrichment of TCF1+ 

progenitor cells that drive CD8 T cell responses to ICB therapy in mice and humans (Philip 

et al., 2021). However, we found that the subdominant SIY response in KP LucOS mice did 

not preferentially benefit from ICB therapy, possibly due to predominance of a dysfunctional 

subset of TCF1+ cells marked by CCR6 expression. Another recent study from our lab 

corroborates there being heterogeneity amongst TCF1+ cells and identifies a SLAMF6+ 

subset, that contains CCR6+ TCF1+ cells, as a population recently arrived from the tumor 

draining lymph node (Schenkel et al., in press Immunity). Analysis of human scRNA-seq 

datasets spanning multiple cancer types and imaging of human lung adenocarcinoma and 

melanoma samples indicates this heterogeneity is reflected across human cancers (this study 

and Schenkel et al., in press Immunity). Furthermore, while CCR6− TCF1+ cells were 

correlated with melanoma patient response to ICB therapy, no correlation was observed for 

CCR6+ TCF1+ cells. Therefore, CCR6+ TCF1+ cells appear to contribute poorly to ICB 

response in both mice and humans.

In KP LucOS mice, we identified a lineage trajectory from CCR6+ TCF1+ cells to 

a Tc17 population. Tc17 cells have previously been reported in cancer, but their role 

remains unclear. While Tc17 cells have been reported to mediate tumor control in some 

transplant tumor settings, their production of IL17A may also contribute to tumor-promoting 

inflammation (Chang et al., 2014; Srenathan et al., 2016; Zhao et al., 2020). Here, we found 

that CD8 T cells marked by an IL17A reporter did not express GZMB, even in response to 

ICB therapy, suggesting Tc17 cells do not contribute to cytotoxic responses against tumors. 

Furthermore, our lab previously showed that treatment of KP lung adenocarcinoma with a 

neutralizing antibody to IL17A significantly reduces tumor burden by inhibiting recruitment 

of tumor-promoting neutrophils (Jin et al., 2019). Similarly, in humans, tumor infiltration 

by myeloid derived suppressor cells correlates with accumulation of IL17A-producing 

cells (Wu et al., 2014; Zhuang et al., 2012). Thus, in addition to contributing poorly to 

ICB response, CCR6+ TCF1+ cell differentiation to a Tc17 phenotype may also promote 

tumorigenesis through IL17A production.

Tc17 differentiation is predominantly observed in autoimmune inflammation and is driven 

by autoreactive TCR signals (Srenathan et al., 2016). Hence, we hypothesized that CCR6+ 

TCF1+ cells might be derived from suboptimal TCR stimulation during priming and 

differentiation. Consistent with this, vaccination of KP LucOS mice initially expanded cells 

in the blood and peripheral lymphoid organs, especially for the subdominant SIY response. 
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TCF1+ cells were also significantly expanded in the lung following the vaccine boost; 

however, the CCR6+ subset was lost. Increased antigen presentation with vaccination likely 

alleviates the constraints of low affinity/stability pMHC binding, improving TCR stimulation 

and reducing differentiation of CCR6+ TCF1+ cells. An increasingly immunosuppressive 

tumor microenvironment may further contribute to poor TCR stimulation as tumors progress 

and could explain why SIIN-specific cells develop a CCR6+ TCF1+ phenotype over time.

Vaccination of KP LucOS mice dramatically improved the magnitude and functionality of 

tumor-reactive CD8 T cells, and the response to vaccination was correlated with a reduction 

in tumor burden. Likewise, early clinical studies have demonstrated the therapeutic potential 

of neoantigen vaccines in melanoma, where they improve T cell priming and tumor control 

(Hollingsworth and Jansen, 2019). Vaccination has shown a remarkable ability to elicit de 
novo T cell responses (Ott et al., 2017; Sahin et al., 2017) and, in combination with anti-PD1 

therapy, also promotes epitope spreading to neoantigens not included in the vaccine (Ott 

et al., 2020). Therefore, vaccination against a range of predicted immunogenic neoantigens 

may be effective at priming new T cell responses even in cancers with few pre-treatment T 

cell-reactive epitopes. Our data suggest the presence of CCR6+ TCF1+ cells is indicative 

of subdominant and/or poorly primed T cell responses in tumors. Consequently, CCR6+ 

TCF1+ cells might mark tumors that would preferentially benefit from vaccination, and 

should be further explored as a biomarker of patient response to vaccine therapies.

pMHC affinity is used for identification of neoepitopes for cancer vaccines. High 

affinity neoepitopes are typically chosen (Ott et al., 2017) and may selectively target 

immunodominant T cell responses. Our results indicate subdominant T cell responses 

against some lower pMHC affinity neoantigens may experience greater benefit from 

vaccination and remain enriched for TCF1+ progenitor cells. Since TCF1+ cells repopulate 

the cytotoxic T cell pool and are ICB-responsive, engaging subdominant T cell responses 

through vaccination might result in more durable tumor control and better response to ICB. 

Overall, these findings provide rationale for evaluating the relative response to high versus 

low pMHC affinity/stability antigens in clinical trials of pooled neoantigen cancer vaccines, 

where subdominant antigens may contribute more to tumor control than previously realized.

Limitations of the Study

In this study, neoantigen pairs were expressed clonally in tumors and the expression 

level of each antigen was held constant. Human tumors are generally thought to be more 

heterogenous, containing variable numbers of neoantigens expressed at different levels and 

with varying clonality. These factors may influence hierarchical ordering of antigens and 

could be explored in future studies by modifying antigen number, expression level and 

clonal fraction.

In the mouse scRNA-seq analysis, we mapped a differentiation trajectory of CCR6+ TCF1+ 

cells to a Tc17 population that lacks cytotoxic capacity, even after ICB. However, as lineage 

tracing by adoptive transfer is technically intractable in the KP lung cancer model, we were 

unable to directly delineate differentiation of CCR6+ TCF1+ cells. Use of novel genetic 

alleles, such as a fate-mapping CCR6 reporter, or investigation in other models may shed 
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further light on the relative functionality and plasticity of CCR6+ TCF1+ cells in response to 

ICB.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Tyler Jacks (tjacks@mit.edu).

Materials Availability—Plasmids generated in this study have been deposited to 

Addgene: Lenti-LucOS (Cat. No. 22777), Lenti-LucSIIN (Cat. No. 174043), Lenti-LucSIY 

(Cat. No. 174044), Lenti-LucY5 (Cat. No. 174046), Lenti-LucY5S (Cat. No. 174045), 

Lenti-LucAL (Cat. No. 174049), Lenti-LucA (Cat. No. 174047), Lenti-LucL (Cat. No. 

174048).

Data and Code Availability

• The mouse scRNA-seq data has been deposited to GEO and is publicly available 

as of the date of publication. The accession number is listed in the key resources 

table. This paper additionally included analyses of publicly available human 

scRNA-seq datasets. The accession numbers for these datasets are listed in the 

key resources table.

• All original code for the mouse and human scRNA-seq analyses and the t­

CYCIF imaging analyses has been deposited on GitHub and is publicly available 

as of the date of publication. The DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—KrasLSL-G12D/+;p53fl/fl (KP) and IL17aCre;Rosa26LSL-tdTomato mice have been 

previously described (DuPage et al., 2011; Hirota et al., 2011; Madisen et al., 2010) 

and were on a C57BL/6 genetic background. Male and female KP mice were used in 

all experiments and experimental arms were gender and age-matched within 3 weeks. 8 

week old, female IL17aCre;Rosa26LSL-tdTomato were used for the collection of bone marrow 

to reconstitute lethally irradiated KP mice. All studies were performed under an animal 

protocol approved by the Massachusetts Institute of Technology (MIT) Committee on 

Animal Care. Mice were assessed for morbidity according to guidelines set by the MIT 

Division of Comparative Medicine and were humanely sacrificed prior to natural expiration.

Lentiviral Tumor Induction—2.5 × 104 PFU of lentivirus containing Cre recombinase 

and model neoantigens were injected intratracheally into KP mice as previously described 

(Dupage et al., 2011, Dupage et al., 2009). Mice were at least 8 weeks old at the time of 

injection. Details of the lentiviral constructs and lentivirus production are included below. 

Mice were randomized post-infection for therapy trials.
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Bone Marrow Chimeras—Bone marrow was harvested from the femur and tibia of 8 

week-old female IL17aCre;Rosa26LSL-tdTomato mice into sterile RPMI 1640 media. Total 

bone marrow was pelleted by centrifugation at 1200 rpm for 5 minutes, resuspended in 

PBS and filtered through a 70 μm cell strainer. 1×107 cells in 200 ul PBS were injected 

retroorbitally into lethally irradiated KP mice (two doses of 550 rad, three hours apart). 

6 weeks after bone marrow transfer, mice were injected intratracheally with Lenti-LucOS 

lentivirus as described above.

METHOD DETAILS

Lentiviral Constructs and Lentivirus Production—The LucOS lentiviral construct 

was previously described (Dupage et al., 2011). The LucSIIN and LucSIY vectors were 

generated by deleting the 24 nucleotides of SIINFEKL or SIYRYYGL coding sequence, 

respectively, from the LucOS vector. The LucY5S vector was generated by creating a point 

mutation at amino acid position 5 in SIINFEKL in the LucOS construct. To make the LucY5 

vector, the 24 nucleotides of SIYRYYGL coding sequence were deleted from LucY5S. The 

LucA and LucL vectors were generated by fusing the mALG8 or mLAMA4 neoepitope 

sequence plus approximately 6 flanking amino acids to luciferase. These sequences were 

cloned in tandom to create LucAL, with care to avoid creation of additional potentially 

immunogenic epitopes.

Lentiviruses were produced in 293FS* cells by transfection with the lentiviral constructs 

above, psPAX2 and VSV-G packaging plasmids at a 4:3:1 ratio using Mirus TransIT LT1 

(MirusBio). At 48- and 72-hours post-transfection, viral supernatant was collected, passed 

through 0.45 μm filters and concentrated by ultracentrifugation (25,000 rpm for 2 hours at 

4°C). Concentrated lentivirus was resuspended in a 1:1 solution of Opti-MEM and HBSS 

and stored at −80°C. Viral titers were determined using the GreenGo 3TZ cell line as 

previously described (Sanchez-Rivera et al., 2014).

Anti-PD1/anti-CTLA4 Therapy—KP LucOS mice were treated for one week with 

InvivoMAb anti-PD1 (29F.1A12; BioXCell) and InvivoMAb anti-CTLA4 (9H10; BioXCell) 

monoclonal antibodies or Invivo isotype controls (Rag IgG2a, 2A3; Syrian Hamster, 

polyclonal; BioXCell). An initial dose of 200 μg each of anti-PD1 and anti-CTLA4 (or 

isotype control) was injected i.p. at day 0, followed by 200 μg anti-PD1 and 100 μg 

anti-CTLA (or isotype control) at day 3 and 6. All doses were delivered i.p. in 200 μl of 

PBS. Mice were analyzed one day following the last dose.

Therapeutic Vaccination—KP LucOS mice were vaccinated via subcutaneous tail­

based injection with 30 amino acid peptides containing SIINFEKL, SIYRYYGL 

and/or SIINYEKL (10 nmol; New England Peptide) and cyclic di-GMP adjuvant 

(0.25 mg/ml; Invitrogen) 6 weeks post-tumor initiation. A booster injection was given 

14 days later and mice were euthanized 9 weeks post-tumor initiation. All doses 

were delivered in two 50 μl boluses and control mice were injected with PBS. 

The long peptide sequences used were: SMLVLLPDEVSGLEQLESIINFEKLTEWTS, 

GRCVGSEQLESIYRYYGLLLKERSEQKLIS and 

SMLVLLPDEVSGLEQLESIINYEKLTEWTS (New England Peptide).

Burger et al. Page 16

Cell. Author manuscript; available in PMC 2022 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For assessment of SIIN-specific TCR cross-reactivity with Y5, wild-type mice were 

vaccinated against SIINFEKL as described above.

Tissue Collection and Flow Cytometry—To distinguish lung tissue-resident versus 

circulating immune cells, mice were injected retroorbitally with a fluorescently-conjugated 

anti-CD45 antibody (PE-CF594 or AlexaFluor780; 30-F11; BD Bioscience) 2–3 minutes 

prior to euthanasia (Anderson et al., 2014). Circulating CD8 T cells staining positive 

for the CD45 antibody were excluded from our analyses. Lung tissue was collected 

and minced by hand with spring scissors and incubated in 125 U/mL collagenase IV 

(Worthington Biochemical) and 40 U/mL DNase I (Sigma-Aldrich) for 30 minutes at 

37°C. Following incubation, the tissue was dissociated using the m_lung_2.0.1 protocol 

on a gentleMACS Dissociator using gentleMACS C tubes (Miltenyi Biotec) and passed 

through a 70 μm cell strainer. Spleen and lymph nodes were dissociated through a 70 μm 

cell strainer into RPMI 1640 media containing 1% heat-inactivated fetal bovine serum. 

Cell suspensions were pelleted by centrifugation (1200 rpm for 5 minutes), resuspended 

in 1X RBC Lysis Buffer (eBioscience) and incubated on ice for 10 minutes to lyse red 

blood cells. Pellets were resuspended in PBS and single cell suspensions were transferred 

to a 96-well U-bottom plate. Cells were then stained with a fixable viability dye to 

exclude dead cells (20 minutes on ice; Zombie Dye; Invitrogen; Tonbo Ghost Dye; Tonbo 

Biosciences) and resuspended in FACS buffer (1% heat-inactivated FBS in PBS) and stained 

with the following surface antibodies for 15–30 minutes on ice: CD8ɑ (53-6.7), CCR6 

(29-2L17), CX3CR1 (SA011F11), CXCR3 (CXCR3-173), CD44 (IM7), IL7R (A7R34), 

LAG3 (C9B7W), PD1 (RMP1-30), SLAMF6 (13G3), TIGIT (1G9), TIM3 (RMT3-23), 

OX40 (OX-86), ICOS (7E.17G9), CD200 (OX-90), CD83 (Michel-19) purchased from 

ThermoFisher Scientific, BD Biosciences or Biolegend (see Key Resources Table). Cells 

were simultaneously stained with H-2Kb peptide-MHC tetramers specific to SIINFEKL, 

SIYRYYGL, SIINYEKL, mALG8 or mLAMA4 (monomer, NIH Tetramer Core Facility; 

PE and APC streptavidin, Invitrogen). For intracellular staining, cells were fixed for 1 hour 

at room temperature using the eBioscience Fixation/Permeabilization Kit (ThermoFisher 

Scientific). Cells were then stained overnight at at 4°C with the following antibodies: TCF1/

TCF7 (C63D9), RORɣT (B2D), TBET (eBio4B10), Granzyme B (GB11), Ki67 (B56), 

TOX (REA473), EGR2 (erongr2) purchased from Cell Signaling Technology, ThermoFisher 

Scientific, BD Biosciences, Biolegend or Miltenyi Biotec (see Key Resources Table). 

Samples were analyzed on a BD Biosciences LSR Fortessa or LSR II Flow Cytometry 

Analyzer.

For assaying cytokine production, T cells were enriched in lung samples by depletion of 

tumor cells and myeloid cells. Cells were incubated with 2 μg each of purified Ly-6G, 

EpCAM and F4/80 antibodies (Biolegend; 4°C for 20 minutes), then 125 μl of sheep 

anti-rat Dynabeads (Invitrogen; 4°C for 30 minutes with rotation). Note, to avoid depleting 

intravascularly labeled CD45+ cells, a mouse anti-mouse CD45.2 antibody (Brilliant Violet 

510, Biolegend) was used for the intravascular stain. A Dynabeads magnet (Invitrogen) 

was applied to remove the beads and the T cell-containing supernatant was transferred to 

a clean tube, washed with 10 mL FACS buffer and pelleted by centrifugation (1200 rpm 

for 5 minutes). Pellets were resuspended in T-cell media (RPMI 1640 containing 10% FBS, 
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10 mM HEPES, 1 mM sodium pyruvate, 1X MEM Non-essential amino acids, 2 mM 

L-glutamine, 0.275 mM beta-mercaptoethanol, and 50 U/mL penicillin-streptomycin) and 

transferred to a 96-well U-bottom plate. To assay IFNƔ and TNFɑ production, samples 

were pelleted by centrifugation (1200 rpm for 5 minutes) and were resuspended in T cell 

media plus 1X Monensin (Biolegend), 1X Golgi Plug (BD Bioscience) and SIINFEKL 

or SIYRYYGL peptide (167 nM; New England Peptide). For IL17A staining, cells were 

resuspended in T cell media containing PMA (2.5 ng/ml; EMD Millipore) and Ionomycin 

(1 μM; Sigma-Aldrich), 1X Monensin and 1X Golgi Plug. Samples were then incubated at 

37°C for 4–5 hours. Ten percent of each sample was aliquoted and left unstimulated as a 

control. Cells were subjected to viability staining, surface staining and fixation as described 

above and stained with the following antibodies overnight at 4°C: IFN-ɣ (XMG1.2), 

TNFɑ (MP6-XT22) and IL17A (17B7) from ThermoFisher Scientific, BD Biosciences or 

Biolegend (see Key Resources Table).

scRNA-seq on Mouse CD8 T Cells—Lung single cell suspensions were prepared 

from 10 mice as described above. Dead cells were removed with an EasySep Dead 

Cell Removal Kit (Annexin V; StemCell). Cells were then stained with 1 μg TotalSeq-C 

hashtag antibodies 1–10 (M1/42, 30-F11; Biolegend) and surface antibodies against CD44 

(IM7), CD8ɑ (53–6.7) and H-2Kb-SIINFEKL and H-2Kb-SIYRYYGL tetramers for 30 

minutes on ice. FACS sorting was performed on a FACS Aria III (BD Biosciences) and 

CD44+ CD8α+ SIINFEKL+ and CD44+ CD8α+ SIYRYYGL+ T cells were sorted into 

separate tubes, counted and resuspended in PBS (no calcium or magnesium) with 0.04% 

BSA. Approximately 65,000 SIINFEKL+ cells and 14,000 SIYRYYGL+ cells were loaded 

across two channels of a Chromium single-cell 5’ chip (10X Genomics) according to 

manufacturer’s instructions. Single cells were partitioned into droplets with gel beads to 

form emulsions, after which cellular lysis and barcoded reverse transcription of mRNA was 

performed. Paired 5’ gene expression, hashtag barcode and V(D)J libraries were prepared 

using the following kits from 10X Genomics and protocols provided by the manufacturer: 

Chromium Next GEM Single Cell 5′ Library and Gel Bead Kit v1.1; Chromium Single 

Cell V(D)J Enrichment Kit, Mouse T Cell. RNA expression libraries were sequenced 

individually using HiSeq X (Illumina). VDJ and hashtag barcode libraries were sequenced 

with HiSeq 2500 (Illumina).

Peptide Stabilization of H-2Kb on RMA-S Cells—TAP-deficient RMA-S cells were 

cultured in RPMI 1640 media (10% fetal bovine serum, 2 mM L-glutamine, 10 mM Hepes 

and 50 U/μl Penicillin-Streptomycin) at 26°C overnight (16 hours) to increase expression 

of empty MHC molecules on the cell surface. Cells were then plated at 100,000 cells per 

well in a 96-well U-bottom plate (150 μl per well). 10-fold serial dilutions of peptides (10 

mM in DMSO stock) were generated in RPMI media at 4X final concentration in a 96-well 

U-bottom plate. 50 μl of peptide was added to the RMA-S cells, bringing the final volume to 

200 μl. Cells were incubated with peptide for 2 hours at 26°C to allow for peptide binding 

followed by 1 hour at 37°C to degrade empty MHC molecules. Each condition was plated in 

triplicate. Cells were washed in FACS buffer (1% heat-inactivated FBS in PBS) and stained 

with an APC-conjugated H-2Kb (AF6-88.5.5.3; ThermoFisher Scientific) antibody for 15 

minutes on ice. Plates were assayed on a BD Biosciences LSR II flow cytometry analyzer.
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Differential Scanning Fluorimetry Assay for pMHC Thermal Melting—Empty 

peptide-receptive H-2Kb molecules (Saini et al., 2019) were diluted to 200 μg/ml in 50 mM 

HEPES pH 7.5 containing 1X SYPRO Orange dye. 18 μl of this solution was combined with 

2 μl of 100 μM peptide (diluted in PBS) in triplicate in a 384 well quantitative PCR plate. 

The plate was incubated on ice for 10 minutes to allow for peptide-MHC interaction. The 

plate was then assayed on a Roche LightCycler 480 instrument. Fluorescence was acquired 

with excitation at 465 nM and emission at 580 nM (SYPRO Orange filter), Samples were 

equilibrated at 25 °C for 1 min and then heated with a gradient of 0.1 °C/s from 25 °C to 

95 °C with 6 fluorescence readings for every 1 °C. Melting curves were normalized to the 

minimum and maximum fluorescence value and the inverse of the first derivative (−dF/dT) 

was then calculated. The minimum value of −dF/dT was taken at the Tm.

Histology and H&E Staining—Tumor-bearing lung lobes and a portion of the spleen 

were fixed in 4% paraformaldehyde overnight and embedded in paraffin. Hematoxylin and 

eosin stain (H&E stain) was performed with a standard method by the Hope Babette Tang 

Histology Facility at Koch Institute. Digitally scanned images of H&E slides were obtained 

with an Aperio ScanScope AT2 at 20X magnification and tumor area was annotated using 

Aperio ImageScope software.

t-CyCIF Staining and Imaging—The t-CyCIF experimental protocol was conducted as 

previously described (Du et al., 2019; Lin et al., 2018). In brief, the mouse and human 

lung adenocarcinoma and human melanoma FFPE slides were baked at 60°C for 30 min, 

dewaxed using Bond Dewax Solution (Leica Biosystems) at 72°C, and antigen retrieval was 

performed with Epitope Retrieval 1 Solution (Leica Biosystems) at 100°C for 20 minutes 

using the BOND RX Automated IHC/ISH Stainer (Leica Biosystems). All antibodies were 

diluted in Odyssey Intercept Buffer (plus Hoechst 33342 0.25 μg/mL; LI-COR Biosciences) 

and incubated overnight at 4°C in the dark. See the Key Resources Table for the complete 

list of antibodies. Slides were coverslipped using 20–50% glycerol solution (Sigma-Aldrich) 

in PBS. Images were taken using DAPI, FITC, Cy3, and Cy5 channels on the RareCyte 

CyteFinder Instrument (20x/0.75NA objective lens). After imaging, the fluorophores were 

inactivated with photobleaching solution (4.5% H2O2 and 20 mM NaOH in PBS) for 45 

minutes under LED ligfFigurehts.

t-CyCIF Image Processing—The image processing of tissue cyclic immunofluorescence 

is organized in the following steps, each of which is described in detail below:

i. the software ASHLAR is used to stitch, register, and correct for image 

acquisition artifacts (using the BaSiC algorithm). The output of ASHLAR is 

a single pyramid ome.tiff file for each region imaged;

ii. the ome.tiff file is re-cut into tiles (typically 5000×5000 pixels) containing 

only the highest resolution image for all channels. One random cropped image 

(250×250 pixels) per tile is outputted for segmentation training (using ImageJ/

Fiji);
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iii. using the ilastik software the labelling of nuclear, cytoplasmic and background 

areas are trained on the cropped images. Based on the user training the Ilastik 

software outputs a 3-color RGB image with label probabilities;

iv. the RBG probability images are thresholded and watershed in MATLAB to 

segment the nuclear area. The cytoplasmic measurements are derived by dilating 

the nuclear mask;

v. single-cell measurements are extracted for each channel (cell pixel median 

and mean for both nuclear and cytoplasmic area) as well as morphological 

measurements of area, solidity, and cell coordinates location.

BaSiC: The BaSiC ImageJ plugin tool was used to perform background and shading 

correction of the original images (Peng et al., 2017). The BaSiC algorithm calculates the 

flatfield, the change in effective illumination across an image, and the darkfield, which 

captures the camera offset and thermal noise. The dark field correction image is subtracted 

from the original image, and the result is divided by the flatfield image correction to obtain 

the final image.

ASHLAR: Alignment by Simultaneous Harmonization of Layer/Adjacency Registration 

(ASHLAR) is used to stitch together image tiles and register image tiles in subsequent layers 

to those in the first layer (Lin et al., 2018; Rashid et al., 2019). For the first image layer, 

neighboring image tiles are aligned to one another via a phase correlation algorithm that 

corrects for local state positioning error. A similar method is applied for subsequent layers 

to align tiles to their corresponding tile in the first layer. ASHLAR outputs an OME-TIFF 

file containing a multi-channel mosaic of the full image across all imaging cycles. Full codes 

available at: https://github.com/labsyspharm/ashlar.

Ilastik: Ilastik is a machine learning based bioimage analysis tool that is used to obtain 

nuclear and cytoplasmic segmentation masks from OME-TIFF files (Berg et al., 2019). For 

increased processing speed, randomly selected 250 × 250 pixel regions from the original 

OME-TIFF are used as training data. ilastik’s interactive user interface allows the user to 

provide training annotations on the cropped regions. Users are presented with a subset of 

the channels stacked images and label pixels as either nuclear area, cytoplasmic area, or 

background area. The annotations are used to train non-linear classifiers that are applied 

to the entire image to obtain probability masks describing the probabilities of each pixel 

belonging to the nuclear, cytoplasmic, or background area. A MATLAB (version 2018a) 

script uses these masks to construct binary masks for nuclear and cytoplasmic area.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell RNA Sequencing Analysis

Mouse CD8 scRNA-seq Data Processing, Cell Clustering, and Differential Expression 
Analysis: Cell Ranger, version 3.1.0 (Zheng et al., 2017), was used to process raw 

sequencing data for RNA expression, VDJ, and Cell Hashing libraries from mouse CD8 

scRNA sequencing experiments. RNA expression data was aligned to the GRCm38/mm10 

reference mouse transcriptome (version 3.0.0) and VDJ sequencing data was aligned to the 
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prebuilt mouse (GRCm38/mm10) VDJ reference supplied by 10X Genomics (version 3.1.0; 

Zheng et al., 2017). Cell Ranger estimated 6,472 and 3,646 cells with 15,939 and 14,834 

genes detected for RNA expression libraries of SIIN- and SIY- specific CD8 T-cells at a 

sequencing depth of 80.4% and 76.9%, respectively. VDJ libraries captured an estimated 

4,713 and 2,705 cells with 3,857 and 2,196 of those cells containing productive V-J 

Spanning Pair for SIIN- and SIY- specific CD8 T-cell libraries, respectively. Cell Hashing 

libraries were estimated to capture 6,073 and 3,319 cells at a sequencing saturation of 10.3% 

and 13.2% for SIIN- and SIY- specific CD8 T Cell libraries, respectively. Cell Hashing data 

were demultiplexed with Seurat, version 4.0.0 (Butler et al., 2018; Stoeckius et al., 2018), 

using counts normalized by centered-log ratio (CLR) transformation at a positive quantile 

threshold of 0.98 to infer which mouse each cell was harvested from.

Seurat (version 4.0.0) was used to normalize, scale, select variable features, and perform 

differential gene expression analysis. To filter out dying cells with poor data quality 

and remove probable doublets, individual cells with <100 or >4000 detected genes, with 

>20,000 reads, or with >5% of reads aligned to mitochondrial genome in RNA expression 

libraries were removed from downstream analyses. Thereafter, any remaining cells, called 

as doublets, were also removed from downstream analyses. RNA expression data were 

normalized by total expression per cell and natural log transformed with a scale factor 

of 10,000. Expression for all genes in SIIN- and SIY- libraries were first centered by 

subtracting average expression of each gene and subsequently scaled by dividing gene 

expression levels by their standard deviations. SIIN- and SIY- libraries were then merged in 

Seurat (“merge.data = TRUE”). For each cell passing quality control thresholds, metadata 

assignments for V(D)J clonotypes and cell hashing (mouse of origin) were made using 

Python with Pandas and Numpy (Harris et al., 2020; McKinney, 2010).

The top 2,000 variable genes used for downstream dimensionality reductions were selected 

in Seurat using the vst method (Butler et al., 2018). Principal component analysis (PCA) 

was performed for the first 50 principal components (PCs). An estimation of PCs to include 

for downstream analyses was performed with the elbow method and JackStraw analysis. 

Based on this estimate, and in manual consideration of gene features of PCs, the first 30 

PCs were selected for downstream analyses. A shared nearest neighbor graph (SNN, k = 20) 

was constructed with 30 PCs and used to perform Louvain clustering (default parameters, 

resolution)(Meo et al., 2011). The data was then visually projected in 2-dimensional 

space by using the Uniform Manifold Approximation and Projection (UMAP) algorithm 

(Butler et al., 2018) McInnes et al., 2018) in Seurat (default parameters). Differential gene 

expression was performed between all clusters using the default Wilcoxon Ranked Sum test 

(FindAllMarkers, min.pct = 0.25) (Table S3). The top 10 differentially expressed genes for 

each cluster are represented in a heatmap produced with ComplexHeatmap (cluster_columns 

= FALSE, cluster_rows = FALSE)(Figure S2D). Enrichment for SIIN or SIY was calculated 

by hypergeometric test (phyper, Stats R package; alpha = 0.05).

Gene expression scores were projected on UMAPs with Seurat using the FeaturePlot 

function (order = TRUE). UMAP embeddings that also depict gene expression scores were 

generated using the plot_cells function from Monocle3.
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Subsetted C2, C3, C4, C8 Analysis and Trajectory Inference: A separate analysis of 

cells in the mouse CD8 scRNA-seq dataset assigned to C2, C3, C4 and C8 was performed 

with Monocle3, version 0.2.3.0 (Cao et al., 2019; Qiu et al., 2017; Trapnell et al., 2014). 

The raw RNA expression data for these cells were subsetted in Seurat and exported to 

Monocle3 for dimensionality reduction, clustering, and trajectory analyses. Preprocessing 

of raw expression data (normalization and PCA) was performed for 20 PCs, using all 

other default parameters. Further dimensionality reduction was performed with the UMAP 

algorithm (default parameters, except: umap.n_neighbors = 30L, umap.fast_sgd = FALSE, 

preprocess_method = “PCA”; Mclnnes et al., 2018). Leiden clustering (Tragg et al., 2018) 

was performed to group cells into clusters for trajectory analyses (resolution = 0.001) with 

otherwise default parameters. For trajectory analyses, a principal graph was learned and 

plotted in UMAP space (learn_graph, use_partition = FALSE, rann.k = 20). Monocle3 

UMAP coordinates were exported to Seurat for gene expression and signature analysis. 

Differentially expressed genes were calculated in Seurat, as described above.

Gene lists reflecting CD8 T cell states and functionality were curated from a combination 

of the differentially expressed genes between Seurat clusters and literature review. Clusters 

C2, C3, C4 and C8 were scored for expression of these genes by the same methodology 

of Monocle3’s plot_genes_by_group function. Gene expression scores were then scaled 

for each cluster and visualized in heatmaps produced with ComplexHeatmap in R 

(cluster_columns = FALSE, cluster_rows = FALSE) (Figure 5B).

ProjecTILs T Cell Subtype Classification and Annotation: The mouse CD8 scRNA-seq 

data was aligned to the reference tumour-infiltrating lymphocytes (TIL) atlas and reference 

lymphocytic choriomeningitis virus (LCMV)-specific CD8 T cell atlas using the ProjecTILs 

R package (version 0.5.1; Andreatta et al., 2021). A normalized expression matrix (Seurat 

logNorm data) was provided as input and non-T cells were filtered using TILPRED-1.0 

before alignment and batch-effect correction. Additional parameters for “make.projection” 

were kept as the default. Cell states were predicted for each cell using a nearest-neighbor 

algorithm (ProjecTILs “cellstate.predict”; Table S1) and overlaid onto the original mouse 

UMAP with TILPRED filtered cells set as “NA”. Cell states of interest were highlighted 

on UMAP plots using Seurat (Butler et al., 2018), with cells of interest plotted last. Cell 

state annotations were used “as-is” (without a confidence threshold). We further validated 

these assignments by applying a confidence score threshold of 0.5 for calling a cell state and 

confirmed that cell state clusters remain the same.

Enrichment of SIY and SIIN cells labeled as TIL (or LCMV) progenitor or exhausted states 

was evaluated using a hypergeometric test (phyper, Stats R package; alpha = 0.05). Cells 

annotated as progenitor or exhausted were tested similarly for enrichment in the mouse 

clusters.

Gene Signature Scoring and UMAP Projection: Scoring of published mouse gene 

signatures was performed with Seurat (version 4.0.0; Butler et al., 2018) using the 

AddModuleScore function, which calculates mean expression level for each signature 

subtracted by aggregated expression of control signatures for each cell. Signatures were 

filtered to exclude genes not detected in the query dataset. For projection of the TIL/LCMV 
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progenitor exhausted and terminally exhausted signatures (Miller et al, 2019), deletional 

tolerance signature (Parish et al., 2009) and anergy signature (Safford et al., 2005), 

published gene signatures were filtered for genes captured in the mouse scRNA seq dataset 

(Table S2). Cells were then scored for each resultant signature using the AddModuleScore 

function in Seurat and highlighted on the Monocle3-based mouse UMAP of the mouse 

cluster C2, C3, C4 and C8 analysis.

For projection of the Tc17 versus Tc1 gene signatures from Linehan et al. 

(Linehan et al., 2018), raw RNA-seq sequence FASTQ files for Tc17 and Tc1 cells 

from the skin of Imiquimod-treated or S. epidermidis-infected mice were obtained 

from the Sequence Read Archive (SRA accession PRJNA419368; Imiquimod Tc17 

runs: SRX3425166, SRX3425165, SRX3425145; Imiquimod Tc1 runs: SRX3425154, 

SRX3425153, SRX3425146; S. epidermidis Tc17 runs: SRX3425152, SRX3425151, 

SRX3425149; S. epidermidis Tc1 runs: SRX3425150, SRX3425148, SRX3425147). 

Sequences were aligned to the mouse genome (NCBI37/mm9 assembly) using Bowtie, v. 

1.2.3 (Langmead et al., 2009), and feature counts were quantified using rsem, v. 1.3.1 (Li 

and Dewey, 2011), and UCSC mm9 genome annotation (genome.ucsc.edu). Pairwise gene 

expression differential analyses were conducted with the DESeq2 package, v. 1.16.1 (Love 

et al., 2014), in R (v. 3.6.0; r-project.org). The Tc17 vs Tc1 (S. epidermidis or Imiquimod; 

Table S2) signatures were scored using Seurat (AddModuleScore with default parameters) 

and highlighted on the Monocle3-based mouse UMAP of the mouse cluster C2, C3, C4 and 

C8 analysis.

CCR6+ TCF7+ and CCR6− TCF7+ signatures were derived from the mouse scRNA-seq 

data by identifying differentially expressed genes using Seurat (FindMarkers with default 

parameters) with a fold change > 2 and adjusted p-value < 0.05 (Table S3). Ccr6+ Tcf7+ 

marker genes were defined by comparing cells from cluster C4 expressing both Ccr6 and 

Tcf7 (log-normalized expression count > 0) to that of all other cells in the dataset except 

those in cluster C4. To define Ccr6− Tcf7+ marker genes, cells from cluster C8 expressing 

Tcf7 but not Ccr6 were compared to the expression of all other cells in the dataset except 

those in cluster C8. Mouse symbols were translated to human symbols using the Broad 

GSEA chip file “Mouse Gene Symbol Remapping to Human Orthologs MSigDB.v7.2.chip” 

(Liberzon et al., 2011; Subramanian et al., 2005), subsequently scored in the Sade-Feldman 

dataset and visualized with UMAPs using Seurat.

TCR Clonotype Analysis: Cells with productive TCR sequences in the mouse CD8 

scRNA-seq dataset were assigned to clonotypes by Cell Ranger. While the vast majority 

(581 of 652) of clonotypes appear to originate exclusively from a single mouse, a minority 

(22 of 652) of clonotypes appear to have one or more cells that originate from multiple mice. 

These clonotypes were identified in Python with Pandas and excluded from downstream 

analyses. Most of the clonotypes detected by Cell Ranger contain less than 5 cells (548 

of 652), which may reflect their underlying biological abundance (i.e. degree of clonal 

expansion). However, it is impossible to decouple this underlying biology from artifacts of 

technical dropout in these lowly-abundant clonotypes. As such, clonotypes containing less 

than 5 cells were removed in most analyses, resulting in a total of 103 clonotypes.
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In order to understand how clonotypes were distributed across the Seurat clusters (C0–

C10), a matrix was generated that quantifies the number of cells in each clonotype 

assigned to each Seurat cluster. To permit comparison of clonotypes of different sizes, 

this matrix was normalized to reflect the fraction of cells in each clonotype. To cluster 

clonotypes with similar distributions across Seurat clusters, Euclidean distance was first 

calculated between clonotypes in the normalized clonotype-cluster matrix. Visualizations of 

the clonotype-cluster matrix were made with ComplexHeatmap. Rows (clonotypes) in this 

heatmap were ordered by hierarchical clustering (method = “ward.D”) of default pairwise 

euclidean distances. Columns (clusters) were ordered by hierarchical clustering (method 

= “ward.D”) of pairwise Jaccard distance. Subsequently, complete linkage hierarchical 

clustering (hclust, R, method = “ward.D”) was performed on these distance calculations. 

A total of 12 clonotype clusters were generated by cutting the resulting dendrogram (h = 0.6, 

cutree, R).

Cells assigned to each clonotype were scored for expression of Gzmb, Havcr2, Cx3cr1, 
Tcf7, Ccr6, and Il17a by counting the number of cells with gene expression values > 0.5. 

To test enrichment of these genes, we performed a hypergeometric test (phyper, Stats R 

package; alpha = 0.05). To test enrichment of clonotypes specific for SIIN and SIY in 

C4+C8 and C2, we performed a 2-dimensional 2-sample KS test and visualized differences 

in proportion of cells with an empirical cumulative distribution plot. Additionally, to provide 

a metric for how equally distributed each clonotype is across clusters, we calculated the Gini 

index (Hurley, 2009) for each clonotype.

To visualize the location of cells from large and small clonotypes in UMAP space, we 

assigned each cell a value equivalent to the size of the clonotype assigned to each cell and 

plotted this feature in Seurat.

Enrichment of Human Signatures in Mouse Clusters: Marker genes for published CD8 

T cell cluster signatures from Wu et al., Supplemental Table 4 (Wu et al., 2020), Guo et al., 

Supplemental Table 3 (Guo et al., 2018), and et al., Supplemental Table 4 (Sade-Feldman 

et al., 2019) were translated from human symbols to mouse symbols using the Mouse 

Genome Informatics (MGI) mouse/human orthology with phenotype annotations obtained 

on November 16, 2020 (Baldarelli et al., 2020) [http://www.informatics.jax.org/downloads/

reports/HMD_HumanPhenotype.rpt]. For ambiguous mappings (i.e. human genes mapping 

to more than one mouse gene), we first prioritized the lowercase equivalent of the human 

gene, if available. For cases where lowercase equivalents were not an option, we checked 

to see if one of the possible translations was in the mouse dataset and if so, then we 

arbitrarily selected the first translation (but avoided symbols with the Gm* prefix if another 

option was available). For cases where neither the lowercase equivalent nor a match in the 

mouse dataset was found, the first translation was kept as a placeholder. In addition, genes 

without a mapping were dropped and not included in the final lists. Signature gene lists used 

for downstream analysis are provided in Table S4. Human signatures were scored in the 

mouse dataset using Seurat (AddModuleScore with default parameters) and visualized on 

the mouse Seurat-based UMAP (Figure S7A).
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Heatmaps illustrating enrichment of human signatures in mouse clusters (Figure 7A) were 

generated in R using heatmap.2 and data was preprocessed using a custom script. For each 

human signature and mouse cluster, a Wilcoxon rank-sum test was performed to test for 

differential enrichment of a signature across clusters (i.e. a set of signature scores for a given 

cluster compared to signature scores across all other clusters) similar to DeTomaso et al. 

(DeTomaso et al., 2019). To reduce overall noise and highlight enrichment for clusters that 

included “sufficient” high-scoring cells, significance testing was conditioned according to 

distributional (i.e. quantile) cutoffs. Differential enrichment between sets of signature scores 

was only tested if the following conditions were met: the upper 2nd percentile of scores of 

cells within the cluster exceeded (i) the upper 2nd percentile of scores of cells outside the 

cluster, (ii) the upper 2nd percentile of scores of cells across the signature, and (iii) the upper 

40th percentile of scores of cells across all signatures (i.e. a full matrix of signature scores 

per cell per cluster).

Analysis of External Human scRNA-seq Datasets

GSE139555 Wu et al.: Original cluster assignments for cells in the Wu et 

al. dataset (Wu et al., 2020) were retrieved from GEO (accession GSE139555; 

GSE139555_tcell_metadata.txt). Additionally, utility functions within the software library 

released in the GEO record (GSE139555_software.tar.gz) were used for extracting raw count 

tables with code updates to subset the dataset to contain cells assigned to CD8 T cell 

clusters in the original study (8.1.Teff, 8.2.Tem, 8.3a.Trm, 8.3b.Trm, 8.3c.Trm, 8.4.Chrom, 

8.5.Mitosis, 8.6.KLRB1). Raw count tables for CD8 T cells per tumor sample, ignoring 

cells from normal adjacent tissue and peripheral blood samples across all patients, were 

then used in subsequent analyses. Counts per tumor sample were normalized using Seurat 

v3.2 SCTransform (Butler et al., 2018; Hafemeister and Satija, 2019), while regressing 

out percentage mitochondrial content per cell. Samples were integrated in a hierarchical 

fashion (per patient, then across patients) using the Seurat reference-based workflow (Stuart 

et al., 2019). Choice of reference sample did not affect result interpretation. PCA (Principal 

Component Analysis with top 30 components used for downstream analyses) dimensionality 

reduction and UMAP (Uniform Manifold Approximation and Projection) embeddings were 

generated using the integrated dataset.

For projection of mouse scRNA-seq cluster gene signatures onto the Wu 

analysis, the top 20 positive marker genes for each mouse cluster (C4 and 

C8, clustering resolution 0.7) were identified using Seurat (FindMarkers) with 

a fold change cutoff of 1.2 and adjusted p-value less than 0.05. Mouse 

symbols were translated to human symbols using the Broad GSEA chip file 

(MSigDB v7.2; https://data.broadinstitute.org/gsea-msigdb/msigdb/annotations_versioned/

Mouse_Gene_Symbol_Remapping_Human_Orthologs_MSigDB.v7.2.chip)(Liberzon et al., 

2011; Subramanian et al., 2005), subsequently scored in the Wu dataset and visualized on 

the Wu UMAP using Seurat. Signature gene lists used for downstream analysis (Table S3) 

reflect the collection of unique genes for which an ortholog has been mapped in human.

GSE120575 Sade-Feldman et al.: Log2-TPM counts were retrieved from GEO along with 

patient characteristics, including response to immune checkpoint blockade, and processed 
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with Seurat v3.0.0 (Hafemeister and Satija, 2019). A Seurat object was created such that the 

counts slot and data slot were populated with TPM counts and log-TPM counts, respectively. 

Only cells assigned to published CD8 T cell clusters (Table S2; Sade-Feldman et al., 2019) 

were selected and used for downstream analyses. Highly variable genes were identified and 

the data was scaled (while regressing out percentage mitochondrial content per cell and 

the number of detected reads per cell) followed by dimensionality reduction with PCA and 

UMAP (using 24 principal components) using Seurat’s standard preprocessing procedure.

GSE99254 Guo et al.: Raw counts were retrieved from GEO (accession GSE99254). Cells 

from seven CD8 T cell clusters in the published analysis were retained for downstream 

analyses. This subset was processed using the SCT normalization flow of Seurat v3.0.0 

(Hafemeister and Satija, 2019). Following dimensionality reduction using PCA, 12 principal 

components were used for downstream analyses including UMAP embeddings.

GSE72056 Tirosh et al.: Log2(TPM/10 + 1) counts were retrieved from GEO along with 

patient metadata and processed with Seurat v3.2 (Hafemeister and Satija, 2019). A Seurat 

object was created such that the counts slot and data slot were populated with TPM counts 

and log-TPM counts, respectively. The dataset was filtered to retain T cells based on 

metadata annotation and further filtered to retain only CD8 T cells by filtering on expression 

of CD8A (> 0) and CD4 (= 0). Only six patient samples with 50 or more CD8 T cells 

were selected and used for downstream analyses and integrated using Seurat’s reciprocal 

PCA (RPCA) integration flow. 30 principal components were used for downstream UMAP 

dimensionality reduction and data embedding.

GSE123813 Yost et al.: Raw counts were retrieved from GEO along with patient 

information and processed with Seurat v3.2 (Hafemeister and Satija, 2019). The dataset 

was filtered to retain basal cell carcinoma (BCC) T cells based on metadata annotation and 

further filtered to retain only CD8 T cells by filtering on expression of CD8A (> 0) and 

CD4 (= 0). A hierarchical integration flow based on SCT normalization was used, similar 

to the one described for Wu et al. above (GSE139555). Pre- and post-treatment samples 

per patient were integrated in the first round and cross-patient integration was performed 

using Seurat’s reference-based integration workflow. The code was largely based on that 

used for the GSE139555 analysis (described above). 30 principal components were used for 

downstream analyses.

For the analyses of GSE139555, GSE120575, GSE99254, GSE72056, GSE123813 above, 

the Seurat default “RNA” assay with log-normalized counts was used for feature plots, 

marker gene identification, and all expression-based analyses. For single gene and co­

expression analyses, log-normalized expression count thresholds of 0.0 (raw count datasets 

GSE139555, GSE99254, GSE123813) and 0.5 (TPM datasets GSE72056, GSE120575) 

were used for considering a gene as expressed in a given cell.

Identification of mucosal associated invariant T (MAIT) cells: In the human scRNA-seq 

datasets we identified a population of mucosal associated invariant T (MAIT) cells that 

phenotypically resemble Tc17 cells (Toubal et al., 2019). MAIT cells express invariant 

TCRs that recognize antigen presented on the MHC-related molecule MR1. Cells with 
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these TCRs were assigned to background (i.e. not highlighted) in the TCF7/CCR6/RORC/
IL17A expression plots and excluded from statistical analyses of CCR6+/− TCF7+ signature 

enrichment in Figures 7C, 7I, 7J and S7C. Importantly, MAIT cells are also found in mice, 

but do not express CD8 and are not found amongst SIIN- or SIY-specific T cells that are 

MHC I Kb-restricted in KP LucOS lung tumors.

For Wu et al., clonotype assignments were retrieved from GEO record GSE139555. MAIT 

cells were identified based on their invariant TCR using the following logic: (alpha_v = 

“TRAV1-2”) AND one of ($alpha_j = “TRAJ33”) OR ($alpha_j = “TRAJ12”) OR ($alpha_j 

= “TRAJ20”) and assigned to the background set (not highlighted) in co-expression analysis 

(Toubal et al., 2019). For Sade-Feldman et al., clonotype assignments were requested and 

obtained from the authors (private communication). MAIT cells were identified using the 

logic described above. For Guo et al., cells identified as belonging to a MAIT cluster (CD8­

C7-SLC4A10) in the published analysis (Guo et al., 2018) were tagged as MAIT cells. For 

Tirosh et al., we obtained raw scRNAseq FASTQ files through the Broad Institute Data 

Used Oversight System (duos.broadinstitute.org). This data was processed using MiXCR’s 

v3.0.13 “analyze shotgun” workflow (Bolotin et al., 2017) to catalog the T cell receptor 

repertoire. No cells satisfying the MAIT clonotype assignments described above were 

detected in this set. For Yost et al., clonotype assignments were requested and obtained from 

the authors (private communication). MAIT cells were identified using the logic described 

above.

Lists of MAIT cells per dataset are included in Table S6. Using a relaxed approach, cells 

without clonotype information were assumed to be non-MAIT. Overall, MAIT cells were 

not highlighted in co-expression plots and were dropped from CCR6+/− TCF7+ signature 

enrichment analyses.

Enrichment of CCR6+/− TCF7+ signatures in GSE120575 (Sade-Feldman et al.): A 

hypergeometric test (phyper, Stats R package; alpha = 0.05) was used to test for enrichment 

of cells from published clusters in the set of cells with high CCR6+ TCF7+ or CCR6− 

TCF7+ signature scores (standardized signature score > 2). Similarly, cells annotated as 

responders/non-responders were tested for enrichment in the set of cells with high CCR6+/

− TCF7+ signature scores (standardized signature score > 2). Response categories were 

determined by RESIST criteria: responders, complete or partial response; non-responders, 

stable or progressive disease (Sade-Feldman et al., 2019). MAIT cells were removed from 

the dataset prior to calculating proportions.

t-CyCIF Data Analysis Workflow—The data analysis is divided in a set of pre­

processing steps in which data from different tissues is i) log2-transformed and aggregated 

together, ii) filtered for image analysis errors, and iii) normalized on a channel-by-channel 

basis across the entire data from a single experiment. All the steps are performed in 

MATLAB.

Data Aggregation: The image processing workflow outputs one ome.tiff image and 

one data file (.mat) for each tissue area imaged. The data matrices from each .mat file 

are concatenated into a single matrix for each metric measured (median/mean, nuclear/
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cytoplasmic) into a single structure (“AggrResults”). The morphological data (i.e., area, 

solidity, and centroid coordinates) is concatenated into a single structure (“MorpResults”), 

which also contains the indexing vector to keep track of the tissue of origin within the 

dataset.

Data Filtering: Single cells are filtered to identify and potentially exclude from subsequent 

analysis errors in segmentation and cells lost through the rounds of imaging. Two types of 

criteria are used to filter cells: morphological criteria based on cell object segmented area, 

which are applied to all the rounds for the cell object, and DAPI-based criteria which are 

applied to the DAPI measurement for each imaging round. The latter corrects for cell loss 

during cycling and computational misalignment, which are both round specific.

Morphological filtering criteria are: 1) nuclear area within a user-input range; 2) cytoplasmic 

area within a user-input range; 3) nuclear object solidity above a user-input threshold. 

DAPI-based criteria are: 1) nuclear DAPI measurement above a user-input threshold; 2) ratio 

between nuclear and cytoplasmic DAPI measurement above a user-input threshold. The filter 

information for the criteria is allocated to a logical (0–1) structure ‘Filter’, which is used 

to select the cells to analyze in the further analysis by indexing. The threshold selection is 

dataset dependent and is performed by data inspection. The values used in each dataset are 

available with the codes used for data analysis in the github repository https://github.com/

santagatalab/2021_Burger_et_al_CyCIF_codes.

Data Normalization: Each channel distribution is normalized by probability density 

function (pdf) centering and rescaling. The aim is to center the distribution of the log2 

fluorescent signal at 0 and rescale the width of the distribution to be able to compare 

across channels. The data is first log-transformed (base 2). The standard normalization 

is performed using a 2-component Gaussian mixture model, each model capturing the 

negative and the positive cell population. If the 2-component model fails to approximate 

the channel distribution, two other strategies are attempted: i) a 3-component model is 

used assuming the components with the two highest means are the negative and positive 

distribution (i.e., discarding the lowest component) or ii) the user selects a percentage 

‘x’ of assumed positive cells and a single Gaussian distribution fit is performed on the 

remainder of the data to capture the negative distribution. The single Gaussian fit is then 

used as the lower component in a 2-component model to estimate the distribution of the 

positive population. The strategy chosen for each channel in each dataset is available 

in the github repository https://github.com/santagatalab/2021_Burger_et_al_CyCIF_codes. 

The “add_coeff” is defined as the intersection of the negative and positive distributions. 

The “mult_coeff” is defined as the difference between the mean of the negative and 

positive distributions. The full distribution is normalized by subtracting the add_coeff and 

dividing by the mult_coeff. The normalization is performed on the nuclear and cytoplasmic 

single-cell, single-channel distributions individually. The data preprocessing workflow is 

performed on all datasets. The individual analyses used in the paper are performed only in 

select datasets as follows.

Cell Type Calling: Cells from tissue-based experiments are classified into lineage 

compartments by cell type markers, by gating on the sign of the normalized values of 
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cell type markers. Cells are scored by increasingly deeper lineage layers, starting with 

separating them into epithelial, immune and stromal compartments, and subdividing the 

immune population into lymphoid lineages. The cell types identified and the markers used 

to do so are included in Table S7. If a cell was called as more than one single cell-type, this 

is defined as a conflict. The conflicts are resolved by comparing the markers that triggered 

each of the cell type calls and assigning the cell type with the highest marker level. If the 

markers are within 10% of each other, the cell is deemed “not classifiable” for the specific 

layer.

Identification of CCR6+ TCF1+ CD8+ T Cells: The quantification of positive cells was 

performed on a single channel basis for CD8, CCR6 and TCF1. For CD8 and TCF1 signal 

the cells were called positive based on the normalization described above. However, in the 

lung cancer tissues imaged, CD20 positive B cells expressed high levels of CCR6, consistent 

with the current literature (Kadomoto et al., 2020). The variability of B cells between 

individual tissues and the spatial proximity between T cells and B cells can potentially lead 

to overestimation of CCR6 positivity. In order to avoid potential biases we modified the 

protocol in three ways: 1) the CCR6 protein was normalized at a single tissue basis to match 

the negative signal distribution, 2) when calculating the CCR6+ CD8+ cells (independent of 

TCF1 status) we discarded all cells closer than 32.5 μm (100 pixels), and 3) we imaged the 

CCR6 protein twice in the first and last round of the experiment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Peptide-MHC binding property underlies antigen dominance hierarchy in a 

lung cancer model

• T cells responding to subdominant antigens are enriched in TCF1+ 

progenitors

• CCR6+ TCF1+ progenitor cells contribute poorly to checkpoint blockade 

response

• Vaccination can eliminate CCR6+ TCF1+ cells and improve the subdominant 

response
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Figure 1. Longitudinal Analysis Uncovers Heterogeneity Between CD8 T Cell Responses to 
Different Neoantigens in Lung Adenocarcinoma
(A) KP LucOS genetically engineered mouse model of lung adenocarcinoma expressing 

tumor-specific neoantigens SIINFEKL (SIIN) and SIYRYYGL (SIY).

(B-C) Percentage (B) and absolute number (C) of SIIN- and SIY-specific CD8+ CD44+ 

T cells in tumor-bearing lung tissue by H-2Kb peptide-MHC tetramer staining and flow 

cytometry.

(D-H) Percentage of SIIN- and SIY-specific CD8 T cells expressing Ki67 (D), PD1, LAG3 

and TIM3 (E), IL7R (F), IFNɣ and TNFα (G) and GZMB (H) by flow cytometry.

(B-H) are representative of ≥ 3 independent experiments per time point, n ≥ 5 mice per 

group. Results here and in the following figures are expressed as mean + SD. Statistics were 

calculated by two-tailed Student’s t test: ns = not significant, * p < 0.05, ** p < 0.01, *** p < 

0.001.
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Figure 2. Single-Cell RNA-Sequencing Reveals Enrichment of a TCF1+ Progenitor Cell 
Phenotype Amongst SIY-Specific CD8 T Cells
(A) UMAP embedding of scRNA-seq 5’ gene expression data comparing SIIN- and SIY­

specific CD8 T cells at 5 weeks post-tumor initiation. n = 10 mice, 4,023 SIIN and 1,861 

SIY cells.

(B) Unsupervised clustering of the scRNA-seq data in (A).

(C) Assignment of SIIN- versus SIY-specific cells to the clusters in (B). Brackets indicate 

significant enrichment (p < 0.05) for SIIN- or SIY-specific cells.

(D) Classification of individual cells from (A) using the ProjecTILs pipeline (Andreatta 

et al., 2021). SIY-specific cells are enriched for a progenitor phenotype (TIL p = 0.002; 

LCMV p = 2.51E-15); SIIN-specific cells are enriched for an exhausted phenotype (TIL p = 

4.01E-17; LCMV p = 1.52E-10).

(E) Log-normalized expression of genes associated with progenitor (Tcf7 and Il7r) or 

exhausted Gzmb and Havcr2) cell states.
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(F) Heatmap depicting proportions of TCR clonotypes (rows) assigned to each cluster 

(columns), for clonotypes ≥ 5 cells with ≥ 1 cell assigned to TCF1+ progenitor clusters C4 

or C8.

(G-H) Percentage of SIIN- versus SIY-specific cells expressing TCF1, TIM3 and GZMB (G) 

and the proportion of SIY-specific TCF1+ TIM3− and TCF1− cells expressing IFNɣ and 

TNFα (H) at 5 weeks by flow cytometry.

(I) Percentage and absolute number of SIIN- and SIY-specific TCF1+ TIM3− cells over time 

by flow cytometry.

(G-I) are representative of 3 independent experiments, n ≥ 5 mice per group.
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Figure 3. Enrichment of TCF1+ Progenitor Cells in the SIY Response is Driven by an Antigen 
Dominance Hierarchy
(A) Lentiviral constructs expressing SIIN and SIY (LucOS), SIIN-only (LucSIIN) and 

SIY-only (LucSIY) and representative flow cytometry plots of antigen-specific cells in the 

lung 5–6 weeks post-tumor initiation.

(B and C) Percentage of SIIN- and SIY-specific cells of CD8 T cells (B) and the proportion 

that are TCF1+ TIM3− (C) in LucOS, LucSIIN and LucSIY mice at 5–6 weeks by flow 

cytometry.

(D) Lentiviral constructs expressing SIINYEKL (Y5) in combination with SIY (LucY5S) or 

alone (LucY5) and representative flow cytometry plots of antigen-specific cells in the lung 

5–6 weeks post-tumor initiation.

(E) pMHC affinity for each antigen assessed by flow cytometric quantification of H-2Kb 

stabilization on TAP-deficient RMA-S cells. Dotted lines = 50% binding concentration, 

which approximates the affinity (Kd) of each peptide for H-2Kb.

(F) pMHC complex stability (Koff) for each antigen measured by Differential Scanning 

Fluorimetry of pMHC thermal melting. Dotted lines = melting temperature (Tm) of each 

pMHC complex. Displayed Tm values are averaged from 3 experiments.
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(G) TCR cross-reactivity measured by SIIN and Y5 tetramer co-staining of CD8 T cells 

from spleens of SIIN-vaccinated mice. Percentage of tetramer+ cells stained by both 

tetramers is graphed.

(H-I) Percentage of Y5-, SIIN- and SIY-specific cells of CD8 T cells (H) and the proportion 

that are TCF1+ TIM3− (I) at 5–6 weeks in LucOS, LucY5S, LucY5 and LucSIIN mice.

(A-F) and (H-I) are representative of ≥ 3 independent experiments, n ≥ 5 mice per group. (E 

and G) are representative of 2 independent experiments.
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Figure 4. Subdominant Antigen-Specific T Cells Do Not Preferentially Benefit from anti-PD1/
CTLA4 Therapy
(A) Time course of anti-PD1/CTLA4 therapy initiated at 5, 8 or 12 weeks post-tumor 

initiation, comprised of 3 doses (arrows) of isotype control (Iso) or anti-PD1/CTLA4 (PC) 

antibodies in LucOS mice.

(B-G) Absolute number of SIIN- versus SIY-specific CD8 T cells (B), the proportion 

expressing TCF1+ TIM3− versus TCF1− TIM3+ (C), the absolute number of TCF1+ 

TIM3− cells (D), and the proportion expressing Ki67 (E), GZMB (F) and CX3CR1 (TCF1+ 

and total; G) assessed by flow cytometry in LucOS mice following treatment with Iso 

or PC starting at 8 weeks unless otherwise indicated. Representative of ≥ 3 independent 

experiments, n ≥ 5 mice per group.
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Figure 5. The Subdominant CD8 T Cell Response is Enriched for a CCR6+ TCF1+ Progenitor 
Cell Subset with a Tc17 Differentiation Trajectory
(A) UMAP embedding of clusters C2, C3, C4 and C8 from the scRNA-seq data in Figure 2B 

and log-normalized expression of Tcf7 and Havcr2.

(B) Expression (mean log(expression +1)) of genes associated with the indicated 

classifications across clusters C2, C3, C4 and C8.

(C) Scoring of cells from (A) for enrichment of a gene signature differentially upregulated 

in Tc17 versus Tc1 CD8 T cells in the skin of mice infected with S. epidermidis (Linehan et 

al., 2018; Table S2).

(D) Monocle3 lineage trajectories overlaid with UMAP visualizations of Ccr6, Rorc and 

Il17a expression.

(E) TCR clonotype cluster 7 (see Figures S4A and S4D) highlighted on the UMAP plots 

from (A).
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(F-G) Percentage of SIIN- and SIY-specific cells expressing CCR6 (F) and the proportion 

of these cells expressing TCF1, SLAMF6 and RORɣT (G) at 5 weeks by flow cytometry. 

CCR6+ RORɣT+ cells are subsetted by TCF1 expression.

(H) Percentage of SIIN- and SIY-specific cells expressing IL17A at 5 weeks and flow 

cytometry plots showing co-expression of IL17A with CCR6, RORɣT and TCF1 on SIY­

specific cells.

(I-J) Percentage of SIIN- and SIY-specific TCF1+ TIM3− cells expressing CCR6 over time 

and following one week of treatment with isotype (Iso) or anti-PD1/CTLA4 (PC) antibodies 

starting at 5 weeks.

(K) Percentage of SIIN- and SIY-specific TCF1+ cells that express CX3CR1 subsetted by 

CCR6 expression following Iso or PC treatment at 5 weeks.

(L) Irradiated KP mice were reconstituted with IL17aCre × Rosa26LSL-tdTomato bone marrow 

and LucOS tumors were initiated. Flow cytometric analysis of the percentage of SIY-specific 

cells expressing Tomato (marking current/prior IL17A expression) following one week of 

Iso or PC treatment starting at 5 weeks is shown. Data are compiled from 2 independent 

experiments. Data in (F-K) are representative of ≥ 3 independent experiments, n ≥ 5 mice 

per group.
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Figure 6. Therapeutic Vaccination Breaks Antigen Dominance and Eliminates the CCR6+ Subset 
of TCF1+ Progenitor Cells
(A) SIIN and SIY long-peptide and cyclic di-GMP vaccine. Mice were vaccinated at 6 

weeks (s.c. tail base), boosted at 8 weeks and analyzed 9 weeks post-tumor initiation.

(B-D) Absolute number of SIIN- and SIY-specific cells (B) and the percentage expressing 

Ki67 (C) and GZMB (D) in PBS control (Ctrl) versus vaccine (Vax) treated mice by flow 

cytometry.

(E-G) Tissue-based cyclic immunofluorescence (t-CyCIF) imaging of lung lobes of Ctrl 

versus Vax-treated mice (E) and quantification of CD8 T cell infiltration and tumor size (F) 

and the percentage of Ki67 and GZMB positive CD8 T cells in tumors (G). Results are 

averaged from all tumors from two lung lobes per mouse.

(H-I) Absolute number of SIIN- and SIY-specific cells in the lung (H) and the percentage in 

the blood (I) of Ctrl versus Vax treated mice 7 days after the initial vaccine dose.
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(J) Absolute number of SIIN- and SIY-specific cells in mice treated with Ctrl, Vax, SIIN­

only vaccine or SIY-only vaccine as in (A).

(K-L) Percentage of SIIN- and SIY-specific cells that are TCF1+ TIM3− (K) and the 

proportion of these cells that express CCR6 (L) in Ctrl versus Vax treated mice by flow 

cytometry.

(M) Proportion of CCR6+ SIIN- and SIY-specific cells expressing RORɣT in Ctrl versus 

Vax treated mice by flow cytometry.

(B-D) and (J-M) are representative of ≥ 3 independent experiments, n ≥ 5 mice per group. 

(H-I) are compiled from 2 independent experiments.
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Figure 7. CCR6+ TCF1+ and Tc17 Cells are Found Across Human Cancers
(A) Enrichment of CD8 gene signatures from three human cancer scRNA-seq datasets 

(Table S4) in the mouse scRNA-seq clusters from Figure 2B. Human clusters, right; mouse 

clusters, top. Colored boxes indicate significant enrichment, p ≤ 0.05.

(B-C) UMAP of tumor CD8 T cells from a human pan-cancer scRNA-seq dataset (Wu et 

al., 2020) showing enrichment of gene signatures derived from mouse progenitor clusters C4 

and C8 (B) and expression of TCF7, HAVCR2, co-expression of TCF7, CCR6 and RORC 
and co-expression of IL17A with TCF7, CCR6 and/or RORC (C).

(D-F) t-CYCIF images of human lung adenocarcinoma and metastatic melanoma samples 

(D-E) and quantification of CD8 T cells expressing TCF1 and CCR6 (F).

(G) UMAP embedding of CD8 T cells from an anti-PD1 and/or anti-CTLA4 melanoma 

scRNA-seq dataset (Sade-Feldman et al., 2018) showing cell assignment to published 

clusters CD8_1 thru CD8_6 and responder versus non-responder patients.
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(H) Scoring of cells in (G) for enrichment of gene signatures (Table S3) derived from mouse 

Ccr6− Tcf7+ and Ccr6+ Tcf7+ cells.

(I-J) Enrichment of the gene signatures from (H) in clusters CD8_1 thru CD8_6 (I) and 

responders versus non-responders (J).

In (C) and (I-J), mucosal invariant T (MAIT) cells that phenotypically resemble Tc17 cells 

were excluded from the analysis based on TCR sequence (Table S6; STAR methods).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

InVivomAb PD1 BioXCell Clone 29F.1A12; Cat# BE0273; RRID: 
AB_2687796

InVivomAb CTLA4 BioXCell Clone 9H10; Cat# BE0131; RRID: 
AB_10950184

InVivomAb rat IgG2a BioXCell Clone 2A3; Cat# BE0089; RRID: 
AB_1107769

InVivomAb polyclonal Syrian Hamster IgG BioXCell Cat# BE0087; RRID: AB_1107782

FC: CD8ɑ BD Biosciences Clone 53-6.7; Cat# 563786, 612759; 
RRID: AB_2732919, AB_2870090

FC: CCR6 (CD196) BioLegend Clone 29-2L17; Cat# 129822; RRID: 
AB_2687019

FC: CX3CR1 BioLegend Clone SA011F11; Cat# 149031; RRID: 
AB_2565939

FC: CXCR3 (CD183) BD Biosciences Clone CXCR3-173; Cat# 562937, 
741032; RRID: AB_2687551, 
AB_2740650

FC: CD44 BD Biosciences; 
BioLegend

Clone IM7; Cat# 563736, 
612799, 103057, 103059; 
RRID: AB_2738395, AB_2870126, 
AB_2564214, AB_2571953

FC: CD45 ThermoFisher Scientific; 
BD Biosciences

Clone 30-F11; Cat# 47-0451-80, 
562420; RRID: AB_1548790, 
AB_11154401

FC: CD83 BioLegend Clone Michel-19; Cat# 121506; RRID: 
AB_572009

FC: CD200 BD Biosciences Clone OX-90; Cat# 565546; RRID: 
AB_2739288

FC: EGR2 ThermoFisher Scientific Clone erongr2; Cat# 17-6691-80; RRID: 
AB_11150966

FC: Granzyme B BioLegend, BD 
Biosciences

Clone GB11; Cat# 515408, 560213; 
RRID: AB_2562196, AB_1645453

FC: H-2Kb ThermoFisher Scientific Clone AF6-88.5.5.3; Cat# 17-5958-82; 
RRID: AB_1311280

FC: ICOS (CD278) ThermoFisher Scientific Clone 7E.17G9; Cat# 46-9942-80; 
RRID: AB_2744727

FC: IFN-γ BioLegend Clone XMG1.2; Cat# 505822; RRID: 
AB_961359

FC: IL17A ThermoFisher Scientific Clone 17B7; Cat# 11-7177-81; RRID: 
AB_763581

FC: IL7R (CD127) ThermoFisher Scientific Clone A7R34; Cat# 25-1271-82; RRID: 
AB_469649

FC: Ki67 BD Biosciences Clone B56; Cat# 561277, 563756; 
RRID: AB_10611571, AB_2732007

FC: LAG3 (CD233) BD Biosciences, 
ThermoFisher Scientific; 
BioLegend

Clone C9B7W; Cat# 741820, 
46-2231-82, 11-2231-80, 125219; 
RRID: AB_11151334, AB_2572483, 
AB_2566571

FC: OX40 (CD134) BioLegend Clone OX-86; Cat# 119419; RRID: 
AB_2687175

FC: PD1 (CD279) BioLegend Clone RMP1-30; Cat# 109110, 109121; 
RRID: AB_572017, AB_2687080
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FC: RORƔT ThermoFisher Scientific Clone B2D; Cat# 25-6981-82, 
17-6981-82; RRID: AB_2784671, 
AB_2573254

FC: SLAMF6 (LY-108) BD Biosciences Clone 13G3; Cat# 742272; RRID: 
AB_2871448

FC: TCF1/TCF7 Cell Signaling Technology Clone C63D9; Cat# 6444, 6709, 9066; 
RRID: AB_2797627, AB_2797631, 
AB_2797696

FC: TIGIT BD Biosciences Clone 1G9; Cat# 565474; RRID: 
AB_2739254

FC: TIM3 BioLegend Clone RMT3-23; Cat# 119721, 119725; 
RRID: AB_2616907, AB_2716066

FC: TNFα BioLegend Clone MP6-XT22; Cat# 506306; RRID: 
AB_315427

FC: TOX Miltenyi Biotec Clone REA473; Cat# 130-118-335; 
RRID: AB_2751485

FC: H-2Kb SIINFEKL monomer NIH Tetramer Core Facility Custom

FC: H-2Kb SIYRYYGL monomer NIH Tetramer Core Facility Custom

FC: H-2Kb SIINYEKL monomer NIH Tetramer Core Facility Custom

FC: H-2Kb mALG8 monomer NIH Tetramer Core Facility Custom

FC: H-2Kb mLAMA4 monomer NIH Tetramer Core Facility Custom

Hashtag: TotalSeq-C anti-mouse BioLegend Clones M1/42, 30-F11; Cat# 
155861, 155863, 155865, 
155867, 155869, 155871, 155873, 
155875, 155877, 155879; 
RRID: AB_2800693, AB_2800694, 
AB_2800695, AB_2800696, 
AB_2800697, AB_2819910, 
AB_2819911, AB_2819912, 
AB_2819913, AB_2819914

tCycif: anti-mouse B220 (CD45R) ThermoFisher Scientific Clone RA3-6B2; Cat# 41-0452-80; 
RRID: AB_2573598

tCycif: anti-mouse CD4 ThermoFisher Scientific Clone 4SM95; Cat# 41-9766-82; RRID: 
AB_2573637

tCycif: anti-mouse CD8a Cell Signaling Technology Clone D4W2Z; Cat# 98941S; RRID: 
AB_2756376

tCycif: anti-mouse FOXP3 ThermoFisher Scientific Clone FJK-16 s; Cat# 11-5773-82; 
RRID: AB_465243

tCycif: anti-human αSMA Abcam Clone EPR5368; Cat# ab202509; RRID: 
AB_2868435

tCycif: anti-human CD4 R&D Systems Cat# FAB8165G; RRID: AB_2728839

tCycif: anti-human CD8α ThermoFisher Scientific Clone AMC908; Cat# 50-0008-80; 
RRID: AB_2574148

tCycif: anti-human CD20 ThermoFisher Scientific Clone L26; Cat# 50-0202-80; RRID: 
AB_11151691

tCycif: anti-human CD45 BioLegend Clone HI30; Cat# 304008; RRID: 
AB_314396

tCycif: anti-human CCR6 Abcam Clone EPR22259; Cat# ab243852; 
RRID: AB_2860033

tCycif: anti-human FOXP3 eBioscience Clone 236A/E7; Cat# 41-4777-80; 
RRID: AB_2573608

tCycif: anti-human TCF1 Cell Signaling Technology Clone C63D9; Cat# 6444S; RRID: 
AB_2797627
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tCycif: anti-human TTF1 (also reacts with mouse) Abcam Clone EPR595(2); Cat# ab206726; 
RRID: AB_2857980

Purification: Ly6G Rat Monoclonal BioLegend Clone 1A8; Cat# 127602; RRID: 
AB_1089180

Purification: EpCam (CD326) Rat Monoclonal BioLegend Clone G8.8; Cat# 118202; RRID: 
AB_1089027

Purification: F4/80 Rat Monoclonal BioLegend Clone BM8; Cat# 123102; RRID: 
AB_893506

Biological samples

Human formalin fixed paraffin embedded tissue samples from lung 
adenocarcinoma cases

Partners Healthcare 
Institutional Review Board 
at Brigham Health, Boston, 
MA, USA

Excess tissue, discarded tissue protocol 
number 2018P001627

Human formalin fixed paraffin embedded tissue samples from 
metastatic melanoma cases

Specialized Histopathology 
Services - Longwood Core 
Brigham and Womens 
Hospital, Boston, MA, 
USA

Project: 05-042 - T Jacks Lab slides

Chemicals, peptides, and recombinant proteins

Collagenase IV Worthington Biochemical Cat# LS004189

DNase I Sigma-Aldrich Cat# 10104159001

Monensin BioLegend Cat# 420701

Golgi Plug BD Biosciences Cat# 555028

Phorbol-12-myristate-13-acetate (PMA) EMD Millipore Cat# 524400

Ionomycin Calcium Salt Sigma Cat# 13909

Streptavidin, allophycocyanin conjugate Invitrogen Cat# S32362

Streptavidin, R-phycoerythrin conjugate Invitrogen Cat# S21388

Mirus TransIT LT1 Mirus Bio Cat# MIR 2300

SYPRO Orange Protein Gel Stain Thermo Fisher Scientific Cat# S6651

Cyclic-di-GMP Invitrogen Cat# tlrl-nacdg

SIINFEKL peptide New England Peptide Custom

SIYRYYGL peptide New England Peptide Custom

SIINYEKL peptide New England Peptide Custom

ITYTWTRL peptide (mALG8) Genscript Custom

VGFNFRTL peptide (mLAMA4) Genscript Custom

SMLVLLPDEVSGLEQLESIINYEKLTEWTS New England Peptide Custom

SMLVLLPDEVSGLEQLESIINFEKLTEWTS peptide New England Peptide Custom

GRCVGSEQLESIYRYYGLLLKERSEQKLIS peptide New England Peptide Custom

Empty peptide-receptive H-2Kb molecules Saini et al., 2019 Generated in-house

Zombie Fixable Viability Kit BioLegend Cat# 423102

Ghost Dye Tonbo Biosciences Cat# 13-0865-T500

Critical commercial assays

Intracellular Fixation & Permeabilization Buffer Set Kit ThermoFisher Scientific Cat# 88-8824-00

Dynabead Sheep Anti-Rat IgG ThermoFisher Scientific Cat#11035

Chromium Next GEM Single Cell 5′ Library and Gel Bead Kit 10X Genomics Cat# 000167

Chromium Single Cell V(D)J Enrichment Kit, Mouse T Cell 10X Genomics Cat#1000071
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Easysep Dead Cell Removal (Annexin V) Kit StemCell Cat#17899

Deposited data

Mouse KP LucOS SIIN versus SIY scRNA-seq GEO GEO: GSE164177

Sade-Feldman et al. scRNA-seq dataset Sade-Feldman et al., 2019 GEO: GSE120575

Wu et al. scRNA-seq dataset (Wu et al., 2020) GEO: GSE139555

Guo et al. scRNA-seq dataset Guo et al., 2018 GEO: GSE99254

Yost et al. scRNA-seq dataset (Yost et al., 2019) GEO: GSE123813

Tirosh et al. scRNA-seq dataset Tirosh et al., 2016 GEO: GSE72056; Broad Data Use 
Oversight System: DUOS-000002

Mouse and human single cell RNA-sequencing analysis code This Paper GitHub: https://doi.org/10.5281/
zenodo.5110770

t-CYCIF analysis code This Paper GitHub: https://doi.org/10.5281/
zenodo.5104869

Experimental models: Cell lines

GreenGo 3TZ for lentiviral titering Sánchez-Rivera et al., 2014 Available upon request

293FS* viral packaging cell line This paper Available upon request

RMA-S TAP-deficient cell line Schumacher et al., 1990 Available upon request

Experimental models: Organisms/strains

Mouse: B6.129S4-Krastm4Tyj/J Jackson Laboratories Stock No: 008179

Mouse: B6.129P2-Trp53tm1Brn/J Jackson Laboratories Stock No: 008462

Mouse: Il17atm1.1(icre)Stck/J Jackson Laboratories Stock No: 016879

Mouse: B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J Jackson Laboratories Stock No: 007914

Recombinant DNA

Plasmid: Lenti-LucOS DuPage et al., 2011 Addgene Cat# 22777

Plasmid: Lenti-LucSIY This Paper Addgene Cat# 174044

Plasmid: Lenti-LucSIIN This Paper Addgene Cat# 174043

Plasmid: Lenti-LucY5S This Paper Addgene Cat# 174045

Plasmid: Lenti-LucY5 This Paper Addgene Cat# 174046

Plasmid: Lenti-LucA This paper Addgene Cat# 174047

Plasmid: Lenti-LucL This paper Addgene Cat# 174048

Plasmid: Lenti-LucAL This paper Addgene Cat# 174049

Software and algorithms

FlowJo FlowJo Version 10.7.1 https://www.flowjo.com/
solutions/flowjo/downloads

Aperio ImageScope Leica Biosystems Version 12 https://
www.leicabiosystems.com

ImageJ NIH https://imagej.nih.gov/ij/

ImageJ BaSiC Plugin Peng et al., 2017 https://www.helmholtz-
muenchen.de/icb/research/groups/marr-
lab/software/basic/index.html

ASHLAR The Python Package Index https://pypi.org/project/ashlar/

ilastik Berg et al., 2019 https://www.ilastik.org/download.html

MATLAB MathWorks version 
2018a https://www.mathworks.com/
products/matlab.html
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R/Rstudio Rstudio version 1.2.5042 https://
www.rstudio.com/

Seurat Butler et al., 2018 version 
4.0.0 https://cran.r-project.org/web/
packages/Seurat/index.html

CellRanger 10X Genomics version 3.1.0 
https://support.10xgenomics.com/single­
cell-gene-expression/software/overview/
welcome

ComplexHeatmap CRAN Gu et al., 2016 version 2.4.3 https://
bioconductor.org/packages/release/bioc/
html/ComplexHeatmap.html

Tidyr CRAN version 1.1.2 https://tidyr.tidyverse.org, 
https://github.com/tidyverse/tidyr

Cowplot CRAN version 1.1.0 https://wilkelab.org/
cowplot/

GGplot2 CRAN version 3.2.2 https://
ggplot2.tidyverse.org, https://
github.com/tidyverse/ggplot2

GridExtra CRAN version 
2.3 https://cran.r-project.org/web/
packages/gridExtra/index.html

Plyr CRAN version 
1.8.6 https://cran.r-project.org/web/
packages/plyr/index.html

Dplyr CRAN version 
1.0.2 https://cran.r-project.org/web/
packages/dplyr/index.html

Monocle3 Trapnell et al., 2014 version 0.2.3.0 https://cole-trapnell­
lab.github.io/monocle3/

Patchwork CRAN version 1.1.1 https://github.com/
thomasp85/patchwork

Viridis CRAN version 0.5.1 https://github.com/
sjmgarnier/viridis

Circlize CRAN Version: 0.4.11 https://github.com/
jokergoo/circlize

Stringr CRAN Version: 1.4.0 https://
stringr.tidyverse.org, https://github.com/
tidyverse/stringr

Philentropy CRAN Version: 0.4.0 https://github.com/
drostlab/philentropy

Dendextend CRAN Version: 
1.14.0 https://cran.r-project.org/web/
packages/dendextend/index.html

FactoEXTRA CRAN Version: 1.0.7 http://www.sthda.com/
english/rpkgs/factoextra

ProjecTILs Andreatta et al., 2021 v.0.5.1 https://github.com/carmonalab/
ProjecTILs

gplots Warnes, 2015 v.3.1.0 https://cran.r-project.org/web/
packages/gplots/index.html

RColorBrewer Neuwirth, 2014 v.1.1-2 https://cran.r-project.org/web/
packages/RColorBrewer/index.html
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