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ABSTRACT Acute respiratory distress syndrome (ARDS) is a devastating critical illness that can be
triggered by a wide range of insults and remains associated with a high mortality of around 40%. The
search for targeted treatment for ARDS has been disappointing, possibly due to the enormous
heterogeneity within the syndrome. In this perspective from the European Respiratory Society research
seminar on “Precision medicine in ARDS”, we will summarise the current evidence for heterogeneity,
explore the evidence in favour of precision medicine and provide a roadmap for further research in ARDS.
There is evident variation in the presentation of ARDS on three distinct levels: 1) aetiological;
2) physiological and 3) biological, which leads us to the conclusion that there is no typical ARDS. The lack
of a common presentation implies that intervention studies in patients with ARDS need to be phenotype
aware and apply a precision medicine approach in order to avoid the lack of success in therapeutic trials
that we faced in recent decades. Deeper phenotyping and integrative analysis of the sources of variation
might result in identification of additional treatable traits that represent specific pathobiological
mechanisms, or so-called endotypes.

Introduction
Acute respiratory distress syndrome (ARDS) is a devastating critical illness that can be triggered by a wide
range of insults. It is characterised by leukocyte infiltration, local immune activation and alveolar
endothelial and epithelial injury associated with increased pulmonary vascular permeability, acute
pulmonary oedema, and loss of aerated lung tissue [1]. The diagnosis of ARDS is based on the
development of bilateral opacities on chest radiography indicative of pulmonary oedema within 1 week of
known clinical insult, in combination with impaired oxygenation as measured by the ratio of arterial to
inspired oxygen (PaO2

/FIO2
) despite the application of at least 5 cm H2O of positive end-expiratory pressure

(PEEP) [2]. Cardiac failure does not fully explain the radiographic and clinical abnormalities.

No specific aetiological, physiological or biological criteria are required for ARDS diagnosis, inherently
resulting in heterogeneity on these three levels. The in-hospital mortality of ARDS remains around 30–
40% [3]. Treatment of ARDS is limited to the prevention of harm induced by ventilatory support
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(ventilator-induced lung injury (VILI)) through lung protective mechanical ventilation strategies [4].
Recent interventional studies targeting the pathophysiological principles underlying ARDS, such as
inflammation, coagulation, oxidative stress and endothelial injury, have failed to show benefit and,
therefore, the therapy for ARDS remains supportive [5]. We hypothesise that these treatments failed partly
due to insufficient understanding of the heterogeneity of ARDS.

Precision medicine has been defined as “treatments targeted to the needs of individual patients on the
basis of genetic, biomarker, phenotypic, or psychosocial characteristics (a subphenotype) that distinguish a
given patient from other patients with similar clinical presentations (the phenotype)” [6]. Precision
medicine aims to provide a treatment to those patients who will benefit and withhold that same treatment
from those who will not benefit or will be harmed. When does precision medicine provide additional
information on top of the Oslerian paradigm of syndromic pattern recognition? This added value is more
likely when the clinical diagnostic criteria do not capture a single pathophysiological process because only
some of the patients will benefit from a treatment targeting a specific pathophysiological process.
Simultaneously, other patients may experience side-effects without the potential for benefit. The profit
from a precision medicine approach will increase when those side-effects have larger consequences, as is
likely the case in critically ill patients. We acknowledge that “all models are wrong” and that any
subphenotype can be further split into smaller units [7]. Therefore, we do not seek excessive elaboration to
explain the pathophysiology of ARDS but rather seek a simple description of subphenotypes that are
evaluated on their predictive accuracy for treatment response in the hope to find “models that are useful”
and applicable in clinical practice [7].

In this perspective from the European Respiratory Society research seminar on “Precision medicine in
ARDS”, we will summarise the current evidence for heterogeneity, explore the evidence in favour of
precision medicine and provide a roadmap for further research in ARDS. The basic assumption of the
seminar was that there are challenges in heterogeneity of ARDS on three distinct levels: 1) aetiological,
2) physiological and 3) biological [8]. The experts attending the research seminars provided
literature reviews, and researchers presented their latest paper in the form of abstracts. Focus groups
worked on statements for each of the three domains, which were discussed in a round table format at
the conference.

Aetiology
When ARDS was described in 1967 by ASHBAUGH et al. [9], it was noted that patients with different risk
factors showed similar clinical characteristics, and post mortem pathological evaluation revealed diffuse
alveolar damage (DAD) in all. ARDS is now known to be a frequent cause of acute respiratory failure, and
subsequent definitions have become more and more inclusive, lumping patients with increasingly
heterogeneous conditions together [2, 9, 10]. With the current definition, only a minority of patients who
fulfil the criteria for ARDS actually have findings of DAD at post mortem pathological evaluation [11].
Aetiological factors may play role in the heterogeneity of ARDS at three levels: risk factors for lung injury,
factors that further induce pulmonary oedema, and clinical states that stand in the way of reparative
processes of lung injury [1].
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Evidence for heterogeneity and precision approaches
Treatment targeted at specific aetiological causes for ARDS
Other aetiologies under the umbrella of “diffuse interstitial acute lung diseases”, “diffuse pulmonary
infections” and “drug/chemical-induced diffuse lung disease” can present with similar characteristics as
ARDS and fall within the syndrome definition. These diagnoses are sometimes referred to as
ARDS-mimics because they show a known and distinct pathophysiology and require specific treatment.
These patients may be included in clinical trials if no additional diagnostic tests are performed to
distinguish between ARDS and ARDS-mimics [12]. This issue may be important for clinical practice and
trial design, as some of these ARDS-mimics can be effectively treated with immunosuppressants such as
corticosteroids, antimicrobial drugs or withholding the drug that caused the lung injury. There is no
consistent diagnostic approach that takes the probabilities of ARDS-mimics into account [13].

The specific causes for infectious and drug/chemical-induced diffuse lung disease may differ between
institutions and can change over time, as is exemplified by the recent rise of vaping-induced lung injury [14]
and the SARS-CoV-2-2019 pandemic [15]. Recognition of the underlying cause is essential because one of
the fundamentals of ARDS care is the adequate treatment of the underlying disease, when possible. The rapid
discovery of dexamethasone as effective treatment for severe COVID-19 pneumonia shows the importance of
recognition of the underlying aetiology and the potential for phenotype-aware clinical trials [16].

Aggravation of lung injury
We also recognise that there are patients with risk factors for ARDS in whom pulmonary oedema is caused
or aggravated via the administration of fluids, transfusions or injurious mechanical ventilation [17–20]. This
iatrogenic injury should be considered a second hit after the first insult and adds additional complexity to
the syndrome.

ARDS rapidly resolves in some patients, while it does not in others [1, 21, 22]. Super-imposed nosocomial
infection and inadequate or suboptimal treatment of the primary insult may contribute to the persistence
of lung injury. In some patients, fibroproliferation might contribute to the unfavourable evolution of
ARDS, and there currently is no proven therapy to counteract this process. Some evidence suggests that
corticosteroid therapy might be beneficial specifically in patients with fibroproliferation [23].

Attributable mortality
The attributable mortality of ARDS on top of chronic comorbidities and the underlying aetiological factors
is unknown [24]. The attributable mortality may be different between patients with different risk factors.
Trauma and sepsis patients with ARDS required more resources and died more frequently than patients
with similar injuries but no ARDS [25, 26]. However, in patients with severe community-acquired
pneumonia, ARDS was not a risk factor for mortality [27].

Research agenda
1) Establish and apply a diagnostic protocol to identify treatable diseases within the syndrome diagnosis

of ARDS.
2) Evaluate the contribution of second hits such as mechanical ventilation, excess fluid administration

and blood product transfusions, to specific aetiological phenotypes.
3) In patients with unresolved ARDS, identify those patients who have fibroproliferation/nosocomial

infection, or persistence of the primary cause of ARDS.
4) In patients with evidence for fibroproliferation, test treatments such as steroids or anti-fibrotic

treatments in clinical trials.
5) Quantify the attributable mortality of ARDS in the setting of different aetiologies.
6) When performing randomised controlled trials (RCTs), particular care needs to be taken to identify

and, depending on the intervention of choice, possibly exclude patients with ARDS-mimic diagnoses.

Physiology and morphology
The aim of mechanical ventilation in ARDS is to improve gas exchange and thereby buy time for
treatment of the underlying cause, resolution of pulmonary oedema, and repair of injured lung epithelium
and endothelium [28]. The main challenge is to prevent further damage to the lungs due to VILI. Low
tidal volume ventilation was shown to be protective in all patients with ARDS, sparking interest in the
application of other strategies that were considered “lung protective” in an unselected cohort of patients
such as recruitment manoeuvres, high PEEP and prone positioning [29]. “Protective” ventilator strategies
other than low tidal volume ventilation are likely to work in some subsets of patients, while they could be
ineffective or even harmful in others [30, 31].
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Evidence for heterogeneity and precision approaches
Noninvasive support of ventilation and oxygenation
Around 16% of patients with ARDS may not require invasive mechanical ventilation but could be
managed by noninvasive mechanical ventilation (NIV) or high-flow nasal oxygen (HFNO) therapy [32].
High tidal volumes and strongly negative intrathoracic pressures during NIV are speculated to contribute
to failure of this approach via aggravation of lung injury through large pulmonary pressure swings,
sometimes referred to as patient self-inflicted lung injury (P-SILI) [33, 34] and might be more frequent in
patients with moderate or severe hypoxaemia (PaO2

/FIO2
<200 mmHg). The helmet interface is suggested to

be most effective in patients with acute respiratory failure, many of whom have ARDS [35]. HFNO might,
however, be more beneficial in patients with moderate or severe hypoxaemia [36]. Patients managed with
NIV or HFNO whose clinical conditions do not stabilise with this treatment and who require intubation
have worse outcomes [37]. Since the COVID-19 pandemic, there is increasing interest in combining
HFNO or helmet NIV with prone positioning [38].

Persistence of hypoxaemia
The degree of hypoxaemia indicated by the PaO2

/FIO2
and PEEP at the moment of diagnosis may be less

predictive for mortality than a reclassification on the following day [39–41]. There seems to be a
phenotype of ARDS that resolves rapidly [42]. It is unclear what underlying physiology explains this
phenotype, and mortality in this population is still high [39].

Recruitment response
There is a preferential treatment response to higher PEEP, prone positioning and early neuromuscular
blockade in patients with lower PaO2

/FIO2
ratios [43–46]. However, despite these data, enrichment based on

severe hypoxaemia has proven insufficiently effective for an “open lung approach” with high PEEP and
aggressive recruitment manoeuvres, and for neuromuscular blockade in recent years [47, 48].

There is considerable variation in the amount of recruitable lung tissue between patients with ARDS.
Predictors for a recruitable lung include: nonpulmonary ARDS, nonfocal ARDS [51] and lower PaO2

/FIO2

ratios [52]. Thus, there is heterogeneity in response to an open lung approach between patients with
different phenotypes. A recent RCT assigned patients to a “standard” lung protective mechanical
ventilation protocol or to a personalised approach based on a focal or nonfocal morphology of
consolidations on computed tomography (CT)-imaging of the lung [53]. The intention to treat analysis
did not show a difference between the arms, possibly because of the misclassification of morphological
patterns in 20% of cases. In the per protocol analysis excluding misclassified patients, patients in the
personalised mechanical ventilation protocol group showed a lower mortality (hazard ratio 0.6, 95% CI
0.36–0.99). Interestingly, patients who were misclassified had a significantly higher mortality when
receiving the inappropriate treatment, suggesting harm of these interventions when applied to the wrong
population and highlighting the importance of precision therapy.

Studies have failed to address the interactions between tidal volume, PEEP, driving pressure and respiratory
rate and, rather, evaluated each variable in isolation. The establishment of the concept of mechanical power
may serve as a way to stratify the amount of damage inflicted by mechanical ventilation [49, 50].

Research agenda
1) Identify phenotypes that are predictive for a positive response to HFNO or NIV.
2) Identify patients who benefit from specific NIV settings (flow, inspiratory pressure and PEEP),

interface, sedation and analgesia to limit p-SILI.
3) Improve reclassification of patients after the first period of treatment to better identify rapid resolvers

who may not need further lung-focused therapy.
4) Develop alternative (imaging) modalities that can accurately identify focal and nonfocal ARDS

morphology.
5) When performing RCTs, collect data on the physiological and morphological phenotype of patients in

the study and evaluate differential treatment effects.

Biology
Lung injury in ARDS is a consequence of a complex interaction between cellular and biochemical
pathways resulting in lung epithelial and endothelial damage that is clinically characterised by protein-rich
pulmonary oedema [54]. Many underlying biochemical processes have been targeted with drugs that
effectively reverse the molecular mechanism of interest, but none of the studied drugs were effective in
lowering mortality [5]. Heterogeneity in the biological mechanisms responsible for lung injury may explain
these results. Even if patients with ARDS on average have an increased concentration of a certain cell or
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molecule, indicative for a specific mechanistic contribution to the development of lung injury, it does not
necessarily mean that every ARDS patient would benefit from targeting the underlying pathway. In fact,
targeting a pathway that is not activated in a specific patient might lead to harm. Therefore, a personal
assessment of systemic and pulmonary host response could help identifying homogenous patient groups
and guide treatment decisions.

Evidence for heterogeneity and precision approaches
Pre-clinical research
In an ideal world, an experimental model of ARDS would fully reflect the mechanisms of injury, the
clinical evolution, and the outcomes; in this sense, no experimental model of acute lung injury comes
close [55]. No experimental model can hope to replicate the complexity of human ARDS, but some
models will reflect well some aspect(s) of the syndrome [56]. More recently, comparison of biological
heterogeneity between septic humans and mice has resulted in the validation of subphenotypes across
species [57].
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FIGURE 1 ARDS can be phenotyped based on information in three domains: aetiology, physiology and biology. Multiple phenotypes can coexist
between and within a domain (within domain coexistence not shown). We recognise that there is a complex interaction between phenotypes and
that true endotypes might capture phenotypic presentations within multiple domains. Traits are potentially treatable based on phenotypic
recognition and subsequent empirical evidence for effectivity of intervention or on deep understanding of the critical causal pathways. ARDS:
acute respiratory distress syndrome; PEEP: positive end-expiratory pressure.
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TABLE 1 Potential treatable traits in ARDS across aetiology, physiology and morphology, and biology

Domain Subdomain Trait Test Evidence Interventions to be tested Challenges

Aetiology Causal pathogen COVID-19 PCR for virus [16] Dexamethasone
ARDS-mimic Diffuse acute interstitial lung

diseases
History
Imaging
Immunological analysis

[75–77] Immunosuppression Relatively rare and requires systematic investigation to
identify

Diffuse pulmonary infections History
Serology
Imaging
Culture
Metabolic products
Metagenomics

[78] Antimicrobials

Drug-induced diffuse lung disease History www.pneumotox.com Withhold drug
Amplifiers of lung

injury
Fluid overload History

Clinical examination
Ultrasound
Extravascular lung water

[79] Diuretics
Vasopressors

Diagnosis of fluid overload can be challenging

Ventilator-induced lung injury Tidal volume
Driving pressure
Mechanical power

[80] Lower tidal volumes No direct test for the actual development of VILI

Nonresolving lung
injury

Fibroproliferation Markers of fibroproliferation in
bronchoalveolar lavage fluid

[27] Corticosteroids
Antifibrotics

Biomarker test not routinely available

Secondary infection Imaging
Culture
Metagenomics

[81] Antimicrobials Identify ventilator-associated pneumonia in patient
with ARDS

Physiology Shunt PaO2
/FIO2

Blood gas [43, 44] Prone positioning
Adjust PEEP
Lung recruitment

Various thresholds proposed in different studies
Influence of PEEP on PaO2

/FIO2

Ventilation Dead space ventilation Dead space calculation
Ventilatory ratio

[82] Adjust PEEP Volumetric capnography not widely available

Drive High respiratory drive on NIV Oesophageal pressure [34] Analgesia and sedation Balance between high drive and too low drive
Mechanics High mechanical power Formula based [49] Adjust PEEP, tidal volume and/or

respiratory rate
Various thresholds proposed and unclear how to

adjust settings based on value
Driving pressure Ventilator settings

Oesophageal pressure
[83] Adjust PEEP Various thresholds proposed in different studies

Morphology Imaging Focal Imaging [53, 84, 85 ] Prone positioning
Low PEEP

Misclassification of morphology common and
associated with worse outcome

Nonfocal Imaging [53, 84, 85] Lung recruitment
High PEEP

Biology Systemic host
response

Hyperinflammatory (or Reactive) IL-8, bicarbonate and protein C
IL-6, bicarbonate and TNFRI

[31, 60, 62, 63, 86] High PEEP
Restrictive fluid
Simvastatin
Immunomodulation

No routine test available
Frequently unknown if cause or effect of lung injury

Epithelial injury Damaged epithelium Biomarkers e.g. sRAGE [87] Epithelial protection
Endothelial injury Vascular permeability and

endothelial injury
Biomarkers e.g. angiopoietin 1 and 2 [88] Endothelial protection

Immunomodulation
Angiopathy Microthrombosis Biomarkers e.g. D-dimers, PAI-1

Perfusion imaging
[89, 90] Anticoagulation

Immunomodulation
Local host response Pulmonary hyper-inflammation Biomarkers in bronchoalveolar lavage

fluid
[91] Immunomodulation

There are a wide range of clinical conditions, ARDS severities and mediators in lung injury pathogenesis that may be targetable for treatment. Most interventions listed are speculative
and should not yet be applied. The list is also not exhaustive. For all these interventions, we emphasise the need for phenotype-aware randomised controlled trials. COVID-19:
coronavirus disease 2019; ARDS: acute respiratory distress syndrome; VILI: ventilator-induced lung injury; PaO2: arterial oxygen tension; FIO2: inspiratory oxygen fraction; PEEP: positive
end-expiratory pressure; NIV: noninvasive mechanical ventilation; IL: interleukin; TNFRI: tumour necrosis factor receptor 1; sRAGE: soluble receptor for advanced glycation endproducts;
PAI-1: plasminogen activator inhibitor-1.
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Identification of biological phenotypes
Using latent class analysis (LCA) of a panel of plasma biomarkers of inflammation, endothelial injury and
coagulopathy in combination with routinely available clinical variables revealed two phenotypes across five
RCTs [31, 58–60]. The so-called hyperinflammatory phenotype consistently had a higher mortality than
the hypoinflammatory phenotype. These phenotypes seem to be stable at least up to 3 days after intensive
care unit (ICU) admission [61].

Cluster analysis of a set of 20 biomarkers of inflammation, endothelial injury and coagulopathy without
consideration of routinely available clinical variables in an observational study also revealed two
phenotypes with consistent differences in mortality [62]. The gene expression of leukocytes in peripheral
blood at admission to the ICU was profoundly different between phenotypes particularly in pathways
involved in neutrophil activation, cholesterol metabolism and oxidative phosphorylation [63].

Differential treatment responses between biological phenotypes
Post hoc analysis of several RCTs showed that patients with the hyperinflammatory phenotype had a
differential response to PEEP, fluid management and simvastatin treatment compared with patients with a
hypoinflammatory phenotype [31, 58–60].

A parsimonious model of different combinations of three or four biomarkers (interleukin (IL)-6 or IL-8,
bicarbonate, tumour necrosis factor receptor 1 or protein C, possibly in combination with vasopressor use)
as well as a machine learning algorithm that used readily available clinical data was able to accurately
identify the LCA phenotypes and showed adequate predictive enrichment in post hoc analysis of the above
described RCTs [64, 65].

Endotyping
Despite these promising findings, the currently available data is insufficient to endotype because
subphenotypes have not been related to specific pathobiological mechanisms [66, 67]. True endotyping
would reliably identify and measure the critical biochemical pathways within patients and inform
treatment based on a deep and highly predictive understanding of the underlying pathophysiology.

Research agenda
1) Translate biological variation in humans to animal models of acute lung injury by matching animal

models to phenotypes rather than assuming that the model is representative of all human ARDS.
2) Embrace heterogeneity within animal models by introducing variation through experimentation in

different laboratories, across (sub-)species, ages and comorbidities.
3) Validate the identified biological phenotypes in prospective clinical studies.
4) Determine the evolution of biological phenotypes throughout the course of ARDS and evaluate the

influence of interventions on phenotype assignment.
5) Explore the generalizability of biological phenotypes of ARDS to other populations such as patients

with acute respiratory failure, sepsis and unselected ICU patients.
6) Compare phenotypes based on plasma biomarkers to the pulmonary biological response by obtaining

simultaneous samples from the lung and systemic compartments.
7) Further increase our understanding of heterogeneity within ARDS by deeper phenotyping and better

understanding the immunology through functional assays, possibly resulting in the identification of
endotypes.

8) Develop surrogate outcomes that reflect effectiveness of treatment within the target pathway of
intervention.

9) Ideally, all ARDS RCTs should collect biological samples in order to consider the biological phenotype
of patients in the study and evaluate differential treatment effects.

Integrating heterogeneity in aetiology, physiology and biology
One of the major challenges of precision medicine is to split patients into homogenous groups that are
adequately enriched for positive treatment effects, while lumping a sufficient proportion of patients
together to test interventions on clinically relevant outcomes, which frequently require large sample sizes.
For this purpose, it is pivotal to understand the links between the three sources of heterogeneity (figure 1).
We recognise that any subdivision in domains, including ours in aetiology, physiology and biology, is
arbitrary. If a phenotype translates from one domain to another, the more easily evaluated phenotype can
be used as a surrogate for the other. For example, the plasma concentration of the soluble form of the
receptor for advanced glycation end products (sRAGE), a marker for lung epithelial injury, is strongly
associated with the presence of nonfocal ARDS [68]. This finding is in line with the hypothesis that
widespread pulmonary permeability is more profound in nonfocal ARDS and that an open lung approach
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may benefit these patients. Furthermore, sRAGE or another surrogate may substitute for CT scanning to
identify this morphological phenotype. However, biomarkers of endothelial injury and lung epithelial
damage were significantly different between patients with pulmonary and nonpulmonary causes of lung
injury, but still showed so much overlap that we cannot equate the aetiological factor with a particular
biological phenotype [69, 70]. We recognise these are only the first steps into integrating information from
the different domains and acknowledge the need for more collaboration between experts in all aspects of
the quantification of heterogeneity and integration of the generated information in the near future.

Research agenda
1) Define the relationship between aetiological, physiological and biological phenotypes, with deeper

phenotyping on all three levels.
2) A better treatment of ARDS requires open sharing of data, expertise and integration of multiple data

streams.
3) Apply techniques used to integrate phenotypic data in other complex syndromes, such as chronic

airway diseases or heart failure, in ARDS [71].

Towards treatable traits
One approach that has gained considerable attention in chronic airway diseases is the concept of treatable
traits [72]. To cite: “these traits can be treatable based on phenotypic recognition (and thereby probabilistic
evidence based on positive and negative predictive values) or on deep understanding of the critical causal
pathways (e.g. true endotypes)” [72]. These treatable traits may be independent of the traditional
syndromic diagnosis and may change over time. For ARDS, we propose to take a similar approach in
which a patient can fulfil multiple treatable traits and thereby require multiple treatments. Furthermore, as
treatable traits are, per definition, label-free they might generalise outside of ARDS, to acute respiratory
failure [73], sepsis [74] or even unselected critically ill ICU patients. We can already start to recognise
some potential treatable traits within the ARDS syndrome (table 1), although we emphasise that
prospective validation of these approaches is pivotal. Using a treatable traits framework, we can rethink the
concept of “ARDS-mimickers” and consider them as examples of treatable traits within the larger
syndrome of ARDS (see table 1).

Implications of the research agenda
The evidence for aetiological, physiological and biological heterogeneity in ARDS has important
implications for clinical, translational and basic scientists. We presented a list of research priorities that
will require elaborate collaboration between researchers across continents, disciplines and expertise. We
invite researchers and clinicians from around the world to join us in these efforts. One of the major
challenges is that funding agencies incentivise solo projects in radical new directions rather than the highly
collaborative, descriptive and iterative studies that are needed to better define phenotypes and validate
previous findings [92]. This paper will require novel initiatives of international and intercontinental
collaboration.

Perhaps the most important implication of the observed heterogeneity in ARDS is that future RCTs in an
unselected population of patients with ARDS should make efforts to thoroughly phenotype the included
patients, so as to try to identify phenotypes that are predictive of a positive response in post hoc analysis.
Ultimately, we believe that RCTs should include a phenotype-based allocation strategy in order to have a
chance of showing benefit of the intervention, though it is premature at this point to proceed in this
direction without prospective validation of phenotypes. Furthermore, it is of utmost importance to select
the end-point based on the attributable effect of ARDS on the outcome within the specific phenotype.

Conclusions
The search for targeted treatment for ARDS has been disappointing, possibly due to the enormous
heterogeneity within the syndrome. We propose to systematically address the variations in aetiology,
physiology and biology in order to identify treatable traits that can be targeted in future clinical trials. We
have established a research agenda and a list of potential treatable traits that may serve as a basis for future
studies. Deeper phenotyping and integrative analysis of the sources of variation might result in identification
of additional treatable traits that represent specific pathobiological mechanisms, or so-called endotypes.
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