
RESEARCH ARTICLE

Recursive MAGUS: Scalable and accurate

multiple sequence alignment

Vladimir SmirnovID*

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States

of America

* smirnov3@illinois.edu

Abstract

Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data,

as few methods can handle large datasets while maintaining alignment accuracy. We

recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of

sequences. In this paper, we present a comprehensive set of enhancements that allow

MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other

leading alignment methods on datasets of up to one million sequences. Our results demon-

strate the advantages of MAGUS over other alignment software in both accuracy and speed.

MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.

Author summary

Many tasks in computational biology depend on solving the problem of multiple sequence

alignment (MSA), which entails arranging a set of genetic sequences so that letters with

common ancestry are stacked in the same column. This is a computationally difficult

problem, particularly on large datasets; current MSA software is able to accurately align

up to a few thousand sequences at a time. Unfortunately, growing biological datasets are

rapidly outpacing these capabilities. We present a new version of our MAGUS alignment

tool, which has been massively scaled up to handle datasets of up to one million sequences,

and demonstrate MAGUS’s excellent performance in aligning ultra-large datasets. The

MAGUS software is open-source and can be found at https://github.com/vlasmirnov/

MAGUS.

This is a PLOS Computational Biology Software paper.

Introduction

One of the principal problems in computational biology is multiple sequence alignment

(MSA), being necessary for a wide range of downstream applications. This challenge is well-

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Smirnov V (2021) Recursive MAGUS:

Scalable and accurate multiple sequence

alignment. PLoS Comput Biol 17(10): e1008950.

https://doi.org/10.1371/journal.pcbi.1008950

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Received: April 5, 2021

Accepted: September 9, 2021

Published: October 6, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008950

Copyright: © 2021 Vladimir Smirnov. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: MAGUS is open-

source and freely available at https://github.com/

vlasmirnov/MAGUS. The datasets used in this

study can be downloaded from the Illinois Data

Bank at https://doi.org/10.13012/B2IDB-1048258_

V1.

https://orcid.org/0000-0002-7826-1214
https://github.com/vlasmirnov/MAGUS
https://github.com/vlasmirnov/MAGUS
https://github.com/vlasmirnov/MAGUS
https://doi.org/10.1371/journal.pcbi.1008950
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008950&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008950&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008950&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008950&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008950&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008950&domain=pdf&date_stamp=2021-10-18
https://doi.org/10.1371/journal.pcbi.1008950
https://doi.org/10.1371/journal.pcbi.1008950
http://creativecommons.org/licenses/by/4.0/
https://github.com/vlasmirnov/MAGUS
https://github.com/vlasmirnov/MAGUS
https://doi.org/10.13012/B2IDB-1048258_V1
https://doi.org/10.13012/B2IDB-1048258_V1

studied, and a good number of strong methods have been developed [1–8]. Most of these lead-

ing methods follow the paradigm of “progressive alignment”, and are able to show reasonable

accuracy and speed on datasets of modest size (a few hundred to a few thousand sequences).

Unfortunately, datasets with more sequences and greater evolutionary diameters require a

different approach. Accurate progressive alignment methods rely on heuristics whose run-

times scale very poorly, and early mistakes are compounded over large numbers of pairwise

alignments. As a consequence, a family of divide-and-conquer methods was developed to meet

the demands of larger datasets [9–11].

MAGUS (Multiple Sequence Alignment using Graph Clustering) was recently introduced

[12] as a new evolution of this family. MAGUS uses the GCM (Graph Clustering Merger) tech-

nique to combine an arbitrary number of subalignments, which allows MAGUS to align large

numbers of sequences with highly competitive accuracy and speed. In its original form,

MAGUS is able to align up to around 40,000 sequences.

In this paper, we extend MAGUS to handle datasets of much greater size, demonstrating

alignments of up to one million sequences. The next section briefly explains how MAGUS

operates, and presents our extensions to enable scalability. Next, we describe our experimental

study and show our results, comparing MAGUS to other methods with regard to alignment

accuracy and speed over ultra-large datasets. Finally, we discuss our findings and future work.

Design and implementation

Overview of MAGUS

MAGUS is a recently developed divide-and-conquer alignment method that inherits the basic

structure of the earlier PASTA [11] algorithm: MAGUS decomposes the dataset into subsets,

aligns them piecewise, and merges these subalignments together. The basic algorithm is out-

lined in Fig 1 and itemized below.

Input: a set of unaligned sequences.

1. Construct a guide tree over the unaligned sequences. (Our default way of doing this is

explained below.)

2. Use the guide tree to break the dataset into subsets. This is done by “centroid edge decom-

position” [11], deleting edges to break the tree into sufficiently small, balanced pieces.

3. Align each subset with MAFFT -linsi [3].

4. Construct a set of backbone alignments spanning our subsets. Each backbone is composed

of equal-sized random subsets from each subalignment and aligned with MAFFT -linsi.

5. Compile the backbones into an alignment graph. Each node represents a subalignment col-

umn, and the edges are weighted by how often they are matched by the backbone

alignments.

6. Cluster the alignment graph with MCL [13].

7. Order the clusters into a valid alignment. We use a heuristic search to resolve conflicts with

minimal changes.

8. Output the full alignment.

Please refer to the original paper [12] for more information. Steps 5–8 comprise GCM

(Graph Clustering Merger, Fig A in S1 Text), the method by which MAGUS merges subalign-

ments and its biggest departure from previous divide-and-conquer methods. The pipeline was

built to be flexible: the user can supply their own subalignments in lieu of steps 1–4, their own

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 2 / 17

Funding: This work was funded by the Ira & Debra

Cohen Graduate Fellowship to VS. VS was also

funded by a research assistantship with Dr. Tandy

Warnow, which was funded by NSF grant ABI-

1458652. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008950

guide tree for step 2, and their own backbones for step 5. The number and size of subsets and

backbones can also be controlled.

Motivation for MAGUS enhancement

Despite its advantages, the original version of MAGUS (“MAGUS 1”) suffers from a number

of constraints on its scalability. We motivate the need for improvement by glancing ahead to

our experimental study, where MAGUS 1 is seen to struggle with increasing dataset sizes:

MAGUS 1 takes over 20 hours to align 50,000 sequences and fails on larger datasets due to

memory issues. In the next section, we explain the limitations of MAGUS 1 and present the

improvements that comprise the paper.

MAGUS improvements

Recursion. First, there is a soft limit on how many sequences MAGUS 1 can reasonably

align. MAFFT -linsi [3], which is used for building subset and backbone alignments, starts to

really slow down past around 200 sequences. Additionally, the cluster ordering step (step 8

above) tends to struggle with more than about 200 subsets. Therefore, assuming a practical

limit of about 200 subsets of 200 sequences each, unmodified MAGUS can be expected to han-

dle up to around 200 × 200 = 40,000 sequences.

We parry this limitation with a fairly straightforward recursive structure, shown in Fig 2.

Instead of automatically aligning our subsets with MAFFT, subsets larger than a threshold are

recursively aligned with MAGUS. This threshold can be set by the user and is, by default, the

greater of the backbone size and the target subset size used for decomposition. Our subalign-

ments are merged with GCM just as before, regardless of whether each subalignment was esti-

mated with MAFFT or MAGUS.

Fig 1. MAGUS overview. The unaligned sequences are decomposed into disjoint subsets, which are individually aligned and merged together with GCM.

https://doi.org/10.1371/journal.pcbi.1008950.g001

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 3 / 17

https://doi.org/10.1371/journal.pcbi.1008950.g001
https://doi.org/10.1371/journal.pcbi.1008950

Parallelism. The next issue is parallelism. MAGUS 1 already implements thread-parallel-

ism: it runs on a single compute node, and it can use all available threads on that node to run

MAFFT tasks in parallel. This is more than enough for a few tens of thousands of sequences on

a decent machine. However, with ultra-large datasets, we definitely want to benefit from node-

parallelism, when multiple compute nodes can collaborate. We implement node-parallelism

by extending MAGUS 1’s task management code. MAGUS 1 maintains task files with MAFFT

alignments and other self-contained tasks that are pending or running, which allows worker

threads to divide the jobs and MAGUS to easily resume in case of failure. Reworking this sys-

tem to allow for multiple compute nodes to use the same set of files effectively permits any

number of nodes to join and take tasks to work on.

Guide tree. MAGUS decomposes the dataset into subsets by estimating a rough guide

tree with FastTree [14], a fast maximum likelihood tree estimation method. Since FastTree

requires an alignment, we first compile a rough alignment by aligning 300 random sequences

with MAFFT and adding the remaining sequences with HMMER [15]. The guide tree is recur-

sively broken apart until the subsets are small enough. This is the same strategy used in

PASTA, and seems very difficult to improve upon. On very large alignments, however, even

Fig 2. Recursive MAGUS overview. Instead of aligning all of our subsets with MAFFT, subsets larger than a given threshold are recursively aligned with MAGUS. Subsets

below the threshold are aligned with MAFFT. As before, all subalignments are merged with GCM.

https://doi.org/10.1371/journal.pcbi.1008950.g002

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 4 / 17

https://doi.org/10.1371/journal.pcbi.1008950.g002
https://doi.org/10.1371/journal.pcbi.1008950

FastTree becomes painfully slow (around 5 days on a million sequences, as will be shown

below).

The new version of MAGUS presents a wider range of guide tree options, intended for situ-

ations where FastTree might not be fast enough or fails due to numerical issues. The guide tree

can now also be generated with Clustal Omega’s [2] initial tree method, MAFFT’s PartTree

[16] initial tree method, and FastTree’s minimum evolution tree (i.e. limited to distance-based

calculations without maximum likelihood). In extremis, the dataset can be decomposed ran-

domly for maximum speed.

Memory management and alignment compression. Memory management becomes a

salient problem when handling very large datasets. For example, without modifications,

MAGUS alignments on the full million-sequence RNASim dataset fall between 1 and 3 tera-

bytes (Fig B in S1 Text). Moreover, simply having too many subalignments loaded into mem-

ory at the same time can overrun the available RAM at such dataset sizes.

We solve the latter problem by reworking the code to ensure that at most one subalignment

may be fully loaded into memory at any time. With large dataset sizes, this limits the memory

complexity of MAGUS to the size of the largest subalignment.

The problem of excessively large alignments is addressed by introducing a method of con-

servative lossy compression. If MAGUS calculates that the size of the uncompressed alignment

will exceed a threshold (100GB by default, may be set by the user), MAGUS will compress the

alignment to the threshold size. The compression scheme is fairly straightforward and works

by “dissolving” columns: the letters are set to lower-case and shunted to neighboring columns.

If the neighboring columns already contain lower-case letters from the same sequences, these

are also shunted away in a recursive domino effect. (If the neighboring columns already con-

tain upper-case letters from the same sequences, then the move is invalid.) Columns are dis-

solved one at a time, starting with those containing the fewest letters, until the threshold is

reached or no more valid moves remain. Please refer to Fig 3 for an example.

Note that if we “dissolve” a column with only one upper-case letter, then no homologous

pairs are lost. Thus, the compression procedure remains lossless for as long as we are only dis-

solving such columns, and MAGUS allows the user to request lossless compression.

Table B in S1 Text shows the effect of compression on MAGUS’s RNASim alignments at

various sizes. At one million sequences, for example, the uncompressed alignment is about

1037GB, which can be reduced to 591GB with lossless compression, and reduced further to

25GB with lossy compression. Similarly, the uncompressed alignment over 500,000 sequences

is 366GB, falling to 193GB with lossless compression and 10GB with lossy compression. Lossy

compression increases the SP error by less than one millionth on these datasets, so it is gener-

ally safe to use.

Results

Experimental design

Our experimental design is outlined below.

The preliminary portion of our study that explores the effects of our MAGUS extensions

described above, using MAGUS 1 as our baseline. We test the impact of compression on align-

ment error, the use of different guide trees, and the benefit of node-parallelism. Due to space

limitations, these results are available in the Supplementary Materials.

Our subsequent experiments compare MAGUS against a range of competing methods

across all of our datasets. This is the most important part of our study, intended to exercise the

current state-of-the-art in the alignment of ultra-large nucleotide and protein datasets. We

present our results below.

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 5 / 17

https://doi.org/10.1371/journal.pcbi.1008950

Datasets. Our study uses a number of simulated and biological datasets from previous

publications [4, 11]. Please see Table 1 for dataset statistics. These datasets were selected to pro-

vide suitably large and varied alignment problems with reference alignments, containing both

nucleotide and amino acid sequences.

• RNASim: [11] This is a simulated RNA dataset, generated under a non-homogeneous

model of evolution that does not conform to the usual GTR model assumptions. We use sub-

samples ranging from 10,000 to the full one million sequences, with one replicate per size.

• 16S: [17] We use three large biological nucleotide datasets from the Comparative Ribosomal

Website: 16S.3, 16S.T, and 16S.B.ALL, with 6,323, 7,350, and 27,643 sequences, respectively.

• HomFam: [2] Finally, we include 19 amino acid HomFam datasets from, which have small

Homstrad reference alignments on 5–20 sequences each. These datasets range from 10,099

to 93,681 sequences and allow us to evaluate our methods on large protein datasets. (Follow-

ing the PASTA paper, we exclude the “rhv” dataset due to having a weak alignment).

Methods. We compare the following methods in our study, taken from previous publica-

tions [4, 11]. To the best of our knowledge, these methods are presently the best-equipped to

tackle very large multiple sequence alignments. Regressive T-Coffee [18] is another recent

development, but we were unable to run it on Blue Waters.

• MAGUS 1 We use the original MAGUS as a baseline. This version does not use recursion or

compression, uses a FastTree decomposition, and can only run on a single node.

• MAGUS The latest version takes advantage of the new features detailed above. We enable

recursion and compress alignments above 100GB. In addition to the default FastTree

Fig 3. Alignment compression example. At each step, we dissolve the column with the smallest number of upper-case

letters (i.e., homologous pairs), that can be merged sideways without displacing upper-case letters in another column.

Dissolved letters become lower-case and no longer represent homology. Steps 2 and 3 dissolve singleton columns, and

are thus lossless. Steps 4 and 5 are lossy. Note step 5, where the lowercase ‘t’ in the destination column was shunted

further left to make room. Step 6 simply disposes of the empty columns to form the final, compressed alignment.

https://doi.org/10.1371/journal.pcbi.1008950.g003

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 6 / 17

https://doi.org/10.1371/journal.pcbi.1008950.g003
https://doi.org/10.1371/journal.pcbi.1008950

decomposition, we explore other guide trees: FastTree without Maximum Likelihood,

MAFFT’s PartTree, Clustal Omega’s initial tree method, and a random decomposition.

Henceforth, we indicate the guide tree and use of recursion in parentheses. For example,

MAGUS(Recurse, Clustal) denotes MAGUS using Clustal Omega’s guide tree and with

recursion enabled.

• PASTA [11]

• UPP [4]

• UPP(Fast) We use the “Fast” mode described in the UPP paper.

• Muscle [1]

• Clustal Omega [2]

• MAFFT -auto [3]. The “auto” mode directs MAFFT to choose an appropriate alignment

strategy based on the input dataset.

Error metrics. We evaluate alignment accuracy using SPFP/SPFN (Sum-of-Pairs False

Positives and Negatives) rates, computed using FastSP [19]. These values represent the frac-

tions of missing and incorrect homologous pairs in the estimated alignment. For convenience,

Table 1. Dataset properties. Statistics taken from [11]. P-distance denotes the normalized Hamming distance, or the fraction of non-gap letter pairs that do not match.

Alignment length shows the length of the reference alignment.

Dataset # Seqs Avg. p-dist. Max p-dist. % gaps align. length type

RNASim 10,000–1,000,000 0.41 0.61 93 18,268 sim NT

16S

- 16S.3 6,323 0.32 0.83 82 8,716 bio NT

- 16S.T 7,350 0.35 0.90 87 11,856 bio NT

- 16S.B.ALL 27,643 0.21 0.77 80 6,857 bio NT

HomFam

- gluts 10,099 0.60 0.81 8 235 bio AA

- myb-DNA-binding 10,398 0.59 0.77 12 61 bio AA

- tRNA-synt-2b 11,293 0.81 0.88 34 467 bio AA

- biotin-lipoyl 11,833 0.71 0.84 26 112 bio AA

- hom 12,037 0.64 0.84 35 98 bio AA

- ghf13 12,607 0.72 0.84 25 626 bio AA

- aldosered 13,277 0.57 0.79 19 386 bio AA

- hla 13,465 0.24 0.33 0 178 bio AA

- Rhodanese 14,049 0.76 0.89 31 216 bio AA

- PDZ 14,950 0.69 0.84 15 110 bio AA

- blmb 17,200 0.79 0.90 30 344 bio AA

- p450 21,013 0.79 0.87 20 512 bio AA

- adh 21,331 0.36 0.47 0 375 bio AA

- aat 25,100 0.71 0.87 15 476 bio AA

- rrm 27,610 0.77 0.91 45 157 bio AA

- Acetyltransf 46,285 0.75 0.87 29 229 bio AA

- sdr 50,157 0.77 0.89 28 361 bio AA

- zf-CCHH 88,345 0.65 0.85 25 39 bio AA

- rvp 93,681 0.63 0.76 19 132 bio AA

https://doi.org/10.1371/journal.pcbi.1008950.t001

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 7 / 17

https://doi.org/10.1371/journal.pcbi.1008950.t001
https://doi.org/10.1371/journal.pcbi.1008950

we show the average of SPFP and SPFN as a single “SP error” in the main paper; SPFP and

SPFN are shown separately in the Supplementary Materials. Our estimated alignments are

compared against the true alignment on RNASim and the curated reference alignments on

16S. The HomFam datasets provide reference alignments over a small number of included

sequences; we compute our alignment error over just these reference sequences.

Computing resources. We used the NCSA Blue Waters supercomputer for our experi-

ments. Our jobs were run on nodes with 32 cores, 64GB of RAM, and a maximum wall time of

7 days.

Experimental results

The preliminary part of our study, which investigates the impacts of compression, guide tree

selection, and node-parallelism, is available in the Supplementary Materials (due to space con-

straints). These results provide us with two natural guide tree choices for MAGUS: using Fas-

tTree (the default, described above) is the most accurate, while using Clustal Omega’s initial

tree is the faster alternative. Here, we present the principal part of our study, where we com-

pare MAGUS to our other methods across all of our datasets.

HomFam. Our first set of results concern the HomFam protein datasets. The error rates

are averaged in Fig 4, and the complete results for all datasets are available in Table C in S1

Text. These results show more variability than the other datasets, but the general trends are as

follows. Muscle and Clustal trail the others, averaging 46.6% and 27.2% error, respectively.

MAFFT, UPP, and PASTA are all on par, averaging about 21–23% error. The MAGUS ver-

sions perform markedly better: MAGUS(Recurse, Clustal) yields 17.9% error, MAGUS

(Recurse, FastTree) shows 16.5%, and MAGUS 1 leads with 15.5%. Furthermore, MAGUS 1

achieves the best result on 12 of the 19 datasets. Recursive MAGUS (both versions) accounts

for 2 of the others, while Clustal and UPP each do best on 2.

Fig 4. Average SP error on HomFam datasets. Error is the average of SPFP and SPFN. Results are averaged over the datasets where all

methods completed (Muscle segfaulted on two). Error bars show standard error. MAGUS was run with the default 25 subsets.

https://doi.org/10.1371/journal.pcbi.1008950.g004

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 8 / 17

https://doi.org/10.1371/journal.pcbi.1008950.g004
https://doi.org/10.1371/journal.pcbi.1008950

The HomFam runtime results are shown in Fig 5 and Fig N in S1 Text. PASTA is visibly

the slowest, taking about 2–5 hours on the smaller datasets and up to 20 hours on the larger

ones. MAFFT, UPP(Fast), Clustal Omega, and MAGUS(Recurse, Clustal) are the fastest, gen-

erally finishing in a few minutes to an hour. Notably, we see MAGUS 1 begin to dramatically

slow down without recursion, running longer than MAGUS(Recurse, FastTree) on the largest

datasets.

16S. The next set of results pertain to the biological 16S datasets, shown in Figs 6 and 7.

As above, Muscle and Clustal trail the other methods in accuracy. On the smallest dataset,

16S.3, the results are fairly close: UPP(Fast), PASTA, and all versions of MAGUS are at about

19% SP error. There is a larger difference on 16S.T, with PASTA at around 23%, UPP and

UPP(Fast) around 21%, and all versions of MAGUS at about 20%. Lastly, UPP, PASTA, and

MAGUS are again fairly close on 16S.B.ALL; PASTA shows about 11% error, while both ver-

sions of UPP and MAGUS have about 10.5% error.

In terms of runtime, we see that UPP, PASTA, and both versions of recursive MAGUS are

the slowest methods on 16S.3 and 16S.T, running around 4–5 hours. The fastest method is

MAFFT(auto) at about 2 minutes, while Muscle and UPP(Fast) take about half an hour. The

picture is a little different on 16S.B.ALL, where Muscle, UPP, and PASTA seem to drastically

slow down; they take about 11, 14, and 17 hours, respectively. MAGUS 1 also falters here, tak-

ing 18 hours, while recursive MAGUS with FastTree and Clustal only increases to 8 and 4

hours, respectively. MAFFT and UPP(Fast) remain the fastest, only taking 1–2 hours.

RNASim. In the final part of our study, we probe the limits of scalability on the RNASim

datasets. Figs 8 and 9 show us the error and runtime results, while Table 2 summarizes all

method failures. Muscle is the worst performer here, with 65–70% error and segfaulting after

50,000 sequences. Clustal Omega does better, with errors between about 30% and 60%, run-

ning out of time after 200,000 sequences. Then comes MAFFT -auto, with a steady error of

Fig 5. Homfam (largest 10 datasets) runtime, all methods. MAGUS was run with the default 25 subsets. Muscle segfaulted on the two

largest datasets.

https://doi.org/10.1371/journal.pcbi.1008950.g005

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 9 / 17

https://doi.org/10.1371/journal.pcbi.1008950.g005
https://doi.org/10.1371/journal.pcbi.1008950

25–30% up to 100,000 sequences. Oddly, even though it is one of the fastest methods at

100,000 sequences (about 3.6 hours), it runs out of time at 200,000 sequences.

The accuracy of our remaining methods is shown more clearly in Fig 10. UPP(Fast) trails

the other methods in accuracy, with about 2% higher error than PASTA and UPP. PASTA and

UPP are about the same at around 10% error. MAGUS 1 and recursive MAGUS (both

Fig 6. 16S alignment error, all methods. Error is the average of SPFP and SPFN. MAGUS was run with the default 25 subsets.

https://doi.org/10.1371/journal.pcbi.1008950.g006

Fig 7. 16S runtime, all methods. Runtime is shown in hours. MAGUS was run with the default 25 subsets. MAFFT -auto completed in a

few minutes on 16S.3 and 16S.T.

https://doi.org/10.1371/journal.pcbi.1008950.g007

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 10 / 17

https://doi.org/10.1371/journal.pcbi.1008950.g006
https://doi.org/10.1371/journal.pcbi.1008950.g007
https://doi.org/10.1371/journal.pcbi.1008950

Fig 8. RNASim alignment error, all methods. Error is the average of SPFP and SPFN. ‘X’ markers indicate that compression was used

(MAGUS alignments above 100GB). MAGUS was run with 100 subsets on RNASim to reduce load on Blue Waters. Compute nodes had

64GB of RAM and a maximum wall time of 7 days.

https://doi.org/10.1371/journal.pcbi.1008950.g008

Fig 9. RNASim runtime, all methods. Runtime is shown in hours. MAGUS was run with 100 subsets on RNASim to reduce load on Blue

Waters. Compute nodes had 64GB of RAM and a maximum wall time of 7 days.

https://doi.org/10.1371/journal.pcbi.1008950.g009

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 11 / 17

https://doi.org/10.1371/journal.pcbi.1008950.g008
https://doi.org/10.1371/journal.pcbi.1008950.g009
https://doi.org/10.1371/journal.pcbi.1008950

versions) have the best accuracy. MAGUS 1 is the most accurate at 10,000–50,000 sequences

(8.2–7.8% error), but can’t proceed beyond that. MAGUS(Recurse, FastTree) is second-best at

about 8.5–8%. MAGUS(Recurse, Clustal) consistently trails MAGUS(Recurse, FastTree) by

about 0.5% below 200,000 sequences, and declines to about 8.3% on 1,000,000 sequences.

Aside from MAGUS(Recurse, Clustal), UPP(Fast) is the only other method that aligned all

1,000,000 sequences in a week; UPP took about 77 hours to align all 1,000,000 sequences,

while MAGUS(Recurse, Clustal) took about 128 hours. PASTA encountered memory issues,

while UPP and MAGUS(Recurse, FastTree) ran out of time. Notably, UPP, Clustal Omega,

and MAGUS(Recurse, FastTree) showed comparable runtime scaling, all three just meeting

the 1 week time limit at 200,000 sequences. MAGUS 1 initially scales better than recursive

MAGUS on a single node, but only reaches 50,000.

Table 2. Method failures on RNASim. PASTA and MAGUS 1 failed due to excessive memory usage; compute nodes

had 64GB of memory.

Method Highest # Aligned Failure

Muscle 50,000 “segmentation fault”

Clustal

Omega

200,000 Max runtime elapsed (7 days)

MAFFT(auto) 100,000 Max runtime elapsed (7 days)

UPP 200,000 Max runtime elapsed (7 days)

PASTA 50,000 “Error detected during page fault processing. Process terminated via bus

error.”

MAGUS 1 50,000 “OOM killer terminated this process.”

https://doi.org/10.1371/journal.pcbi.1008950.t002

Fig 10. RNASim alignment error, best methods. Error is the average of SPFP and SPFN. ‘X’ markers indicate that compression was used

(MAGUS alignments above 100GB). MAGUS was run with 100 subsets on RNASim to reduce load on Blue Waters. Compute nodes had

64GB of RAM and a maximum wall time of 7 days.

https://doi.org/10.1371/journal.pcbi.1008950.g010

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 12 / 17

https://doi.org/10.1371/journal.pcbi.1008950.t002
https://doi.org/10.1371/journal.pcbi.1008950.g010
https://doi.org/10.1371/journal.pcbi.1008950

Discussion

The accuracy of MAGUS convincingly exceeds the other methods we tried on the datasets in

our study. As shown in Figs 4, 6 and 8, this is true regardless of whether recursion is used, and

whether FastTree or Clustal is used for decomposition. The more difficult question we need to

tease apart concerns the different ways of running MAGUS, and how they affect scalability

and accuracy. We do this by considering recursion, guide tree, and node-parallelism in turn.

On one hand, recursion actually slows MAGUS down on smaller datasets. On the other

hand, this is rapidly reversed as MAGUS chokes on larger datasets without recursion. This can

be seen from our 16S results, where MAGUS is much faster without recursion on 6,000–7,000

sequences, but much slower on 27,000. This reversal can also be seen on the HomFam datasets.

On RNASim, MAGUS without recursion is faster on 10,000–50,000 sequences, but simply fails

after that.

The nature of this limitation is fairly clear: given N sequences and S subsets, MAGUS with-

out recursion must run MAFFT -linsi on chunks of N
S sequences. Thus, MAGUS without recur-

sion is only viable for as long as MAFFT -linsi can handle these chunks. Our results suggest

that subsets approaching around 1,000 sequences really become a problem: this is about where

RNASim fails and 16S.B.ALL takes an inordinate amount of time. There is less of a problem

on HomFam, where the amino acid sequences are much shorter.

Moreover, recursion does not improve accuracy; MAGUS without recursion is noticeably

more accurate on HomFam, about the same on 16S, and slightly better on 10,000 sequences of

RNASim. These observations suggest that recursion should be avoided if possible, and only

engaged when the dataset becomes too large for the subsets to be reasonably aligned with the

base method.

As far as decomposition strategy is concerned, the FastTree method remains the most accu-

rate. The runtime becomes an issue on the largest datasets, where the tree takes about 5 days to

compute on 1 million sequences. The best alternative, as suggested by our results, is to use the

Clustal Omega guide tree. This gives the best compromise between accuracy and runtime, and

only takes 14 hours on 1 million sequences.

Taking advantage of our newfound node-parallelism has a considerable impact on runtime.

If we exclude the FastTree computation from the MAGUS runtime on 1 million sequences,

the actual alignment stage takes about 9 days on a single node, but only about 17 hours on 10

nodes and 2.5 hours on 100 nodes. Thus, given enough compute nodes, the total runtime is

mostly dominated by the guide tree method, rather than the alignment itself; this is the motiva-

tion for considering Clustal as a FastTree alternative.

Conclusions

We presented a powerful set of improvements to our MAGUS method, allowing it to scale

from 50,000 to a full million sequences. Moreover, MAGUS is able to align such vast datasets

more accurately than the other methods we compared against.

UPP(Fast) remains the fastest way to effectively align a million sequences on a single com-

pute node, but suffers from consistently worse alignment accuracy. Other methods are able to

finish quickly on smaller datasets, but struggle to complete on larger numbers of sequences,

while also trailing MAGUS in accuracy.

We conclude by distilling our results into a number of concrete recommendations for inter-

ested practitioners.

Recursion is harmful on smaller datasets, but necessary on larger datasets. If the data-

set is small enough, MAGUS will run considerably faster without recursion and might have

slightly better accuracy. On larger datasets, MAGUS will rapidly grind to a halt without

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 13 / 17

https://doi.org/10.1371/journal.pcbi.1008950

recursion. Thus, it is advised to avoid recursion if the dataset permits this. This threshold is

dictated by subset size (
sequences

subsets). Given our data, we found the “threshold” subset size to be

somewhere around 1,000 sequences of a few thousand nucleotides, or somewhere above 4,000

sequences of a few hundred amino acids.

The importance of node-parallelism and guide tree. The default FastTree-based subset

decomposition gives the best accuracy, and is fast enough for most purposes. For huge datasets

of half a million or more, the Clustal Omega-based decomposition runs much faster and is

nearly as accurate. As one might expect, using as many compute nodes as possible will improve

the runtime. However, using more nodes than subsets will decrease the added gains from

node-parallelism.

Running MAGUS. Putting all of the above together, the most accurate way of running

MAGUS is to use the default FastTree-based decomposition without recursion, preferably on

as many compute nodes as are available. If the dataset is too large to allow the subsets to align

in a reasonable amount of time, recursion should be enabled. Finally, if the dataset is too large

to allow FastTree to finish in a reasonable amount of time, the Clustal-based decomposition

should be used.

Future directions

We plan to explore several future directions towards further improving MAGUS. The first is

to comprehensively investigate the performance of MAGUS on fragmentary data. Fragmen-

tary sequences can potentially confound effective methods, and we will extend MAGUS to reli-

ably handle such scenarios.

The second avenue of improvement is to consider alternative procedures for assembling

backbone alignments, and is intended to further increase alignment accuracy. Currently,

MAGUS uses the simple expedient of building backbones with equal, random samples from

each subset. We will develop and evaluate ways to build more compact (and, thus, more accu-

rate) backbone sets that still sufficiently span the subsets.

Thirdly, we have mostly developed MAGUS to be able to align vast numbers of sequences

accurately. In the future, we hope to also extend MAGUS “in the other direction”—to handle

datasets with arbitrarily long, even genome-scale sequences.

A final issue to explore is the utility and management of extra-large alignments for down-

stream applications. In the context of large-scale tree estimation in particular, is it better to

compile a single MSA (probably with some necessary loss to compression) and use it to esti-

mate the entire tree in one operation, or would it be more effective to estimate smaller align-

ments and use them for piecewise tree estimation? There has been some recent work

comparing unitary and piecewise maximum likelihood tree estimation strategies on large data-

sets [20], showing that divide-and-conquer methods are much faster and nearly as accurate,

but more investigation will be needed—particularly at the higher scales we explored here.

Commands used

MAGUS

python3 magus.py -d tempdir -o result.txt -i unalign.txt
-t <guide tree option or path> –recurse <true|false>
–maxnumsubsets <25|100>

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 14 / 17

https://doi.org/10.1371/journal.pcbi.1008950

PASTA 1.8.3

python3 run_pasta.py -i unalign.txt -o result.txt
–temporaries tempdir -d <dna|rna|protein> –keeptemp

UPP 4.3.10

python3 run_upp.py -s unalign.txt -p result.txt -m rna

UPP(Fast) 4.3.10

python3 run_upp.py -s unalign.txt -p result.txt -B 100 -m rna

Muscle 3.8.425

muscle -maxiters 2 -in unalign.txt -out result.txt

Clustal Omega 1.2.4

clustalo -i unalign.txt -o result.txt –threads = 32

MAFFT 7.450 –auto

mafft –auto –ep 0.123 –quiet –thread 32 –anysymbol
unalign.txt > result.txt

FastSP 1.6.0 (Computing alignment error)

java -Xmx256G -jar FastSP_1.6.0.jar -r reference_align.txt
-e estimated_align.txt -ml

MAGUS

python3 magus.py -d tempdir -o result.txt -i unalign.txt
-t <guide tree option or path> –recurse <true|false>
–maxnumsubsets <25|100>

PASTA 1.8.3

python3 run_pasta.py -i unalign.txt -o result.txt
–temporaries tempdir -d <dna|rna|protein> –keeptemp

UPP 4.3.10

python3 run_upp.py -s unalign.txt -p result.txt -m rna

UPP(Fast) 4.3.10

python3 run_upp.py -s unalign.txt -p result.txt -B 100 -m
rna

Muscle 3.8.425

muscle -maxiters 2 -in unalign.txt -out result.txt

Clustal Omega 1.2.4

clustalo -i unalign.txt -o result.txt –threads = 32

MAFFT 7.450 –auto

mafft –auto –ep 0.123 –quiet –thread 32 –anysymbol
unalign.txt > result.txt

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 15 / 17

https://doi.org/10.1371/journal.pcbi.1008950

FastSP 1.6.0 (Computing alignment error)

java -Xmx256G -jar FastSP_1.6.0.jar -r reference_align.txt
-e estimated_align.txt -ml

Supporting information

S1 Text. Supplementary materials. Fig A. GCM overview. Fig B. RNASim alignment sizes,

MAGUS variants only. Fig C. RNASim alignment error, MAGUS variants only. Fig D. RNA-

Sim runtimes, MAGUS guide trees only. Fig E. RNASim runtimes, MAGUS variants only. Fig

F. RNASim SPFN error, MAGUS variants only. Fig G. RNASim SPFP error, MAGUS variants

only. Fig H. RNASim SPFN error. Fig I. RNASim SPFP error. Fig J. 16S SPFN error. Fig K. 16S

SPFP error. Fig L. HomFam (smallest 9 datasets) alignment error. Fig M. Homfam (largest 10

datasets) alignment error. Fig N. Homfam (smallest 9 datasets) runtime. Table A. RNASim

log-scale alignment sizes. Table B. RNASim Delta error from lossy compression. Table C.

HomFam (all datasets) alignment error. Table D. HomFam (all datasets) SPFN error. Table E.

HomFam (all datasets) SPFP error.

(PDF)

Author Contributions

Conceptualization: Vladimir Smirnov.

Data curation: Vladimir Smirnov.

Formal analysis: Vladimir Smirnov.

Funding acquisition: Vladimir Smirnov.

Investigation: Vladimir Smirnov.

Methodology: Vladimir Smirnov.

Project administration: Vladimir Smirnov.

Resources: Vladimir Smirnov.

Software: Vladimir Smirnov.

Supervision: Vladimir Smirnov.

Validation: Vladimir Smirnov.

Visualization: Vladimir Smirnov.

Writing – original draft: Vladimir Smirnov.

Writing – review & editing: Vladimir Smirnov.

References

1. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity.

BMC bioinformatics. 2004; 5(1):113. https://doi.org/10.1186/1471-2105-5-113 PMID: 15318951

2. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality

protein multiple sequence alignments using Clustal Omega. Molecular systems biology. 2011; 7(1):539.

https://doi.org/10.1038/msb.2011.75 PMID: 21988835

3. Katoh K, Kuma Ki, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence

alignment. Nucleic acids research. 2005; 33(2):511–518. https://doi.org/10.1093/nar/gki198 PMID:

15661851

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 16 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008950.s001
https://doi.org/10.1186/1471-2105-5-113
http://www.ncbi.nlm.nih.gov/pubmed/15318951
https://doi.org/10.1038/msb.2011.75
http://www.ncbi.nlm.nih.gov/pubmed/21988835
https://doi.org/10.1093/nar/gki198
http://www.ncbi.nlm.nih.gov/pubmed/15661851
https://doi.org/10.1371/journal.pcbi.1008950

4. Nguyen NpD, Mirarab S, Kumar K, Warnow T. Ultra-large alignments using phylogeny-aware profiles.

Genome Biology. 2015; 16(1):124. https://doi.org/10.1186/s13059-015-0688-z PMID: 26076734

5. Lassmann T. Kalign 3: multiple sequence alignment of large datasets. Bioinf. 2019; 36(6):1928–1929.

6. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple

sequence alignment. Journal of molecular biology. 2000; 302(1):205–217. https://doi.org/10.1006/jmbi.

2000.4042 PMID: 10964570

7. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multi-

ple sequence alignment. Genome research. 2005; 15(2):330–340. https://doi.org/10.1101/gr.2821705

PMID: 15687296

8. Pei J, Grishin NV. PROMALS: towards accurate multiple sequence alignments of distantly related pro-

teins. Bioinf. 2007; 23(7):802–808. https://doi.org/10.1093/bioinformatics/btm017 PMID: 17267437

9. Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T. Rapid and accurate large-scale coestimation of

sequence alignments and phylogenetic trees. Science. 2009; 324(5934):1561–1564. https://doi.org/10.

1126/science.1171243 PMID: 19541996

10. Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, et al. SATe-II: very fast and accurate

simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic biology.

2012; 61(1):90. https://doi.org/10.1093/sysbio/syr095 PMID: 22139466

11. Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T. PASTA: ultra-large multiple sequence align-

ment for nucleotide and amino-acid sequences. Journal of Computational Biology. 2015; 22(5):377–

386. https://doi.org/10.1089/cmb.2014.0156 PMID: 25549288

12. Smirnov V, Warnow T. MAGUS: Multiple Sequence Alignment using Graph Clustering. Bioinformatics.

2020.

13. Van Dongen SM. A cluster algorithm for graphs. Amsterdam: National Research Institute for Mathemat-

ics and Computer Science in the Netherlands; 2000. Available from: https://ir.cwi.nl/pub/4463.

14. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large align-

ments. PloS one. 2010; 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490 PMID: 20224823

15. Eddy SR. HMMER website; 2020. Available from: http://hmmer.org.

16. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Briefings

in bioinformatics. 2008; 9(4):286–298. https://doi.org/10.1093/bib/bbn013 PMID: 18372315

17. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, et al. The comparative RNA

web (CRW) site: an online database of comparative sequence and structure information for ribosomal,

intron, and other RNAs. BMC Bioinf. 2002; 3(1):2. https://doi.org/10.1186/1471-2105-3-2 PMID:

11869452

18. Garriga E, Di Tommaso P, Magis C, Erb I, Mansouri L, Baltzis A, et al. Large multiple sequence align-

ments with a root-to-leaf regressive method. Nature Biotech. 2019; 37(12):1466–1470. https://doi.org/

10.1038/s41587-019-0333-6 PMID: 31792410

19. Mirarab S, Warnow T. FastSP: linear time calculation of alignment accuracy. Bioinf. 2011; 27

(23):3250–3258. https://doi.org/10.1093/bioinformatics/btr553 PMID: 21984754

20. Park M, Zaharias P, Warnow T. Disjoint Tree Mergers for Large-Scale Maximum Likelihood Tree Esti-

mation. Algorithms. 2021; 14(5):148. https://doi.org/10.3390/a14050148

PLOS COMPUTATIONAL BIOLOGY Recursive MAGUS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008950 October 6, 2021 17 / 17

https://doi.org/10.1186/s13059-015-0688-z
http://www.ncbi.nlm.nih.gov/pubmed/26076734
https://doi.org/10.1006/jmbi.2000.4042
https://doi.org/10.1006/jmbi.2000.4042
http://www.ncbi.nlm.nih.gov/pubmed/10964570
https://doi.org/10.1101/gr.2821705
http://www.ncbi.nlm.nih.gov/pubmed/15687296
https://doi.org/10.1093/bioinformatics/btm017
http://www.ncbi.nlm.nih.gov/pubmed/17267437
https://doi.org/10.1126/science.1171243
https://doi.org/10.1126/science.1171243
http://www.ncbi.nlm.nih.gov/pubmed/19541996
https://doi.org/10.1093/sysbio/syr095
http://www.ncbi.nlm.nih.gov/pubmed/22139466
https://doi.org/10.1089/cmb.2014.0156
http://www.ncbi.nlm.nih.gov/pubmed/25549288
https://ir.cwi.nl/pub/4463
https://doi.org/10.1371/journal.pone.0009490
http://www.ncbi.nlm.nih.gov/pubmed/20224823
http://hmmer.org
https://doi.org/10.1093/bib/bbn013
http://www.ncbi.nlm.nih.gov/pubmed/18372315
https://doi.org/10.1186/1471-2105-3-2
http://www.ncbi.nlm.nih.gov/pubmed/11869452
https://doi.org/10.1038/s41587-019-0333-6
https://doi.org/10.1038/s41587-019-0333-6
http://www.ncbi.nlm.nih.gov/pubmed/31792410
https://doi.org/10.1093/bioinformatics/btr553
http://www.ncbi.nlm.nih.gov/pubmed/21984754
https://doi.org/10.3390/a14050148
https://doi.org/10.1371/journal.pcbi.1008950

