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Abstract

Lectin-glycan interactions facilitate inter- and intracellular communication in many pro-

cesses including protein trafficking, host-pathogen recognition, and tumorigenesis promo-

tion. Specific recognition of glycans by lectins is also the basis for a wide range of

applications in areas including glycobiology research, cancer screening, and antiviral thera-

peutics. To provide a better understanding of the determinants of lectin-glycan interaction

specificity and support such applications, this study comprehensively investigates specific-

ity-conferring features of all available lectin-glycan complex structures. Systematic charac-

terization, comparison, and predictive modeling of a set of 221 complementary

physicochemical and geometric features representing these interactions highlighted speci-

ficity-conferring features with potential mechanistic insight. Univariable comparative analy-

ses with weighted Wilcoxon-Mann-Whitney tests revealed strong statistical associations

between binding site features and specificity that are conserved across unrelated lectin

binding sites. Multivariable modeling with random forests demonstrated the utility of these

features for predicting the identity of bound glycans based on generalized patterns learned

from non-homologous lectins. These analyses revealed global determinants of lectin speci-

ficity, such as sialic acid glycan recognition in deep, concave binding sites enriched for posi-

tively charged residues, in contrast to high mannose glycan recognition in fairly shallow but

well-defined pockets enriched for non-polar residues. Focused fine specificity analysis of

hemagglutinin interactions with human-like and avian-like glycans uncovered features rep-

resenting both known and novel mutations related to shifts in influenza tropism from avian to

human tissues. As the approach presented here relies on co-crystallized lectin-glycan pairs

for studying specificity, it is limited in its inferences by the quantity, quality, and diversity of

the structural data available. Regardless, the systematic characterization of lectin binding

sites presented here provides a novel approach to studying lectin specificity and is a step

towards confidently predicting new lectin-glycan interactions.
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Author summary

Glycans are sugar molecules found attached to proteins and lipids and coating the out-

sides of cells from most organisms. Specific recognition of glycans by proteins called lec-

tins facilitates many biological processes, for example enabling influenza virus to gain

access to cells, helping the immune system recognize pathogens, and sorting newly built

proteins for transport to appropriate cellular regions. Understanding what makes a partic-

ular lectin recognize a particular glycan over the vast set of other glycans can help us better

understand these processes and how to monitor and control them. To that end, we sys-

tematically characterized the sites on lectin structures where glycans are bound, breaking

down molecular structures into a comprehensive set of biochemical and geometric fea-

tures summarizing the sites. This enabled us to discover statistical relationships between

binding site features and the glycans recognized by the sites, and further to be able to pre-

dict, from a lectin structure, which glycans it recognizes. For the first time, we are able to

demonstrate that there are general features of lectin binding sites correlated with and pre-

dictive of their specificities, even in unrelated lectins. Ultimately, these findings can help

us discover and engineer new lectins for use in research, diagnostics, or even therapeutics.

1 Introduction

Lectins, non-enzymatic, non-immunoglobulin, sugar-binding proteins, selectively interact

with small subsets of the vast set of possible glycoforms and thereby facilitate diverse biological

processes. Minute differences in glycan structure can have profound impacts in associated bio-

logical processes. For example, the difference between α2,3-linked and α2,6-linked terminal

N-acetylneuraminic acid (NeuAc) glycans serves as the primary barrier blocking avian influ-

enza A from accessing cells in the upper respiratory tract of humans, based on the specificities

of the influenza hemagglutinin (HA) [1, 2]. Specific interactions between lectins and their cog-

nate glycans play critical roles in many other host-pathogen interactions [3] as well as an

increasing number of known intracellular and extracellular biological processes with altered

glycosylation in cancer cells contributing toward tumor cell growth, proliferation, migration,

and invasion [4, 5]. Lectins with well-characterized glycan specificities can be leveraged in bio-

medical applications such as cancer biomarkers [6, 7], cancer therapeutics [8, 9], antiviral ther-

apeutics [10, 11], and drug targeting [12]. Specific lectin-glycan interactions also enable

fundamental glycobiology research by tracking and investigating glycans on cells or viruses, in

tissues, or in biological samples ranging from blood to human milk, through the use of lectins

in mass spectrometry capture strategies, lectin arrays to assess whole cell glycosylation pat-

terns, and labelled lectin probes [13–17].

Applications of lectins are numerous but limited by the specificities of well-characterized

lectins. One example of a direct impact of this limitation on glycobiology research is that

O-GlcNAcylation, an important but subtle post-translational modification [18], was not dis-

covered until the 1980s [19, 20] and has received disproportionately less research interest com-

pared to other important glycoforms, in part due to the lack of lectin probes efficiently and

specifically targeting O-GlcNAcylation until very recently [21, 22]. Novel lectins with novel

specificities for known (and currently unknown) glycans will enable even further application

of lectins in research, diagnostic, and therapeutic contexts. Sources of novel lectins and lectin

specificities include the continued screening of natural products and gene products with

potential carbohydrate recognition motifs for sugar-binding activity against target glycans [23]

as well as specificity engineering to confer new glycan-binding preferences upon existing lectin
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scaffolds [24, 25]. Lectin specificity engineering efforts to date typically rely on extensive study

of highly similar lectin binding sites and high-throughput evaluation of engineered variants,

but lectin engineering approaches can be advanced with further computational study of glycan

specificities of lectin and protein scaffolds [25]. A more thorough understanding of lectin spec-

ificity would also facilitate prioritizing putative lectins for characterization of binding activity

with glycans of interest, especially if identified specificity determinants can be used to predict

lectin specificities. This need is ever-growing with the rapid expansion of genome sequencing

capabilities in the past decades and almost 1 million predicted lectins identified from the

genomes of over 24,000 species curated within the LectomeXplore database at the time of writ-

ing [26].

Experimental investigations into lectin specificities have evolved considerably from initial

efforts to characterize lectins based on their abilities to agglutinate blood cells and subsequent

competitive inhibition approaches with defined glycans [27]. With increased control over gly-

can synthesis mechanisms and production, diverse and well-defined glycoforms are increas-

ingly available for use in characterizing lectin-glycan interactions in more detailed

experimental approaches, including isothermal titration calorimetry and equilibrium dialysis

[27], higher-throughput approaches including surface plasmon resonance [28] and frontal

affinity chromotography [29], and the highest-throughout approach of glycan microarrays

which simultaneously characterize a large number of lectin-glycan interactions [27, 30–32].

However, while these methods provide clear pictures of which features of bound glycans a

given lectin will specifically recognize, they do not address the question of how lectins specifi-

cally recognize some glycans but not others. To this end, structural characterizations through

X-ray crystallography and nuclear magnetic resonance (NMR) are able to identify glycan-

binding sites of lectins as well as the residues and structural features conferring specific inter-

actions. These methods unfortunately still suffer from serious limitations; in addition to time

and expense, they generally are not able to accurately resolve larger glycan structures [33].

Information-rich experimentally-determined structures have been further computationally

analyzed and leveraged in wide-ranging studies of lectin-glycan interactions. Molecular

dynamics (MD) simulations have been employed with great success to gain detailed, mecha-

nistic understandings of individual lectin-glycan interactions [34, 35], but MD approaches are

limited by requirements of time, expertise, and computational resources which prevent

broader utilization and higher-throughput probing of potential interactions between lectins

and glycans. There have been several other efforts to systematically compare and analyze pro-

tein-glycan interactions in the Protein Data Bank (PDB) [36–38]; however none to date have

focused on specificity or uncovered interpretable features contributing to glycan-binding pref-

erences. Briefly, GlyVicinity [36] calculates the frequencies of amino acids within a set distance

of a carbohydrate residue from all available PDB entries and compares these frequencies to

background amino acid frequencies in order to highlight enriched or depleted residues, but it

does not take into account the context of the lectin binding site containing the amino acids or

the glycan containing the monosaccharide residue. Shanmugam et al. [37] predict protein-car-

bohydrate binding affinity using features derived from the binding site, the glycan, and the

interactions between the molecules, but utilizes a fairly limited set of interactions and does not

investigate potential determinants of specificity within the selected features. Finally, Cao et al.

[38] perform pairwise comparisons for protein-carbohydrate interactions within the PDB,

measuring the structural similarity of the binding sites and the similarity of the interaction pat-

terns, but without systematically identifying binding site features or relating characteristics to

observed specificity or promiscuity.

In this study, we seek to identify specificity-determining features of lectin binding sites

through systematic characterization and comparison of lectin structures solved in complex
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with glycans that they recognize. By leveraging curated lectin-glycan complex structures com-

piled in the UniLectin3D database [39], we are able to detail significant and predictive features

of lectin binding sites associated with their ability to accommodate given glycans compared to

binding sites interacting with other glycans. This assessment of lectin specificity is considered

for the most commonly occurring glycans, along with three naturally defined groups of glycans

(terminal NeuAc glycans, high mannose glycans, and terminal fucose glycans) with high bio-

logical relevance, especially in human health [40–45]. From structural analysis, statistical char-

acterization, and predictive modeling of over 4,000 lectin-glycan interactions, particular sets of

features are found to be significantly associated with global lectin specificity compared to back-

ground interactions for these glycans, with many of the significant features also having high

importance in predictive classifiers capable of identifying a bound glycan from its interaction

site features. In general, these features reveal conserved and distinguishing patterns in lectin

binding sites with overlapping specificities, supporting specific observations such as the basis

for similarity in lectin recognition of N-acetylglucosamine and galactose compared to that of

non-acetylated glucose. A further investigation of fine specificity of influenza hemagglutinin

structures with human and avian glycans highlights both known and novel mutations contrib-

uting to recognition. These findings demonstrate the utility of this systematic, structural

approach to study lectin binding site structures in providing a strong basis for the longer-term

goal of predicting novel lectin-glycan interactions and rationally engineering lectin specificity.

2 Results

In order to discover and evaluate the utility of molecular determinants of specific lectin-glycan

recognition (Fig 1), we comprehensively “featurize” a large set of experimentally determined

glycan-bound lectin structures, with each individual occupied binding site further referred to

as an “interaction”. We subject these interactions to complementary univariable comparative

analysis and multivariable predictive modeling in order to investigate global lectin recognition

of certain glycans compared to all other glycans. In the following, we begin by summarizing

the lectins, glycans, and interaction features supporting the study (subsection 2.1, Fig 1B–1D).

We then examine the contributions of these features to global lectin-glycan recognition speci-

ficity (Fig 1E). To this end, we first characterize general findings from univariable statistical

analysis, demonstrating significant differences in interaction sites containing each glycan indi-

vidually when compared to lectin interactions with all other glycans (subsection 2.2). We then

complement this analysis with multivariable predictive modeling for each glycan, showing that

combinations of features are often able to reliably predict whether the lectins are recognizing

the glycan of interest or another glycan (subsection 2.3). We next elaborate the different

groups of features discovered in the univariable and multivariable analyses and elucidate global

determinants of specificity for one glycan vs. others (subsection 2.4). Separately, we demon-

strate the utility of these interaction characterizations for study of nuanced differences in spec-

ificity by investigating the determinants of fine hemagglutinin specificity, comparing

α2,6-linked terminal NeuAc interactions directly to α2,3-linked glycan interactions and

uncovering associations with greater sensitivity than could be achieved with comparison to

background interactions (subsection 2.5, Fig 1F).

2.1 Data collection and interaction characterization

Our analysis of lectin-glycan specificity was based on a large set of co-crystal structures curated

for quality and ligand-identity, relying on co-occurrence in solved structures as an assessment

of specificity. A list of PDB IDs for lectin-glycan structures, along with associated information

about the lectin and glycan, was obtained from the UniLectin3D database [39]. Non-glycan
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ligands were eliminated, missing covalent bonds in glycan structures were added, and all sus-

pected glycosylation occurrences were excluded, leaving a curated set of 4,088 lectin-glycan

interactions from 1,364 structures representing 412 unique lectins in complex with 226 unique

glycan ligands (available in S1 File).

To reduce bias in analysis resulting from redundancy and close homology among lectins,

non-redundant protein chains were extracted from each structure (S1 Fig) and the 1,364 struc-

tures were clustered at 50% sequence identity. The vast majority of the resulting 225 clusters of

homologous/redundant lectin structures contained 5 or fewer unique lectins (by UniProt ID),

although the largest clusters had more than 15 unique lectins (S2 Fig), confirming the necessity

of this approach to prevent more well-studied lectins from overly influencing studies of speci-

ficity. At each step of the analysis, interaction weighting or sampling based on these clusters

was applied to prevent disproportionate impact from better-represented lectins in larger

homology clusters.

To ensure a sufficient number of diverse interaction examples, only the the 12 most com-

mon unique glycan ligands bound to lectins from different homology-based clusters are fur-

ther considered, as well as three classes of glycans likely to be specifically recognized by lectins:

Fig 1. Lectin-glycan interaction characterization and comparison. Features for lectin-glycan interactions (A) are derived from Protein-Ligand

Interaction Profiler (PLIP) defined interaction counts (B), voxelized representations of the 3D pocket space occupied by the glycan (C), and binding site

residues binned by their minimum distance to the glycan (D). Two types of specificity analyses were conducted. For global specificity (E), binding

interaction characteristics from each glycan of interest were compared to the background characteristics of all other lectin-glycan interactions, revealing

features that were enriched or depleted in association with the presence of the given glycan relative to all other glycans. For fine specificity (F),

characteristics were compared among interactions within a subgroup of similar glycans. In panels A-D, the binding interaction between human lung

collectin surfactant protein D and a disaccharide fragment (Hep-Kdo) of a bacterial lipopolysaccharide is used to demonstrate the three categories of

interaction features (PDB ID: 4E52). Panel C has additional components illustrating featurization of the voxel point cloud via features describing the D2

distribution of pairwise distances between surface points and computed 3D Zernike descriptors (3DZDs), with the original point cloud in red and the

reconstructed shape from the 3DZDs in blue. Panels E & F display schematic results of select features defined in panels B-D that were found to be

significantly enriched or depleted in the specified interactions. Structures were rendered using PyMol and glycan symbols follow the Symbol

Nomenclature for Glycans (SNFG) system.

https://doi.org/10.1371/journal.pcbi.1009470.g001
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terminal NeuAc glycans, high mannose glycans, and terminal fucose glycans S3 and S4 Figs.

The provided IUPAC identifiers of the individual glycans comprising each class can be found

in S1–S3 Tables. Henceforth, the 12 individual glycans and three glycan classes are referred to

as the 15 “glycans of interest” and displayed in future figures in the order shown in S4 Fig,

arranged by glycan class and prevalence in complex with different lectins.

Interactions between the lectins and glycans of interest (Fig 1A) were represented by a com-

prehensive set of 221 complementary geometric and physicochemical features separated into

three general categories:

• 11 interaction features (Fig 1B), generated by the Protein-Ligand Interaction Profiler (PLIP)

tool [46]), describing the numbers and types of non-covalent interactions including hydro-

phobic interactions, hydrogen bonds, water bridges, electrostatic interactions, and metal

coordination.

• 133 binding site residue features (Fig 1C) describing the amino acids and associated second-

ary structures in four separate binned distances from the glycan, as well as the number of cal-

cium (Ca2+) ions in the pocket. To account for the flexibility of protein structures and the

highly flexible nature of glycans, binned residue representations approximate the probability

of interacting with the glycan in other possible low-energy conformations instead of relying

on the exact conformation in the solved crystal structure.

• 77 3D pocket geometry features (Fig 1D) describing the three dimensional space of the inter-

action pocket where the glycan is found. These features were derived from voxelized repre-

sentations of the interaction site as characterized by rotationally-invariant 3D Zernike

Descriptors (3DZDs) [47, 48] and D2 distributions [49]. Voxelized representations were

generated with varied thresholds to better capture the diversity of pocket shapes and sizes,

with 3DZD and D2 approaches utilized to represent complex shapes in compact, robust, fea-

turized forms allowing for easy comparison of pocket shapes and sizes. The D2 distributions

summarize all pairwise distances between points on the surface of the voxelized pocket

representation and features were generated describing the statistics of the distributions as

well as principal components capturing more nuanced sources of variation. The 3DZDs

compactly describe the shape of the pocket with 3D Zernike moments at a level of detail that

allows for the reconstruction (blue) of the original pocket shape (red, Fig 1D).

Taken together, these 221 features enable systematic comparisons between lectin interac-

tions with glycans of interest, identification of determinants of global specificity associated

with interactions containing a given glycan compared to all other interactions(Fig 1E), as well

as determinants of fine specificity found in a separate comparison of a interactions to other

interactions with similar glycans (Fig 1). Features for each interaction from each lectin struc-

ture are available in S1 File.

2.2 Lectin binding site features are significantly associated with specific

glycans

Given a particular glycan of interest, the patterns in lectin-glycan interactions detected across

diverse lectin binding sites indicate determinants of global lectin specificity for that glycan.

Comparing lectin interactions containing one glycan with all other lectin-glycan interactions

then highlights those features that are enriched or depleted for that glycan. To control for bias

from redundant and homologous lectin structures, these comparisons were performed here

with weighted Wilcoxon-Mann-Whitney (WMW) tests [50], weighted by the sizes of the

groups of homologous lectins as well as the numbers of individual lectins in those groups.
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The results from the 15 WMW tests conducted for the glycans of interest (Fig 2) show that

there were large, diverse sets of interaction features significantly associated with each of these

glycans when compared to interactions involving all other glycans. The particular features are

discussed in detail in subsection 2.4, but some trends are already obvious. For example, points

colored with the two lightest shades of blue, corresponding to features describing the pocket

voxelization and the statistics of its pairwise-distance D2 distribution, appeared as a group and

were generally enriched or depleted together. Since these features were both influenced by the

overall size and volume of the interaction pocket, and since the interaction site was defined in

part by the size of the glycan, it is unsurprising that these features were strongly depleted in

interactions with monosaccharides such as mannose, glucose, and fucose, while being strongly

enriched in interactions with larger glycans such as the terminal NeuAc group, terminal fucose

group, high mannose group, lactose, and 3’-siayllactose (NeuAc(a2–3)Gal(b1–4)Glc). Interest-

ingly, this enrichment was very strong for N-acetylneuraminic acid despite its being a

monosaccharide.

Some glycans, including the terminal NeuAc group, the high mannose group, Lac (lactose,

Gal(b1–4)Glc)), mannose, glucose, and fucose, manifested many significant associations with

Fig 2. Lectin binding site features have significant associations with the presence of specific glycans. Volcano plots show that a substantial proportion

of features from all three categories are statistically significantly (q< 0.01) enriched (x> 0) and depleted (x< 0) in interaction characterizations for each

of the 15 glycans of interest when compared to background interaction characterizations from all other glycans. It is apparent that pocket-size-correlated

D2 distribution & pocket descriptor features (represented by the two lightest blue colored points) are generally enriched for larger glycan ligands

(terminal NeuAc, high mannose, 3’-siayllactose) and depleted for interactions with smaller ligands (monosaccharide glycans). Some glycan-lectin

interactions have fewer features that are strongly enriched (terminal fucose, N-acetyllactosamine, and TF antigen), possibly indicating a diversity of

interaction mechanisms, or that more common, highly similar glycans in the background are reducing the strength of associations. Significance and

direction of association was determined by weighted Wilcoxon-Mann-Whitney (WMW) tests accounting for homologous and redundant lectin

structures. The x-axis shows the direction and strength of rank-based enrichment for each feature compared to background. The y-axis indicates the

statistical significance (q-values) adjusted by the Benjamini-Hochberg procedure applied separately for each ligand with a significance threshold set for

an FDR of 0.01 (represented by the solid horizontal lines). Q-values more significant than 1 × 10−16(horizontal dotted line) were scattered between

3 × 10−19 and 1 × 10−16. The vertical line (x = 0) divides positive (right) and negative (left) associations. Glycan symbols follow the SNFG system.

https://doi.org/10.1371/journal.pcbi.1009470.g002
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large effect sizes, both positive and negative, with varied lectin binding site features. It can be

interpreted that there are conserved geometric and physicochemical features in the lectin bind-

ing sites that specifically recognize these glycans, thereby representing determinants of global

specificity. On the other hand, some glycans, most notably TF antigen (Gal(b1–3)GalNAc),

had fewer interaction features enriched above background; similarly 2α-mannobiose (Man

(a1–2)Man), N-acetylglucosamine, and N-acetylgalactosamine also appear to have had fewer

significantly enriched features. This trend is potentially attributable to a diversity of binding

mechanisms in the observed interactions leading to reduced significance, especially in case of

the terminal fucose group which included a large diversity of glycoforms (S3 Table) and fewer

significantly associated features than fucose monosaccharide. Another explanation for reduced

feature enrichment in the other cases is the presence of other similar glycans in the back-

ground, reducing the significance and degree of enrichment of shared interaction features and

compounded in cases where potentially similar glycans (such as Lac and LacNAc (N-acetyllac-

tosamine, Gal(b1–4)GlcNAc)) are much more prevalent and are recognized in similar interac-

tions, adding similar examples to the background and reducing association strengths for the

less prevalent glycans (such as TF antigen) (S4 Fig).

2.3 Lectin-glycan interaction features are predictive of the identity of the

bound glycan

While univariable comparative analysis revealed that there were indeed specific lectin binding

pocket features associated with specific glycan recognition, it did not (and cannot) characterize

the extent to which combinations of these features generalize to new cases and are thereby

actually predictive of which glycans a particular lectin will recognize. Thus multivariable pre-

dictive modeling, in particular supervised classification, complements the univariable compar-

ative analysis by demonstrating that in some cases, particular feature combinations suffice to

predict specific recognition. Here, the classification goal was to train, for each glycan of inter-

est, a glycan-specific model that labels each lectin structure as “positive” (the glycan is actually

bound in the structure) or “negative” (a different glycan is bound) based on combinations of

binding site features learned from training data involving other, distinct interactions. Random

forest (RF) classification models [51] were used because of their interpretability as well as suit-

ability for high-dimensional data without detrimental impact from collinearity. RF models for

each glycan of interest were validated with a leave-one-out approach: binding-site structures

from one of the homologous lectin clusters were withheld, a model was trained on sampled

dissimilar binding-site structures from the remaining lectins, and then classification perfor-

mance was evaluated on selected, dissimilar examples from the withheld structures. We note

that while a “negative” label could mean that the glycan and lectin do not interact, it could also

mean that, while the pair actually does interact, that interaction is solved in a different struc-

ture or the structure has yet to be solved. For this reason, the prediction performance was eval-

uated separately for both recall, the fraction of the lectin structures with that glycan bound that

are correctly predicted to be positive, and precision, the fraction of the lectin structures pre-

dicted to include that glycan that actually do; note that these performance metrics are not

impacted by the true negative rate. Additionally, models were trained using F2 scores to com-

bine precision and recall with a greater weight on recall since recall only accounts for positively

labelled data.

The distributions of recall and precision for each glycan from repeated leave-one-out cross-

validation are represented by violin plots in Fig 3 and compared to the performance of corre-

sponding “null model” RFs trained and validated in the same manner but using interactions

with shuffled glycan labels and thus expected to display essentially random performance

PLOS COMPUTATIONAL BIOLOGY Comprehensive analysis of lectin-glycan interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009470 October 6, 2021 8 / 32

https://doi.org/10.1371/journal.pcbi.1009470


(shown as boxplots). The glycans’ prevalences in complex with different lectins were generally

proportional to the amount of training data (S4 Fig). Overall, the classifiers performed well for

both recall and precision (mean values of 0.71 and 0.61 respectively) as compared to recall and

precision of the classifiers trained with shuffled labels (mean values of 0.57 and 0.46 respec-

tively). Performance on the training data was very similar to the cross-validated performance

(S5 Fig, mean recall = 0.70 & mean precision = 0.64), indicating that overfitting was not likely,

and performance as measured by the F2 score positively correlated with the number of interac-

tions available for training (ρ = 0.39, p< 0.001), with fucose-predicting models doing espe-

cially well despite having had relatively few training samples Fig 3 and S6 Fig. Broader

distributions of performance metrics in Fig 3 indicate that model performance was more sensi-

tive to the sets of dissimilar interaction examples randomly sampled for use in training and

validation.

The RF models did very well for NeuAc terminal glycans, mannose monosaccharide, and

fucose monosaccharide, with all median recall values above 0.78 and median precision values

above 0.69. For these glycans, the associated lectin binding site features can be used to easily

detect interactions, verifying the value of these features in studies of specificity with some of

the most predictive features shared by these three models including the relative abundance of

charged polar amino acids in the residues closest to the glycans as well as 3D pocket features

correlated with the size of the interaction site. In light of the discussion above regarding posi-

tive/negative classification labels, the high precision of these models can be interpreted to

mean that the lectins binding these glycans are not often crystallized in complex with other

Fig 3. Lectin binding site features can be used to predict the identity of bound glycans. Random forest models trained for each of the 15

glycans have strong recall performance while predicting whether interactions contain the respective glycan based on the interaction features

alone. The models are predictive of glycan identity even when trained only on lectins with less than 50% sequence identity, outperforming

identical classifiers trained on data with shuffled labels. Split violin plots show the recall (left-hand distribution and left y-axis) and precision

(right-hand distribution and right y-axis) of ligand-specific random forest models measured during leave-one-out cross-validation. The pairs

of notched boxplots for each glycan show the performance of classifiers trained on data with shuffled labels, where again the left-hand

boxplots depict recall and the right-hand boxplots depict precision. Glycan symbols follow the SNFG system.

https://doi.org/10.1371/journal.pcbi.1009470.g003
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similar glycans, and most of the lectins capable of binding these glycans are crystallized with

these glycans.

In many cases, including lactose, galactose, N-acetylgalactosamine, 3’-sialyllactose, glucose,

LacNAc, and 2α-mannobiose, the glycan-specific models maintained high recall despite hav-

ing lower precision, with median recall values of at least 0.70 while median precision values

ranged from 0.46 to 0.63 in this group. Strong recall performance indicates these predictive

models are still able to recognize the glycans of interest from the physicochemical and geomet-

ric characterization of the interaction site (features that appear to be particularly predictive are

discussed in the next section). However, the lower precision of these models can be attributed

to the same lectins appearing in complex with other glycans, particularly with similar glycans.

For glycans recognized by lectins that interact with other similar glycans, this effect was more

pronounced among the less prevalent glycans than among their more common counterparts,

e.g., LacNAc had a median recall of 0.75 but also the lowest median precision (0.46), in con-

trast to lactose, which had a slightly higher median recall (0.79) but a much better median pre-

cision (0.62) (Fig 3 and S4 Fig).

Interestingly, the RF classifier for the high mannose glycan group had higher precision than

recall, with both outperforming the null model. While recall for the high mannose classifiers

was slightly better than that for the models trained on shuffled labels, median precision was

the 4th highest. This might indicate that high mannose glycans are recognized by a number of

diverse binding mechanisms with some shared underlying commonalities that make the

model precise enough to eliminate other interactions but not strong enough to reliably recog-

nize all of the high mannose interactions. This observation is not as immediately apparent

from the statistical comparisons in the previous section, demonstrating the strength of com-

plementing the comparative analyses with predictive modeling.

For the remaining glycans, N-acetylneuraminic acid, N-acetylglucosamine, the terminal

fucose group, and TF antigen, recall and precision were only marginally better, if at all, when

compared to the “null model” classifiers trained on shuffled labels. In these cases, it is likely

that a diversity of interaction mechanisms are present, especially in the case of terminal fucose

glycans as mentioned previously, and the RF models were not able to learn conserved patterns

in the interaction features sufficient to reliably recognize binding of these glycans. This finding

demonstrates the limitation of using co-occurrence in crystal structures as a model of specific-

ity, a point elaborated in section 3.

2.4 Significant and predictive features reveal global determinants of

specificity

Lectin interaction features that were both significant and highly predictive across diverse lec-

tins and conserved across interactions with similar glycans are likely to play a role in facilitat-

ing lectin specificity. By integrating the discovered features from the comparative and

predictive approaches, we thus aim to obtain higher confidence in the identified features and a

better basis for deriving possible explanations for trends seen in the analyses. Fig 4 illustrates

similarities and differences among glycans in terms of enrichment and depletion of interaction

features, with particular observed relationships (boxed) discussed in more detail in the remain-

der of this section. In summary, the figure shows the results using all 221 features (Fig 4A) as

well as the different types of features (Fig 4B–4D), using color to show the WMW effect size

values of the features and bullet points to call out the features that were significant in the uni-

variable analysis (q< 0.01) and highly predictive in the multivariable analysis (75th percentile

by median ranked feature importance for their respective feature type). Glycans were clustered

according to their WMW profiles, so that in panel (A) they are grouped together when lectins
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recognize them similarly in terms of overall pocket features, while in panel (B) the relation-

ships reveal shared physicochemical environments and recognition motifs, in panel (C) the

clustering highlights 3D geometry-based relationships, and in panel (D) clustering is based on

similarities in PLIP-characterized atomic interactions. The definition of “highly predictive”

features was made so as to mitigate enriched collinear features from one group outweighing

Fig 4. Determinants of global lectin specificity are shared for similar glycans. Similar glycans have similar patterns of enriched and depleted

interaction features as observed by Pearson correlations between weighted WMW feature effect sizes. Panel A shows the correlogram from all 221

interaction feature effect sizes, clustered by Pearson correlation coefficient. Panels B-D show heatmaps of the interaction feature effect sizes with features

in the columns and ligands in the rows clustered by Pearson correlation. Features that are statistically significant by the weighted WMW tests (q< 0.01)

and in at least the 75th percentile of median feature-type-stratified importance from the random forest models are indicated with bullet points. The color

bars present along the columns indicated the subcategory of the feature and the parameter threshold used when extracting the feature. The color bars

along the rows indicate the identity of the terminal saccharide in the glycan and the number of saccharides present. Clusters discussed include sialic acid

glycans (purple boxes), mannose and glucose (cyan boxes), lactose and N-acetyllactosamine (orange boxes), and fucose and terminal fucose containing

glycans (red boxes). Interestingly, N-acetylglucosamine interactions are more similar to interactions with galactose while N-acetylgalactosamine

interactions are more similar to interactions with glucose. The dark green boxes indicate distinct patterns in the 3D pockets of interactions with high

mannose. Glycan symbols follow the SNFG system.

https://doi.org/10.1371/journal.pcbi.1009470.g004
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predictive features from others (S7–S10 Figs). These stratified ranked feature importances pos-

itively correlated with the absolute value of the WMW effect size (ρ = 0.35, p< 0.01), with

stronger correlation observed especially for glycans with better-performing random forest

models (S11 Fig).

Determinants of specificity are shared between lectin interactions with similar gly-

cans. There are three clusters of lectin-glycan interactions that were similar for the different

subsets of the features and are thus highlighted with colored boxes in Fig 4: a sialic acid cluster

(purple boxes), a mannose/glucose cluster (cyan boxes), and a lactose/LacNAc cluster (orange

boxes). Groupings of glycans by lectin interactions deviated slightly in Fig 4C due to the strong

influence of the size of the glycan ligand on the extent and characterization of the interaction

site; in this case the primary factor that appears to drive clustering is ligand size and therefore

the overall size of the 3D interaction space.

Sialic acid cluster (Fig 4, purple boxes) Interactions with sialic acid glycans, i.e., NeuAc mono-

saccharide, 3’-sialyllactose, and the terminal NeuAc group, were the most tightly correlated

cluster and the tight grouping is strongly conserved across feature types as well. The highest

observed pairwise correlation for any glycans came from 3’-sialyllactose and the terminal

sialic acid group (ρ = 0.91, p < 0.001). While this is not particularly surprising as 3’-sialyl-

lactose is one of the 27 terminal NeuAc glycans, NeuAc monosaccharide is not but still has

strong correlations with both of the other sialic acid glycans (ρ = 0.71, p< 0.001 for termi-

nal NeuAc glycans & ρ = 0.68, p< 0.001 for 3’-sialyllactose) (Fig 4A). In summary, these

interactions shared a strong enrichment of positively charged residues and depletion of

negatively charged residues near the glycan (unsurprising for negatively charged glycans), a

general enrichment of β-bridges over other secondary structures especially β-strands, a very

large 3D interaction space around the glycan, and a strong enrichment of the number of

hydrogen bonds (especially side chain mediated) as well as hydrophobic interactions, with

a slight enrichment of electrostatic interactions. These association patterns indicate these

sialic acid glycans are typically bound by large lectin binding sites capable of making many

hydrogen bond and hydrophobic interactions where positively charged residues seem to be

present due to charge complimentary without participating in substantially more electro-

static interactions compared to background lectin-glycan interactions.

Mannose/glucose cluster (Fig 4, cyan boxes) The high recall and low precision of the RF clas-

sifier for 2α-mannobiose indicated other prevalent glycans are likely recognized by lectins

in a similar fashion, which was confirmed by a very strong correlation between the interac-

tion features from 2α-mannobiose and glucose (ρ = 0.77, p< 0.001), weaker correlation

with mannose monosaccharide (ρ = 0.31, p< 0.001), and a general trend of glucose cluster-

ing with at least one of the three mannose glycans for each feature type, somewhat intui-

tively since mannose is a C-2 epimer of glucose. In summary, this mannose-glucose

clustering appeared to be driven by very similar interaction pockets for 2α-mannobiose

and glucose, depletion of β-strands and polar residues in favor of enriched non-polar resi-

dues, 310 helices, as well as loop structure, and a general depletion of all other interaction

types except for backbone hydrogen bonds. Taken together, this paints a picture of man-

nose recognition requiring specific secondary structure arrangement to coordinate back-

bone hydrogen bonding with primarily non-polar amino acids.

Lactose/N-acetyllactoseamine cluster (Fig 4, orange boxes) Similar lectin recognition of Lac

and LacNAc was proposed as an explanation for the high recall but low precision of their

RF classifiers, somewhat intuitively as they differ by a single acetyl group on the reducing

terminal sugar. Feature effect sizes for these two were indeed among the most strongly
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correlated (ρ = 0.70, p< 0.001), driven by a depletion of hydrophobic interactions, back-

bone hydrogen bonds, and negatively charged residues in favor of side chain hydrogen

bonds and electrostatic interactions facilitated by an enrichment of positively charged resi-

dues, asparagine in the closest bin to the glycan, and β-strand secondary structure. Lactose

and LacNAc specific lectin binding sites appear to utilize positively charged residues and

select polar residues to coordinate hydrogen bonds via side chain groups and electrostatic

interactions with the charge center at the glycosidic bond of these disaccharides. Addition-

ally, Lac and LacNAc motifs often present terminal sialic acids and are recognized together

as larger binding epitopes by many lectins. This association is seen in the overall positive

correlation between features associated with Lac/LacNAc interactions and with interactions

included in the sialic acid cluster.

Despite diverse interaction mechanisms, terminal fucose is still recognized similarly to

fucose monosaccharide. While the terminal fucose group’s set of glycoforms was likely too

diverse to permit more significant associations according to our criteria, the features that were

conserved and important for recognizing these diverse glycans were generally shared with

fucose monosaccharide, confirming the importance of these features for specific recognition

of fucose and fucose-terminal glycans compared to other glycans. These shared features

included a depletion of non-polar residues, aromatic residues (especially tyrosine) in the bin

closest to the glycan, and generally all secondary structure besides β-strands; along with an

enrichment of hydrophobic interactions, β-strands, polar residues (especially serine) in the

closest bin to the glycan, and aromatic residues (including tyrosine) in the next closest bin (Fig

4B–4D, highlighted by red boxes). In summary, these findings portray lectin recognition of

fucose relying on polar residues in close proximity to the glycan and tyrosine/aromatic resi-

dues slightly further away, often found within β-strands, to coordinate numerous hydrophobic

contacts with the glycan.

Size-correlated collinear features still differentiate between large lectin pockets with

different specificities. As highlighted above, the 3 sialic acid glycans of interest in this study

were recognized by lectins in similar ways. However, it is remarkable that sialic acid monosac-

charides had 3D pocket features that were very similar to those of the other much larger sialic

acid glycan ligands (Fig 4D) since the extent of the 3D pocket is heavily dependent on the size

of the glycan ligand and 3D interaction pockets of fucose and mannose monosaccharides were

very distinct from their respective groups of larger glycans (terminal fucose and high mannose

glycans). This indicates that the binding sites from sialic-acid-recognizing lectins were gener-

ally well defined by the presence of a single NeuAc monosaccharide and the size & extent of

the interaction site is robust to the size of the glycan ligand. Representative structures further

illustrate this interpretation, demonstrated by interactions between a terminal NeuAc glycan

and murine polyomavirus (Fig 5A) and between NeuAc monosaccharide and influenza hem-

agglutinin (Fig 5B). The depicted representative interactions were selected as being the closest

to the weighted feature-specific means for the glycans of interest. For both interactions, the

binding sites were long, wide, and fairly concave, such that the NeuAc monosaccharide was

able to fit fully in the interaction pocket and the voxelized representations captured the pocket

to the same extent as if a larger glycan were present.

While lectins interacting with high mannose glycans also had much larger interaction sites

than most of the glycans of interest, these binding sites were much more compact and shallow

compared to sialic-acid-specific binding sites, as can be seen in the representative interaction

between a high mannose glycan and concanavalin A (Fig 5C). This observation was also appar-

ent in the pocket-size features in the second cluster from the top in Fig 4C highlighted in a

dark green box. These pocket-size features from the smaller thresholds (left-most dark green
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box) used to voxelize the pocket (4 & 6 Å) were more strongly enriched and predictive com-

pared to the same features from pocket representations built with larger thresholds (8 & 10 Å,

right-most dark green box). Thus while the interaction space around these large glycans was

larger than seen in the background interactions, it was fully defined by the voxelization with

the two smallest thresholds, and considering the portion of the pocket further from the glycan

did not substantially aid in characterizing the interaction. This was confirmed in the D2 distri-

butions for these three representative interactions in Fig 5D, where the number and length of

the pairwise distances continued to grow for the sialic acid glycans, while the high mannose

interaction was almost entirely defined by the representation with the lowest threshold (4 Å,

magenta).

Lectins differentially recognize Glc compared to GlcNAc & Gal compared to GalNAc.

It appears that interactions with GlcNAc were more strongly correlated with lectin recognition

of galactose and other non-reducing terminal galactose glycans, while interactions with Gal-

NAc were more often clustered together with glucose and mannose glycans (Fig 4A–4C).

Fig 5. Sialic acid recognizing lectin binding sites are much deeper and more concave than the fairly flat and

shallow binding sites of lectins that bind high mannose. Representative lectin interactions with a terminal NeuAc

glycan (panel A, PDB ID: 1SID), NeuAc monosaccharide (panel B, PDB ID: 1HGH), and high mannose (panel C, PDB

ID: 1CVN) demonstrate the differences in the 3D interaction site space between NeuAc-binding lectins and high-

mannose-binding lectins. Panel D shows the D2 distributions summarizing pocket geometry for each of these

representative interactions. The lectin binding sites containing sialic acid glycans are wider and more concave while

the high-mannose-accepting binding sites are more shallow and compact, being nearly entirely defined by the lowest

threshold used for pocket generation as seen in the inset subpanels in A-C and in the D2 distributions in panel D. In

panels A-C, residues are colored by their binned distance from the glycan (red: bin 1, orange: bin 2, sand: bin 3, pale

yellow: bin 4), the glycan is colored by atom-type with carbons in white, and the rest of the lectin structure is in grey.

PLIP interactions are colored blue for hydrogen bonds, pale blue for water bridges, yellow for electrostatic interactions,

and grey for hydrophobic interactions. In the insets, 0.5 Å3 spheres were placed at each voxel center in the pocket and

colored by the distance threshold used (magenta/red/orange/yellow: 4/6/8/10 Å). In panel D, vertical lines were placed

at the median D2 measure from each threshold with the same coloring as used from the insets in panels A-C. All

structures were rendered in PyMol and glycan symbols follow the SNFG symbols.

https://doi.org/10.1371/journal.pcbi.1009470.g005

PLOS COMPUTATIONAL BIOLOGY Comprehensive analysis of lectin-glycan interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009470 October 6, 2021 14 / 32

https://doi.org/10.1371/journal.pcbi.1009470.g005
https://doi.org/10.1371/journal.pcbi.1009470


Interaction feature associations from the acetylated derivatives were weakly positively corre-

lated with their opposing non-acetylated counterparts (ρ = 0.37, p< 0.001 for Glc/GalNAc, ρ
= 0.32, p< 0.001 for Gal/GlcNAc), but the association was much stronger compared to the

correlations with their corresponding non-acetylated counterparts (ρ = 0.15, p< 0.001 for

Gal/GalNAc, ρ = -0.14, p< 0.05 for Glc/GlcNAc).

This finding is informative in the search for novel and improved probes for O-linked N-

acetylglucosamine (O-GlcNAcylation) modifications, for which there were not any appropri-

ate lectin probes until the very recent discovery and characterization of the terminal-GlcNAc

specific fungal lectin Agrocybe aegerita lectin 2 (AAL2) [22, 52]. The observed trends in deter-

minants of global specificity for GlcNAc indicate that additional novel probes for the study of

O-GlcNAcylation might be more easily found or engineered from galactose-binding families

of lectins than from glucose-binding lectins. In fact, Consortium for Functional Glycomics

(CFG) glycan microarray results for AAL2 at the highest concentration used by Jiang et al.

[52] showed strong specificity for non-reducing terminal GlcNAc, but 5 of the top 50 (> 90th

percentile rank) bound glycans had a non-reducing terminal galactose residue (ranked orders:

32, 42, 44, 48, & 50) while none of the 8 available non-reducing terminal glucose glycans

appeared have greater than 10 Relative Fluorescence Units (RFU) (< 50th percentile rank), fur-

ther confirming this association. Fine specificity comparisons between interactions with termi-

nal GlcNAc and interactions with terminal galactose could likely further elucidate

determinants of specificity for GlcNAc over galactose and provide initial direction for engi-

neering GlcNAc-specificity in galactose-binding lectins.

2.5 Known and novel determinants of fine influenza hemagglutinin

specificity

Influenza hemagglutinin (HA) is a very well-studied lectin due to its critical role in mediating

influenza infections by targeting 6’ αNeuAc-terminal glycans in the upper respiratory tracts of

humans for viral entry. The fine specificity of influenza HA proteins, in particular distinguish-

ing the recognition of human-like α2,6- versus avian-like α2,3-NeuAc-terminal glycans, is also

well studied. It has been shown through detailed, manual comparisons of crystal structures

and HA sequences that a few mutations in HA binding sites can shift specificity and enable

pandemic influenza strains to jump from avian populations and wreak havoc in immunologi-

cally naive human populations [1, 53]. We here complement those studies by applying our sys-

tematic analyses and comparisons in a deeper investigation to characterize fine HA specificity

distinguishing these two similar but critically different glycans. The univariable analysis

approach is similar to that for global specificity, but now comparing these glycans’ interactions

directly with each other, rather than against the background of all others. Due to the limited

amount of data available for each set, the previously employed predictive modeling approach

could not be used.

Significantly associated features are capable of differentiating between 6’ and 3’ HA-sia-

loglycan interactions. In the global specificity analysis above, when compared to back-

ground lectin-glycan interactions, HA interactions with 6’ NeuAc-terminal glycans and 3’

NeuAc-terminal glycans have very similar enrichment and depletion patterns matching those

observed from the terminal NeuAc glycans (S12 Fig). However, direct, univariable statistical

comparison of HA interactions with 6’ NeuAc-terminal glycans against interactions with 3’

NeuAc-terminal glycans with a weighted Wilcoxon-Mann-Whitney test revealed 35 features

significantly associated with the presence of α2,6-NeuAc-terminal glycans (q < 0.01). To dem-

onstrate that these significantly associated features captured determinants of fine HA specific-

ity, unsupervised clustering using the correlations between the 35 significant features (Fig 6A,
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upper-right-triangular matrix) showed much clearer separation of interactions by glycan iden-

tity compared to clustering using similarity between the linear sequences of the binding site,

which in fact led to perfect separation by influenza type/HA subtype instead of glycan identity

(Fig 6A, lower-left-triangular matrix). The separation by ligand type while using the set of 35

significant features was especially clear within the H1, H5, and H7 subtypes. Unsupervised

hierarchical clustering was used as an alternative means to demonstrate discriminative power

of these 35 features since there were too few interaction examples to allow for rigorous cross-

validation of a predictive classifier while controlling for homology among subtypes.

Systematic characterization and comparison recovers known mutations driving HA

specificity from 3’ to 6’ αNeuAc-terminal glycans. The 35 significantly associated features

(Fig 6B), primarily composed of residue-based features, highlight determinants of HA specific-

ity for 6’ αNeuAc-terminal glycans (S4 Table) over 3’ αNeuAc-terminal glycans (S5 Table).

The direction of association and significance for all 221 features can be found in S12 Fig. As a

Fig 6. Focused analysis of influenza HA binding sites reveals significant and discriminative features associated with binding of human-like

sialoglycans over avian-like sialogylcans. Clustering HA interactions by significant interaction features discriminates those recognizing 3’ vs. 6’ NeuAc

terminal glycans, while clustering by interaction sequence simply recapitulates influenza strain. Panel A shows that clustering of the 96 HA-3’/6’ αNeuAc

interactions using correlations from the 35 significantly associated features allows for much cleaner grouping of interactions by ligand-type (upper-right-

triangular similarity matrix) compared to interaction clustering using the alignment of the sequence of binding site residues leading to perfect grouping

of interactions by influenza strain and HA subtype in the lower-left-triangular similarity matrix. Comparisons between hemagglutinin structures with 6’

αNeuAc-terminal glycans versus 3’ αNeuAc-terminal glycans reveal 35 features that are significantly associated with the presence of 6’ αNeuAc-terminal

glycans (panel B) displayed in the same manner as in Fig 2 with points discussed directly in the text bolded and underlined. These features are found in

representative interaction structures between the respective glycans and HA proteins in panels C & D. In panel A, the upper-right-triangular matrix was

constructed by calculating the pairwise Pearson correlations for all interactions using the scaled values of the 35 significant interaction features. The

lower-left-triangular similarity matrix was constructed from sequence similarity scores using Needleman-Wunch to align binding site sequences with the

BLOSUM62 substitution matrix. In panel B, significance and effect size were determined by a Wilcoxon-Mann-Whitney test weighted by influenza

strain/hemagglutinin subtype and UniProt ID, with a significance threshold of q< 0.01 (solid horizontal white line) by the Benjamini-Hochberg

Procedure. Panel C shows HA from H1N1 (Puerto Rico/8/1934) (dual specificity) complexed with an avian sialopentasccharide, although only the three

terminal sugars were resolved (PDB ID: 1RVX). Panel D shows HA from H1N1 (California/4/09) in complex with a human sialopentasccharide (PDB ID:

3UBE). Both panels C and D use the same color scheme for lectins, PLIP interactions, and glycans as in Fig 5.

https://doi.org/10.1371/journal.pcbi.1009470.g006

PLOS COMPUTATIONAL BIOLOGY Comprehensive analysis of lectin-glycan interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009470 October 6, 2021 16 / 32

https://doi.org/10.1371/journal.pcbi.1009470.g006
https://doi.org/10.1371/journal.pcbi.1009470


visual aid to help interpret these features, representative interactions with each of these glycans

are shown in Fig 6C and 6D. The NeuAc terminal glycans appeared in their typical conforma-

tions, with the 3’ αNeuAc-terminal glycan oriented towards the 190-helix (Fig 6C) and the 6’

αNeuAc-terminal glycan exiting over the 220-loop (Fig 6D). Representative interactions were

selected as being the closest to the weighted feature-specific means for each glycan type and

both interactions were with an HA from the H1 subtype.

The well-characterized E190D and G220D mutations in H1 subtypes are key mutations

shifting HA specificity toward human-like glycans [54, 55] and were captured by a significant

enrichment of aspartate in residues closest to the glycan, as well as both aspartate substitutions

appearing in the the representative interaction with the 6’ αNeuAc-terminal glycan but only

G220D appearing in the representative interaction with the 3’ αNeuAc-terminal glycan (Fig

6B–6D). Additionally, the primary mutations shifting specificity toward human-like sialic acid

glycans in H2 and H3 subtypes are Q226L and G228S, with Q226L also playing a role in H7

subtypes and artificially induced Q226L/G228S substitutions in H5 decreased binding with 3’

αNeuAc-terminal glycans [54, 56, 57]. The central substitution for these subtypes (Q226L) was

captured in the significant depletion of glutamine in the closest bin to the glycan (Fig 6B).

While not significant, glycine was depleted in the third bin, the bin in which 228G was found

in interactions with H1 in Fig 6C and 6D, and serine was enriched in the second bin in closer

contact with the glycan (S12 Fig). Thus the systematic, fine specificity analysis performed here

successfully recaptured meaningful substitutions and mutations without prior knowledge even

though they were present in a reduced number of HA subtypes. It should be noted that a num-

ber of features that were significantly associated with 6’ αNeuAc terminal glycans resulted

from the different conformations of the glycans seen in Fig 6C and 6D rather than specific

mutations. This point is elaborated in section 3.

Systematic characterization and comparison uncovers a potentially novel physicochem-

ical determinant of 6’ αNeuAc HA specificity. Valine was significantly enriched in bin 2

when 6’ αNeuAc-terminal glycans were present in the interaction site (Fig 6B). Possible expla-

nations from literature for this association include successive changes in Q226L!I!V in H3

HA leading to reduced binding to avian glycans [58] or G187V contributing to human sialo-

gylcan binding preferences in H7 HA [57]. However, none of the interactions involving H3

HA contained any valine residues in bin 2, and the G187V substitution only placed valine into

bin 2 for H7N9 HA interactions and it seems unlikely that this significance could be achieved

by this single subtype, especially with two other H7Nx subtypes present without valine in bin 2

accounting for two-thirds of the weight attributed to the H7 subtype.

Notably, position 155 in the representative interaction with a 3’ αNeuAc glycan was occu-

pied by threonine (Fig 6C) while the representative interaction with a 6’ αNeuAc glycan con-

tained 155V (Fig 6D), with position 155 falling into the second bin for each interaction and

contributing to valine enrichment in bin 2. Valine residues occurred at analogous positions in

HA structures from H10 (146V) and from influenza B (160V) as seen in a multiple sequence

alignment with sequences from each HA structure (S13 Fig). Of interest, subtype H10 HA has

strong avidity for human sialoglycans but a stronger preference for avian sialoglycans [59] and

influenza type B is typically found only in humans [60]. Within the available structures, only

subtype H1 had examples with both valine and another amino acid (threonine) at that posi-

tion. It appears that in H1 interactions with 3’ αNeuAc glycans, threonine was oriented closer

to the glycan compared to valine and was more likely to have a hydrophobic contact with the

terminal carbon in the N-acetyl group of NeuAc. However, in H1 structures with 6’ αNeuAc

glycans, threonine could be found slightly further from the glycan and seemed less likely to

have a hydrophobic contact compared to valine (S13 Fig). There were not enough interactions

available for this comparison to give high confidence in this potential mechanism, but when
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taken into consideration with the occurrence of valine at analogous positions in hemaggluti-

nins from influenza types/subtypes with high avidity for human-like sialoglycans, T155V

appears more likely to contribute towards the fine specificity of HA for 6’ over 3’ αNeuAc-ter-

minal glycans, especially in the H1 subtype. To our knowledge, this position has not been pre-

viously noted to be associated with human-like versus avian-like sialoglycan specificity and

more detailed analyses and experimental studies are warranted.

3 Discussion

Lectin-glycan interactions are critical in many natural and designed biological processes but

we lack a detailed and comprehensive understanding of the features of these interactions

responsible for their specificity. To this end, we have characterized geometric and physico-

chemical components of over 4,000 interactions, thus enabling systematic investigation of

determinants of lectins’ glycan-binding preferences and validation of these characterizations

by assessment of their predictive power. Investigations into lectin specificity between all gly-

cans (global specificity) as well as between slightly but impactfully altered glycans (fine speci-

ficity) recovered known similarities in glycan-binding preferences of lectins such as between

mannose and glucose, sialic acid containing glycans, and lactose and LacNAc; highlighted less

understood and less intuitive relationships in lectin-glycan interactions such as between Gal,

GalNAc, Glc, and GlcNAc; and identified previously uncharacterized mutations potentially

playing a role in influenza hemagglutinin glycan specificity, all while providing insights into

potential mechanisms of specificity.

In contrast to previous efforts to probe general protein-glycan interaction structures, this

work focused on lectins and the identification of binding site features conserved across non-

homologous lectins with shared specificities, benefiting from the curated glycan identities con-

tained within UniLectin3D. Our approach begins to provide insight into mechanistic determi-

nants of lectin specificity and demonstrates that characteristics of lectin binding sites exist that

can potentially be used to predict the specificity of novel, uncharacterized lectins. By demon-

strating the feasibility of predicting lectin-glycan interactions from statistical associations with

structural and biochemical features, we provide a proof-of-concept for future investigation

into determinants of global and fine lectin specificity. Our demonstration of the study of fine

specificity of influenza HA managed to uncover a previously unreported mutation seeming to

play a role in HA glycan binding despite extensive previous research on HA specificity, indi-

cating very strong discovery potential when applied to any number of less-studied cases.

Highlighted mechanistic insights into lectin specificity could help inform lectin engineering

efforts. Furthermore, in future work where lectin binding site representations might be more

robust to variation in glycan size and orientation, similar approaches could be used to predict

glycan-binding preferences of uncharacterized putative lectins. As such, this work represents a

step towards unlocking a much broader diversity of lectin specificities for use in glycobiology

research and clinical applications.

The primary limitation of our study was reliance on occurrence of glycans in lectin crystal

structures as an indication of lectin specificity. Larger glycans are difficult to resolve in crystal

structures but most glycan binding motifs are more complex than the mono- and disaccha-

rides primarily considered here. In addition, overall glycan quality in the PDB is still relatively

poor although efforts are ongoing to better annotate, curate, and catalog glycan structures in

the PDB [61, 62]. Manual curation of glycan identities in the UniLectin3D database aid greatly

in this regard, but there are still lingering discrepancies between the glycan IUPAC label and

exact composition and modifications present on the observed structures that might add noise

to observed associations. An additional limitation stemmed from our use of the individual
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glycans to define each lectin-glycan interaction. While this approach is the most straightfor-

ward and our findings demonstrate its utility, it introduces additional variability and compli-

cates the interpretation of results by introducing differences in the interaction characterization

depending on the size and orientation of the glycan and separate from differences in the lectin

binding site. Additionally, monosaccharides have more orientational freedom and can be

found in conformations not realistically achieved in more biologically relevant polysaccharide

contexts. This is reflected in a number of associated features from Fig 6B as well as the strong

effect of glycan size on the 3D pocket features in Fig 4C.

Our approach uncovered realistic novel and confirmed determinants of lectin specificity

while demonstrating the predictive potential of featurized lectin binding sites for study of lec-

tins’ glycan-binding preferences. Moving forward, the implementation of holistic lectin bind-

ing site definitions would enable more robust study of the specificity and promiscuity of lectin

binding sites accommodating multiple glycan ligands. While we have focused strictly on

pocket features, global lectin characteristics, e.g., fold information and valency, may also prove

useful for future efforts focused on lectin specificity. Furthermore, incorporation of more

informative and relevant studies of lectin specificity such as glycan microarray data will allow

for more detailed studies of features determining lectin specificity, as well as the application of

predictive models to unbound lectin structures or even homology-derived structures of puta-

tive lectin sequences.

Methods

Pre-processing

UniLectin3D data was shared by [39] on March 5th of 2020. After eliminating entries with no

ligands, no accessible structural data, or resolution worse than 4 Å and manually annotating

missing UniProt IDs for 14 entries, 1,376 entries of lectin-glycan structures remained, repre-

senting 412 unique lectins. All UniProtIDs, IUPAC glycan ligands, and associated UniLec-

tin3D-provided information for these structures are available in S1 File. PDB files were

accessed on August 28th, 2020 after the PDB carbohydrate remediation project. All protein

and glycan structures were processed using BioPython v1.78 [63, 64] and visualized and ren-

dered using PyMol v2.4.02 [65].

To identify glycan binding sites, each PDB file was processed with a forked version of the

PLIP tool v1.4.5 [46] slightly modified to avoid excluding glycan ligands as artifacts and to

facilitate downstream processing of results. All 9,828 PLIP-detected interactions were pro-

cessed, cleaned, and excluded when necessary. Cleaning and exclusion involved merging PLIP

interactions from separate components of the same glycan missing a glycosidic bond; captur-

ing Ca2+ ions in interactions; removing non-glycan ligands as determined using RDKit [66]

from PDB-provided simplified molecular-input line-entry system (SMILES) representations

when possible and otherwise using PLIP-determined SMILES representations; removing gly-

cosylation occurrences within 1.7 Å of a serine, threonine, asparagine, tryptophan, or cysteine

residue of the lectin; removing interactions with peptide chains used to display the glycan of

interest, and excluding multiple copies of the same glycan in different anomeric

conformations.

A final round of filtering was performed manually for 39 structures containing glycans with

fewer than 3 PLIP interactions with the lectin or fewer than 3 residues within 4.5 Å of the pro-

tein, resulting in the removal of 44 interactions from 23 of the structures due to missed glyco-

sylation occurrences, absent glycosidic bonds with reducing-terminal sugars, or non-specific

interactions/crystallization artifacts. There remained 4,088 binding interactions from 1,364
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PDB entries with high confidence of true lectin-glycan interactions, highlighting the absolute

necessity of careful quality considerations in this sort of systematic structural analysis.

PLIP feature generation

The PLIP interaction features were represented as counts of each type of interaction as well as

the total number of glycan-lectin interactions. Interaction types included total hydrogen

bonds, backbone hydrogen bonds, sidechain hydrogen bonds, water bridges, salt bridges (elec-

trostatic interactions), hydrophobic contacts, halogen bonds, metal complexes, π-stacking, and

π-cation interactions. These features are easily accessible to the community because the PLIP

tool is freely available through a web server and the PLIP reports are included in the interactive

UniLectin3D database, thereby decreasing technical barriers to usage.

3D pocket identification

Existing computational pocket-detection tools are primarily designed to identify protein bind-

ing sites suitable for small-molecule therapeutics [67], and we found that consequently none of

the most commonly used tools were suitable for probing and characterizing the variable and

often fairly shallow lectin binding sites [23]. Thus we employed an approach inspired by Vol-

Site [68], placing voxels placed around the glycan to fill the relevant available space in the lectin

binding site, but adapted to the unique geometries of lectins. A 3D grid was placed around the

glycan ligand with points spaced approximately 0.79 Å apart on each coordinate plane, so that

each point can be thought of as the center of a voxel with a volume of 0.5 Å3. Points within 2.5

Å of a protein heavy atom were considered to be below the surface of the protein and were

excluded, as were points that extended beyond the convex hull of the lectin binding site surface

[69, 70]. This surface was found using the van der Waals surface of the lectin binding site as

determined by PyMol [65]. Voxels were further limited by their distance from the closest gly-

can heavy atom to ensure the relevant region of the protein concavity was being captured, and

to account for the higher variability in the shape, size, and extent of lectin binding sites, the

threshold limiting that distance was set at four separate values for each interaction: 4, 6, 8, and

10 Å. This allowed for more information about the shape of the pocket to be extracted by con-

sidering how the characterization changes at each threshold. Finally, to ensure elimination of

spurious voxels unlikely to represent 3D space potentially occupied by the glycan, the points

were clustered with the density-based clustering algorithm DB-SCAN as implemented in sci-

kit-learn v0.23.2 [71, 72]. The DB-SCAN neighborhood eps (�) was set to include the 26 points

that could potentially directly neighbor a given point, and at least 50% of those points were

required to be present (MinPnts = 13) to consider a point as a core point. Points were excluded

if they were labelled as noise by DB-SCAN or if their assigned cluster had less than 15 Å3 of

combined volume or fewer than 10% of its points within 2 Å of a heavy glycan atom, ensuring

the space being characterized was relevant and accessible to the glycan. An exception was

made for clusters that passed the 10% threshold in pocket representations generated with a

lower distance-from-the-glycan threshold but fell below 10% at larger thresholds. This

approach characterized 4,074 of the 4,088 interaction pockets and the remaining 14 interac-

tions sites were flat or convex with no pocket to find.

3D pocket feature generation

For each distance threshold used to generate the voxelized representation of the pocket, the

general pocket descriptor features included the volume of the pocket and percent of voxels

found on the surface of the pocket. Voxels were labelled as either “buried” or “surface” voxels

by the number of the 26 possible directly-neighboring voxels present, where surface voxels had
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fewer than 23 of these 26 present. This value represented a compromise between an overly

restrictive definition for buried voxels such that pockets below a certain size would be com-

prised entirely of surface voxels, and an overly loose definition that would neglect some of the

surface. The voxelized pocket representations were further characterized by two robust, rota-

tionally-invariant, and complimentary approaches: the D2 distributions which represent infor-

mation about pocket shape while being heavily influenced by the extent and dimensions of the

pocket, and the 3D Zernike descriptors (3DZDs) which succinctly represent the pocket shapes

without influence from the overall size of the pocket.

D2 distributions were found by computing all pairwise distances between the centroids of

surface voxels [49] and features for each threshold were derived from the statistics describing

this distribution when placed into 0.5 Å bins. Distribution statistics included variance, 1st

quartile, median, 3rd quartile, left & right skew, and the number of major and minor local max-

ima found after smoothing the distribution with a moving 9-point and 5-point average respec-

tively. To somewhat reduce the influence of overall pocket size and allow pocket shape to carry

more weight in features, the pairwise distance measures were transformed for each interaction

and each pocket threshold by fitting the measures into 40 equal-sized bins scaled to the maxi-

mum observed distance in the pocket, calculating the frequency of measures in each bin, and

concatenating the resultant vector from each threshold into one 160-dimensional vector for

each interaction. The top 20 principal components (PCs) describing these 160-dimensional

vectors (accounting for approximately 80% of the total variance) were used as the D2 principal

component features.

To represent the diversity of possible pocket shapes independently from pocket size, rota-

tionally-invariant 3DZDs based on 3D Zernike moments [48], computed up to the 10th order,

were determined for point clouds defined by the voxels’ centroids, resulting in 36 3DZDs per

pocket, concatenated into a single 144-dimensional vector over the different thresholds. These

3DZDs were found using the software from Daberdaku and Ferrari, [47] modified to accept

the point cloud representations without additional annotation. Point cloud processing to

transform and scale coordinates within the unit sphere was inspired by Grandison et al. [73].

Compared to previous studies, the use of 10th order 3DZDs appeared to be sufficient to capture

the shape of pockets which are already somewhat smoothed in the voxelization process [74].

The top 17 principal components (PCs) describing the 144 concatenated 3DZDs from each

distance threshold for each interaction site were used as the 3DZD principal component fea-

tures. These top 17 PCs accounted for approximately 80% of the total variance.

Binding site residue characteristics

To allow for more complete and continuous lectin binding sites, the binding sites were

expanded from PLIP-defined binding residues to include two residues on each side of an inter-

acting residue as well as residues immediately between two binding site residues. Secondary

structure, backbone angles, and solvent accessibility information for binding site residues were

calculated from the structure files using DSSP v2.3.0 [75, 76].

Binding site residues were binned by distance from the glycan to mitigate the high likeli-

hood that the observed interacting residues in the crystal structure are not the only residues

contributing to interactions stemming from the flexibility of proteins and especially glycans,

the potential for the solved conformation to be influenced by artifacts in the crystallization

process, and the high probability of the existence of alternate low-energy conformations.

These bins served as a rough approximation of the probability of interacting with the glycan

and the overall physicochemical environment of the binding site. Features from the binding

site were generated by placing each residue within 8 Å of the glycan into four bins,� 3.5Å,
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3.5 − 4.5Å, 4.5 − 6.5Å, and 6.5 − 8Å, by the shortest distance between a residue-glycan heavy

atom pair. For each bin, features included the total number of residues, the frequency of each

of the 20 common amino acids, the frequencies of the 7 DSSP-defined secondary structures

observed in lectin binding sites (α-helix, β-bridge, β-strand, 310-helix, hydrogen bonded turns,

and loops/irregular structure), and the frequencies of 5 physicochemical classes of amino acids

(nonpolar residues Gly, Ala, Val, Leu, Ile, Met, & Mse; polar residues Ser, Thr, Cys, Pro, Asn,

& Gln; positively charged residues Lys, Arg, & His; negatively charged residues Asp & Glu; and

aromatic residues Phe, Tyr, & Trp). One additional feature was included in the first bin to

store the number of Ca2+ ions present within 3 Å of the glycan [77].

Homology between lectins

To generate consistent lectin sequences from each structure, the protein sequences from each

chain were clustered with CD-HIT [78, 79] at 90% identity and non-redundant lectin

sequences from each structure were constructed using the representative sequence of each

cluster ordered by the lowest chain ID from each corresponding cluster. The non-redundant

lectin sequences were clustered again with CD-HIT at 50% sequence identity to obtain the 225

clusters of homologous lectins.

One-versus-all statistical associations

Featurized lectin-glycan interactions were compared using weighted Wilcoxon-Mann-Whit-

ney (WMW) tests [50], a non-parametric approach to test whether the random samples from

two different groups were sampled from the same underlying distribution. The WMW test is

particularly useful here because it is well-suited for the ordinal and non-continuous variables

present in our features, it works well with smaller sample sizes that are encountered among the

less frequent glycans, and it does not require assumptions of normality which would not likely

be met for many of the features [80]. Weights for the interactions control for redundancy from

homologous lectins as well as repeated interactions from the same lectin. The total weight, i.e.,

the number of interactions, was equally divided among the clusters of homologous lectins.

Each unique lectin in a cluster as determined by UniProt IDs was then allotted an equal pro-

portion of the total cluster weight, and each observed interaction involving a unique lectin was

assigned an equal proportion of the weight for the given lectin. Glycan symbols supplementing

glycan names in figures follow the SNFG (Symbol Nomenclature for Glycans) system [81] as

generated by [82].

The level of significance provided by the WMW test indicates the probability that the null

hypothesis (H0: P(X< Y) = P(Y< X)) where X is a randomly sampled value for a given feature

from the interactions containing a glycan of interest and Y is a randomly sampled value from

the interactions with all other glycans. Rejection of the null hypothesis allows for the accep-

tance of the alternative hypothesis (H1: P(X< Y) 6¼ P(Y< X)) that the lectin interactions with

the glycan of interest are enriched or depleted for the given feature compared to background

interactions. The reported common language effect size can be interpreted as P(Y< X) − 50%,

or the probability that for a randomly sampled pair of feature values from the interactions with

the glycan of interest and from all other glycan interactions, the value will be greater from the

interaction with the glycan of interest [83].

To control for multiple hypothesis testing, Benjamini-Hochberg correction was applied for

each glycan of interest [84] and the significance threshold was set to q< 0.01 to provide an

FDR of 1%. Significance values of q< 10−16 were considered extremely significant such that

further increased significance is not meaningfully interpretable, so to improve visualization in
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Fig 2 these values were replaced with a random significance value sampled from a log-uniform

distribution between 1 × 10−16 and 3 × 10−19.

One-versus-all predictive modeling

Random forest models for each glycan of interest were trained using a leave-one-out cross-val-

idation strategy such that models were trained on interactions from all but one of the 225

groups of homologous lectins and then used to predict the presence of the glycan in the with-

held interactions. This process was repeated for each cluster of lectins that contained any inter-

actions with the glycan of interest, training on all other interactions and testing on the

withheld interactions to assess cross-validated performance. To balance the number of nega-

tive and positive examples, the majority class (negative examples) was downsampled during

training. For each glycan-specific model, 2,000 trees were built at each iteration of the cross-

validation. Within the training step, 5-fold cross-validation was used to aid in selecting the

number of features to include (mtry) and assess training performance in a nested cross-valida-

tion approach [85]. The number of features tried from the 221 total features was considered

from a range around the default of
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cross validation were performed with randomForest v4.16-14 and caret v6.0-86 [86, 87].

Since, as discussed, negative labels are not always meaningful in this data (perhaps that

exact structure has not yet been solved) and recall and precision do not rely on the true nega-

tive rate, training performance was assessed using the harmonic mean of recall and precision

known as the Fβ score where β was set to 2, placing more weight on recall performance (r)
compared to precision (p) as recall only uses positively labelled data.

Fb ¼ ð1þ b
2
Þ
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2pþ r

In order to further control for redundant lectin interactions beyond the level of homology

clustering at both the training and validation steps, a set of dissimilar positive interactions was

randomly sampled from interactions within each group of similar lectins, followed by a set of

negative interactions dissimilar from each other (as well as the initially sampled positive inter-

actions). Diverse interactions were assessed by Euclidean distance between vectors comprised

of their features each scaled between 0 and 1. Once an interaction was sampled, all remaining

interactions within a thresholded distance were excluded, and sampling continued as long as

eligible interactions remained. The threshold used was equivalent to the median of all pairwise

Euclidean distances between interactions. Distances were found using philentropy v0.4.0 [88].

To account for variation in the random sampling of test cases for each validation step of

this approach, the sampling and prediction was repeated 10 times at each iteration of the

leave-one-out cross-validation. To additionally account for variation in the training data and

the stochasticity of the RFs, the leave-one-out cross-validation approach was repeated 10 times

for each glycan of interest. As a result, 100 samples of RF performance were measured for each

glycan-specific RF classifier and displayed in Fig 3. The “null model” random classifier was

built, trained, and tested exactly the same way except the labels for the interactions for each

glycan of interest were shuffled at the beginning of each of the 10 repeats of the leave-one-out

training/testing procedure.

Feature importance was determined from the recorded mean decrease in Gini impurity for

the features from each model built in each iteration of the validation procedure. To compart-

mentalize complications in interpreting feature importance arising from correlated features

describing the size of the interaction pocket [89], features were stratified into the 3 categories

outlined in Fig 1A–1D before ranking feature importances from each model, and the median
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rank importance across each repeat of each round of leave-one-out cross-validation was com-

puted for features within their respective categories. Features whose median stratified impor-

tance rank was at least in the 75th percentile were considered to be highly predictive.

Glycan recognition similarity analysis

To identify similar determinants of specificity in lectins recognizing different glycans, the

common effect size values of the features from the weighted WMW tests for each glycan of

interest were correlated using Pearson correlation and the glycans were hierarchically clus-

tered with complete linkage using correlation as the distance metric. Heatmaps were generated

using pheatmap v1.0.12 [90].

To find representative interaction examples displayed in Fig 5A–5C, weighted average fea-

ture values with features scaled between 0 & 1 from interactions with each glycan were calcu-

lated using the same interaction weights applied in the weighted WMW tests. Selected

representative interactions for each glycan had the shortest Euclidean distance between its

scaled features and the glycan-specific weighted feature averages. Representative interactions

from the fine specificity of influenza HA displayed in Fig 6C and 6D were found in the same

manner, except only the 35 significantly associated features were used due to the strong simi-

larities between the interactions being compared.

Determinants of fine specificity for αNeuAc glycans

Limiting lectins to influenza HA proteins focused investigation on a shared, conserved binding

site, but homology between viral subtypes still could bias the analysis. A weighted WMW test

[50] was used to compare features from these 96 HA-α2,3/6-NeuAc terminal glycan interac-

tions (47 from 6’ NeuAc & 49 from 3’ NeuAc) following the same approach as used to investi-

gate one-vs-all statistical associations, except that the total weight was first divided between the

6 influenza type/HA subtypes present (Influenza B & influenza A H1, H3, H5, H7, & H10)

instead of relying on the clusters of homologous lectins. Of note: 105 HA interactions were ini-

tially identified with these glycans, but 9 were observed to be cases of missed glycosylation or

non-specific interaction and were excluded from this fine specificity analysis.

Hierarchical clustering in Fig 6A was performed with complete linkage. Sequence similarity

scores used to cluster interactions from the binding site sequences were calculated using Nee-

dleman-Wunch alignment and BLOSUM62 substitution matrix [91, 92], implemented in

protr v1.6–2 with default parameters [93]. The binding site sequences from the HA structures

were found using all residues identified as being contained within the binding site as defined

by the expanded PLIP binding site residues described previously (“Binding site residue charac-

teristics”), grouped in order by chain ID and residue number. To cluster the interactions based

on the interaction features, the similarity scores were found by calculating pairwise Pearson

correlations of the 35 significant interactions features scaled between 0 and 1. Pearson correla-

tion of the scaled features was used over Spearman correlation of the raw features due to the

large variation in range present in the feature set not allowing for informative ranking of all

features.

The multiple sequence alignment in S13 Fig used the non-redundant sequences extracted

for homology comparison and was performed and rendered in Seaview v5.0 with Clustal

Omega and default parameters [94, 95]. Hierarchical clustering in S13 Fig was performed with

complete linkage based on pairwise global alignment as performed for the HA binding site

sequence alignments.
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Supporting information

S1 File. Lectin binding sites with features and UniLectin3D information. The curated set of

4,088 lectin-glycan interactions with associated UniLectin3D information and the values of

the 221 features used in this analysis.

(CSV)

S1 Fig. Non-redundant lectin sequence extraction. Schematic of the workflow used to extract

non-redundant sequences from structure files.

(TIF)

S2 Fig. Histogram of the counts of unique lectins within each homology cluster. The num-

ber of unique lectins (as defined by UniProtID) within each homology cluster generated with

CD-HIT at 50% sequence identity. Most homology clusters only contained 5 or fewer unique

lectins, but some very well studied lectins and homologous lectins were grouped into very

large homology clusters.

(TIF)

S3 Fig. Occurrence of each unique glycan ligand across groups of non-homologous lectins.

Frequencies of all 226 unique IUPAC-labelled glycans within each cluster of homologous lec-

tins. The top 12 individual glycans (vertical line) each appeared in complex with at least 5% of

the 225 clusters of homologous lectins (horizontal line). Information about each glycan is pro-

vided below each bar of the barplot, including membership of one of the three groups of gly-

cans (terminal NeuAc, high mannose, and terminal fucose).

(TIF)

S4 Fig. Occurrences of the 15 glycans of interest across groups of non-homologous lectins.

Panel A shows the same values as S3 Fig for the 12 most commonly bound glycans (right of the

dotted vertical line), annotated with their corresponding IUPAC names and SNFG symbols, as

well as the frequencies of the 3 groups of glycans (left of the dotted vertical line) appearing bound

to any lectins in the 225 homology clusters with their representative SNFG symbols. Panel B

shows the actual distributions of training samples (on a log scale) used for each individual RF

model for each glycan at reach repeat and interaction of the leave-one-out cross-validation. These

distributions appeared fairly proportional to the relative frequencies of each glycan in panel A.

(TIF)

S5 Fig. Glycan-specific RF model training performances. Training performance of glycan-

specific RF models measured with nested 5x cross-validation. Recall (left y-axis) and precision

(right y-axis) of glycan-specific random forest models is shown by the split violin plots, with

the left-hand distributions depicting recall and the right-hand distributions depicting preci-

sion. The pairs of notch boxplots for each glycan show the performance of the random classifi-

ers trained on data with shuffled labels, where again the left-hand boxplots depict the random

classifiers’ recall and the right-hand boxplots depict their precision.

(TIF)

S6 Fig. Glycan-specific RF model training performance is correlated with the number of

training examples. Training performance of glycan-specific RF models summarized by F2 scores

combining recall and precision with greater emphasis on recall, plotted against the number of

samples used in training each specific model. Glycan labels are placed on the mean F2 and sam-

ple numbers for each glycan. Training nested-cross-validation performance is fairly correlated

with the number of samples available for training (Pearson correlation ρ = 0.39, p< 0.001).

(TIF)
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S7 Fig. Median feature importance percentiles from glycan-specific RF models. Median

feature importance percentiles from each glycan-specific RF model determined via mean

decrease in Gini impurity. Size-correlated pocket features (blue) were often grouped together

at a higher importance level, motivating the stratification by feature type to prevent multicolli-

nearity from one feature type affecting other features. Points were colored with the same color

scheme detailed in Figs 1, 2, 4 and 6.

(TIF)

S8 Fig. Glycan-specific median RF feature importance percentiles within residue features.

Median feature importance percentiles of residue-based features (within the residue features

only) from each glycan-specific RF model determined via mean decrease in Gini impurity. Fea-

tures with median importance in at least the 75th percentile (horizontal line) were considered

highly predictive. Points were colored with the same color scheme detailed in Figs 1, 2, 4 and 6.

(TIF)

S9 Fig. Glycan-specific median RF feature importance percentiles within pocket features.

Median feature importance percentiles of pocket-based features (within the pocket features

only) from each glycan-specific RF model determined via mean decrease in Gini impurity.

Features with median importance in at least the 75th percentile (horizontal line) were consid-

ered highly predictive. Points were colored with the same color scheme detailed in Figs 1, 2, 4

and 6.

(TIF)

S10 Fig. Glycan-specific median RF feature importance percentiles within PLIP features.

Median feature importance percentiles of PLIP features (within the PLIP features only) from

each glycan-specific RF model determined via mean decrease in Gini impurity. Features with

median importance in at least the 75th percentile (horizontal line) were considered highly pre-

dictive. Points were colored with the same color scheme detailed in Figs 1, 2, 4 and 6.

(TIF)

S11 Fig. Feature-type stratified percentiles of RF feature importances are generally corre-

lated with the degree of feature enrichment from the WMW test. Median ranked feature

importance percentiles (stratified by feature type) are plotted together against the absolute

value of the weighted WMW effect size. In general, the stronger the observed association from

the WMW test for a given feature, the more likely the feature was to be highly predictive. The

dotted horizontal line indicates the 75th percentile threshold. Points that are bolded represent

features that passed the 75th percentile for feature importance and were found to signficant

from the weighted WMW test at q < 0.01 following the Benjamini-Hochberg procedure.

Points were colored with the same color scheme detailed in Figs 1, 2, 4 and 6.

(TIF)

S12 Fig. Features associated with 6’ vs 3’ sialoglycans and compared to observed associa-

tions from NeuAc glycans vs all other glycans. Enrichment and depletion patterns in the 221

features for 6’ NeuAc glycans compared to 3’ NeuAc glycans (bottom row) determined by a

weighted WMW test. Bullet points indicate q< 0.01 by Benjamini-Hochberg correction. The

first row shows the associations for terminal NeuAc glycans compared to background from

Fig 4 for ease of comparison, and the second and third row show comparisons of 6’ NeuAc gly-

cans and 3’ NeuAc glycans in HA binding sites compared to background interactions.

(TIF)

S13 Fig. Valine at position 155 in H1 appears to be a previously uncharacterized mutation

associated with 6’ sialoglycan specificity. Valine appears at position 155 (H1 numbering) in
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H1, H10, and type B hemagglutinin structures, as shown by the multiple sequence alignment

(Clustal Omega), visualized with Seaview, and clustered by global sequence identity (BLOSUM

62), as show in panel A. Panel B shows the distributions of the measured minimum distance

from any atom in the residue at position 155 to the closest heavy glycan atom (usually the ter-

minal carbon of the N-acetyl group) within all HA structures from H1N1. When complexed

with 3’ sialoglycans, threonine is usually oriented closer to the glycan compared to valine, and

has a hydrophobic contact with the sugar in two of the structures (compared to one structure

when valine is present). When complexed with 6’ sialyoglycans, valine is more tightly grouped

closer to the glycan and has one observed hydrophobic interaction with the glycan while threo-

nine has no contacts.

(TIF)

S1 Table. UniLectin3D-assigned IUPAC glycan names within the terminal NeuAc group of

glycans.

(PDF)

S2 Table. UniLectin3D-assigned IUPAC glycan names within the high mannose group of

glycans.

(PDF)

S3 Table. UniLectin3D-assigned IUPAC glycan names within the terminal fucose group of

glycans.

(PDF)

S4 Table. UniLectin3D-assigned IUPAC glycan names within the 6’ αNeuAc-terminal gly-

cans complexed with influenza hemagglutinin.

(PDF)

S5 Table. UniLectin3D-assigned IUPAC glycan names within the 3’ αNeuAc-terminal gly-

cans complexed with influenza hemagglutinin.

(PDF)
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