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Abstract
Chronic kidney diseases (CKD) are a major health problem affecting approximately 10% of the world’s population and posing 
increasing challenges to the healthcare system. While CKD encompasses a broad spectrum of pathological processes and 
diverse etiologies, the classification of kidney disease is currently based on clinical findings or histopathological categoriza-
tions. This descriptive classification is agnostic towards the underlying disease mechanisms and has limited progress towards 
the ability to predict disease prognosis and treatment responses. To gain better insight into the complex and heterogeneous 
disease pathophysiology of CKD, a systems biology approach can be transformative. Rather than examining one factor or 
pathway at a time, as in the reductionist approach, with this strategy a broad spectrum of information is integrated, including 
comprehensive multi-omics data, clinical phenotypic information, and clinicopathological parameters. In recent years, rapid 
advances in mathematical, statistical, computational, and artificial intelligence methods enable the mapping of diverse big 
data sets. This holistic approach aims to identify the molecular basis of CKD subtypes as well as individual determinants 
of disease manifestation in a given patient. The emerging mechanism-based patient stratification and disease classification 
will lead to improved prognostic and predictive diagnostics and the discovery of novel molecular disease-specific therapies.
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Introduction

The kidney with its multiple specialized cell populations 
interacting in the complex three-dimensional nephron 
structure is responsible for maintaining the internal homeo-
stasis of the human organism. Due to this central role, a 
dysregulation of kidney function can have a multitude of 
detrimental effects on the body. Kidney diseases are a major 
health problem with currently around 10% of the world’s 
population being affected by chronic kidney disease (CKD) 
(Collins and Foley 2012). They encompass a wide range 
of pathological processes and different etiologies which are 
a confluence of interactions of genetic, immune-mediated, 
environmental, and psycho-social factors. The classification 
of kidney diseases is currently based on clinical findings 
or histopathological categories. However, these clinical 

pathological classifications of kidney diseases lumping 
patients with similar phenotypes, but heterogenous under-
lying disease mechanisms resulting in inaccurate prediction 
of disease prognosis and treatment response. One reason for 
the slow progress in identifying and developing new thera-
pies is the classic reductionist approach of the last decades, 
which examines one factor or one pathway at a time. While 
this approach has been successful in elucidating the physi-
ological and pathophysiological function of specific genes or 
proteins in multiple monogenic kidney diseases, it has been 
less efficient in unraveling the complex interactions across 
genes, proteins, and pathways in diseases with complex dis-
ease pathogenesis. To overcome some of these challenges, 
a systems biology approach which integrates a wide spec-
trum of information including comprehensive multi-omics 
data, clinical phenotypic patient data, and clinicopathologic 
parameters, can complement the reductionist view and pro-
vide a more holistic understanding of the interacting disease 
mechanism in a given patient. In the last years, significant 
progress has been made in data modelling approaches and 
computational capabilities and methods to integrate diverse 
large sets of data. Application of different mathematical, 
statistical, and computational methods as well as the use of 
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artificial intelligence data mining strategies can help to link 
molecular insight with clinically phenotypic data to better 
classify diseases, stratify patients, and design novel diagnos-
tic and therapeutic tools.

The ultimate goal of the systems biology approach in 
medicine is to understand cellular function and interaction 
in a complex organ system and how perturbations relate to 
disease development and progression. The advancement of 
biomedical technologies able to comprehensively assess a 
specific molecular domain in human biosamples provides 
now datasets of sufficient depth to start to define cross cut-
ting disease mechanism. Most notably we have seen rapid 
adaption of next-generation sequencing technology via 
RNA-seq, and scRNA-seq, and GC–MS via metabolomics 
and proteomics to collect genome scale information from 
human renal tissue obtained by biopsy. This is particularly 
impactful for renal research, as kidney cellular physiology 
will benefit greatly from the integration of different omics 
data across the different layers of data sets and nephron seg-
ment (Subramanian et al. 2020).

Approaches

Integrating omics data can be subdivided into two main con-
cepts: the post-analysis approach and the combination approach. 
The first approach integrates omics data by analyzing each 
omics data separately and then validating the results with other, 
orthogonal omics data. This approach is based on the integra-
tion of observations from different analyses of omics data (Pinu 
et al. 2019). There are two methods: top-down and bottom-
up data reduction (Yu and Zeng 2018). The top-down method 
uses genomic and transcriptomic data to predict phenotypic 
responses and identify enriched signaling pathways, which are 
then validated by targeted metabolomics and proteomics. The 
disadvantage of this approach is that changes in genes, pro-
teins, and metabolites do not necessarily directly correlate. In 
the bottom-up approach, significantly different metabolites are 
used to focus on the upstream pathways responsible for their 
alterations. The low coverage of metabolomics (one hundred 
measured metabolites versus thousands of measured genes and 
proteins) has been a major disadvantage of this approach, which 
limited the interpretation towards a comprehensive mapping 
across the multiscalar data domains to date.

In the combination approach, omics data is combined 
prior to data interoperation and visualization. The idea is to 
identify similarities between different omics data using math-
ematical methods such as Canonical Correlation Analysis 
(CCA) (Rohart et al. 2017) and orthogonal Two-Way Projec-
tion on Latent Structures (O2PLS) (Bouhaddani et al. 2016). 
More details on the methodologies and statistics behind these 
approaches can be found in the review from Subramanian 
(Subramanian et al. 2020).

Which datasets can be used in systems 
nephrology

Omics data

Genomics

Genome-wide association studies (GWAS) have become a valu-
able tool to decipher the polygenic architecture of complex dis-
eases such as chronic kidney disease by identifying common 
genetic variants that are associated with complex diseases and 
traits. Despite the identification of thousands of disease- and/or 
trait-associated single-nucleotide polymorphisms (SNPs), the 
mechanism how these genetic variants impact gene regulation 
and the pathophysiological context is still largely unknown. 
One approach to investigate the influence of genetic variants 
on disease development is the integration of GWAS data with 
expression of downstream efforts, i.e., transcriptome data, 
so-called eQTL studies. In recent years, kidney compartment-
based eQTL studies have started to provide context of disease-
relevant processes and new targets as well as to establish kid-
ney relevant eQTL databases. (NephQTL: http://​nephq​tl.​org; 
Human kidney eQTL atlas: http://​suszt​aklab.​com/​eqtl/) (Gillies 
et al. 2018; Qiu et al. 2018).

In order to obtain information regarding the whole spec-
trum of genetic mutations such as deletions, substitutions, 
and copy number variations, the technological develop-
ment of whole exome sequencing (WES) or whole genome 
sequencing (WGS) can be deployed on kidney disease popu-
lations. These applications are already playing an important 
role in pediatric renal diseases, since about 70% of inherited 
kidney diseases are associated with childhood CKD (Gulati 
et al. 2020). Intriguingly also in adults about 10% of kidney 
diseases are due to a genetic cause (Groopman et al. 2019). 
Thus, these new technologies may lead to new insights in 
adult nephrology allowing a reclassification of diagnosis and 
treatment (Leveson and Oates 2020; Wilson et al. 2020).

Epigenomics

The advances in high-throughput sequencing technolo-
gies in recent years also facilitate a precise analysis of the 
epigenetic landscape. Approaches include among others 
the measurement of transcription factor (TF) binding and 
histone modifications by chromatin immunoprecipitation 
sequencing (ChIP-seq), and the detection of DNA meth-
ylation by bisulfite sequencing, the analysis of chromatin 
accessibility using the Assay of Transposase Accessible 
Chromatin Sequencing (ATAC-seq) (Li et al. 2019; Wilson 
et al. 2020).

DNA methylation represents an important epigenetic 
alteration that strongly influences gene expression and 
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thereby playing an important role in regulating various 
physiological and pathological processes. In mammalians, 
DNA methylation occurs mainly at C5 of the cytosine ring 
within cytosine guanine (CpG) dinucleotides and is often 
found bundled in so called “CpG islands” at gene regula-
tory sites such as promoter regions. Several methods exist to 
study DNA methylation, with bisulfite sequencing being the 
gold standard for measuring the DNA methylation status of 
a genome. The analysis of the DNA methylation status can 
help us to extend our understanding of kidney development 
(Wanner et al. 2019) (and the pathophysiology of kidney 
diseases (Bansal et al. 2020).

Sequencing methods such as ATAC-seq (Assay of Trans-
posase Accessible Chromatin) allow the systematic investi-
gation of epigenetic mechanisms responsible for chroma-
tin accessibility. In recent years single-cell/single-nucleus 
ATAC-Seq (scATAC/snATAC-seq) has been developed, 
which enables the analysis of cell type-specific chromatin 
accessibility in complex tissue with substantial cellular het-
erogeneity (Klemm et al. 2019). The identification of open 
chromatin in the genome at the single-cell level helps to 
refine our understanding of the functional heterogeneity and 
gene regulatory mechanisms in tissue such as the nephron 
(Muto et al. 2020).

Transcriptomics

RNA‑seq/scRNA‑seq  RNA sequencing is one of the next-
generation sequencing technologies developed for the study 
of RNA expression, translation, and structure (Stark et al. 
2019). Primary application and a routine research tool of 
RNA-seq is the identification of differential gene expression 
(DEGs), where we compare transcriptomic data from differ-
ent samples and from different conditions. In bulk RNA-seq 
analysis, the average expression level for each gene present 
in the cell population is measured over a large number of 
input cells.

The kidney represents one of the most complex organs 
in the body, posing a major challenge in terms of resolving 
cellular heterogeneity. To better understand the complexity 
of the kidney, various approaches have long been pursued 
to identify cell-specific signals from complex signatures, 
including microdissection into individual compartments, 
enrichment of single-cell types, or computational meth-
ods such as in silico deconvolution (Cohen et al. 2002; Ju 
et al. 2013; Rinschen et al. 2018; Soutourina et al. 2005). 
With the ongoing development of new technologies such 
as single-cell RNA-seq (scRNA-seq) or single-nucleus 
RNA-seq (snRNA-seq), alternative approaches for meas-
uring expression levels for each gene in individual cells 
become available to better resolve cellular heterogeneity 
and diversity in the kidney in an unbiased way. Multiple 
cellular dissociation protocols have been developed to 

obtain single-cell or single-nuclear profiles from complex 
human tissues with complimentary advantages of the dif-
ferent technologies towards comprehensive coverage of tis-
sue resident cell types (Slyper et al. 2020; Wu et al. 2019). 
The identification of rare cell populations and definition 
of cellular heterogeneity can provide great insights into 
the pathogenesis of kidney diseases and kidney develop-
ment (Abedini et al. 2021; Lake et al. 2019; Lindström 
et al. 2018; Subramanian et al. 2019; Wang et al. 2018; 
Wu et al. 2019, 2018a; Zheng et al. 2020). One problem 
with scRNA-seq protocols is that due to dissociation in 
single-cell suspensions, cells lose their spatial arrange-
ment information. However, spatial arrangement within 
an organ plays an important role to understand cell–cell 
interactions and their functions in an organ. In recent years, 
promising approaches to spatially resolved transcriptomics 
have been developed that attempt to combine the infor-
mation richness of single-cell technology with spatial 
resolution (Liao et al. 2021). Further developments are 
needed to achieve high spatial resolution combined with 
high throughput scRNA-Seq. These new approaches will 
improve our understanding of molecular mechanisms and 
cell–cell interactions in the kidney, aiding in the develop-
ment of more accurate kidney disease classification, patient 
stratification, and novel therapeutic approaches.

CITE‑seq  One of the innovative new tools for studying 
single-cell biology is the cellular indexing of transcrip-
tomes and epitopes by sequencing (CITE-seq). CITE-Seq 
represents a multimodal assay that allows simultaneous 
transcriptomic and proteomic phenotyping at the single-
cell level. Oligonucleotide-labeled antibodies are used 
to efficiently integrate cellular protein and transcriptome 
measurements (Stoeckius et al. 2017).

Proteomics

The qualitative and quantitative protein composition of a cell 
is influenced by various factors such as the expression level 
of the respective gene, posttranslational modifications, or 
environmental factors. High-throughput analysis of protein 
expression, protein modification, and protein–protein interac-
tions can be investigated using mass spectrometry (MS)-based 
techniques such as tandem MS. There are several studies that 
have employed urine proteomics for the non-invasive early 
detection of kidney disease (Bellei et al. 2018). In the future, 
newly developed technologies such as spatial proteomics will 
allow us to obtain information of individual proteins on sub-
cellular level and thus help us to better understand cell biology 
(Bottek et al. 2020; Lundberg and Borner 2019).

Since the protein concentration does not only depend 
on the mRNA abundance but is also regulated by 
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posttranscriptional processes, frequently only a moderate 
correlation between transcript level and protein level is 
observed (Liu et al. 2016). Integration of multiple omics-
platforms might help to overcome this problem and help 
to gain further insights into kidney biology. By combin-
ing deep proteome data with mRNA sequencing data from 
native mouse podocytes, a comprehensive and quantitative 
map of mammalian podocytes has recently been created 
(Rinschen et al. 2018). This multi-layered expression atlas 
not only allows the identification of characteristic features 
of podocytes but also opens the way to the discovery of 
new disease genes for human proteinuric kidney disease, 
potential drug targets, and the prioritization of these for 
follow-up studies by integrating further data from e.g. 
human studies.

Metabolomics/Lipidomics

The metabolome, i.e., the entirety of all metabolites and 
small molecules of a biological sample, is the product of 
the interaction of the genome with its environment. Cur-
rently, around 40 k primary and secondary human metabo-
lites have been identified (Wishart et al. 2018). Using NMR-
spectroscopic and MS-based technologies such as liquid 
chromatography (LC), gas chromatography (GC), or capil-
lary electrophoresis (CE) mass spectrometry, hundreds to 
thousands of metabolites can be precisely measured simul-
taneously. Metabolomics provides insight into the mecha-
nisms of kidney disease (Abbiss et al. 2019), the discovery 
of new therapeutic options (Rhee 2015), and the early detec-
tion of chronic kidney disease (CKD) (Chen et al. 2019; 
Grams et al. 2018). The next challenge in metabolomics is 
to develop a mechanistic understanding of metabolic pro-
cesses in space with cellular and subcellular spatial resolu-
tion (Neumann et al. 2020).

The lipidome represents a subset of the “metabolome” that 
describes the lipid profile within a cell. In recent years, rapid 
developments in mass spectrometry and NMR spectrometry 
have stimulated research investigating the role of lipids in kid-
ney disease (Afshinnia et al. 2018b; Avela and Siren 2020). 
Lipidomics can provide further insights into the mechanistic 
understanding of dyslipidemia in CKD patients. For exam-
ple, different studies have shown that with progression of 
renal insufficiency elevation of saturated free fatty acids is 
observed, which is accompanied by a decreased efficiency 
of beta-oxidation (Afshinnia et al. 2018a; Rhee et al. 2010). 
Additionally, lipidomics can serve as a source for identify-
ing potential biomarkers for disease progression as shown in 
type 2 diabetic kidney disease (Afshinnia et al. 2019) or in a 
subcohort of the Chronic Renal Insufficiency Cohort (CRIC), 
a longitudinal outcome study of patients with different CKD 
stages (Afshinnia et al. 2016).

Large‑scale biological data beyond omics

Multiple additional biomedical large-scale data sources for 
integrative biology are currently emerging. New imaging 
techniques and analysis methods based on deep digital spatial 
image capture linked with machine learning–driven analysis 
algorithms have revolutionized the information content and 
usefulness which was reserved so far to the qualitative image 
analysis by the human expert. For example, digitalized whole-
slide images of kidney biopsies can be used to automatically 
extract descriptive and quantitative histopathological features, 
which in turn can be then linked with AI-driven pattern extrac-
tion to improve be diagnostic classifications, disease progno-
sis, and therapy response (for further information see (Becker 
et al. 2020). Quantitative analysis of cross-sectional imaging, 
in particular magnetic resonance imaging (MRI), positron 
emission tomography (PET), computed tomography (CT), 
and ultrasound (US), is increasingly proposed as an alterna-
tive source of biomarkers to inform chronic kidney disease 
(CKD) management (Gooding et al. 2020). In recent years, 
the interest is increasingly moving towards advanced imag-
ing techniques that are sensitive to structural and functional 
tissue characteristics such as perfusion, oxygenation, blood 
flow, glomerular filtration, tubular flow, fibrosis, inflammation, 
metabolism, and tissue composition (Granda et al. 2018; Jiang 
et al. 2019). Additional utility derives from the fact that these 
characteristics can be measured separately for left and right 
kidney and for cortex and medulla and that they can character-
ize functional and structural heterogeneity within those areas.

Besides imaging data, clinical phenotypic data such as 
electronic health records, lifestyle data, or environmen-
tal exposures are an information-rich data source that can 
be incorporated into the systems biology workflow (Wu 
et al. 2017). In addition to electronic health records (EHRs) 
that contain information on the clinical profile of the patient 
such as diagnosis, biochemical parameters, or medication, 
lifestyle measurements such as physical activity, heart rate, 
sleep quality, or potassium level in sweat derived from health 
mobile applications (eHealth apps) as well as wearables have 
the potential to increase our understanding of disease epi-
demiology and help to detect patients at risk and improve 
patient compliance in disease management (Fig. 1).

Data integration and network analysis

To gain a more holistic understanding of cellular function 
and interaction in the kidney and to learn how the phenotype 
of kidney disease is influenced by factors such as genes, pro-
teins, or epigenetic factors, the integration of different levels 
of data is an important tool. Due to the complexity of the 
data, this poses a greater challenge. In recent years, however, 

478 Cell and Tissue Research (2021) 385:475–488



1 3

Fig. 1   Schematic workflow of 
systems nephrology
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various methods of data integration have been established 
which attempt to integrate specific subsets of omics data. 
This can be achieved using unsupervised and supervised 
approaches, including statistical or machine learning based 
methods, which can be further categorized into matrix fac-
torization methods, correlation-based analysis, Bayesian 
methods, network-based methods, multiple kernel learn-
ing, and multi-step analysis. A complete survey of different 
methodologies is beyond the scope of this paper. A good 
overview of the different methodologies, limitations of the 
tools, and challenges of multi-omics data integration can be 
found in Huang et al. (2017) and Subramanian et al. (2020).

One of the data integration approaches involves network-
based analysis. Biological networks aim to analyze different 
biological entities such as metabolites, genes, and proteins 
as an interacting system and its association with disease pro-
gression. There exist different types of biological networks 
such as protein–protein interaction (PPI), gene regulatory 
networks (GRN), signaling networks, neuronal networks, 
and metabolomics networks. Biological networks consist of 
two components, nodes and edges. While nodes can rep-
resent different biomolecules such as genes, proteins, and 
metabolites, edges represent the interaction of these bioenti-
ties. The type of interaction shown in the network depends 
on the definition of the interaction, i.e., for example, is it a 
physical interaction as in a PPI network or a regulation as 
in a GRN. Nodes with high connectivity represent a central 
gene, protein, or metabolite that serves as bridge between 
different portions of the network.

Many tools have been developed to create, visualize, and 
analyze biological networks. For example, correlation networks 
using WGCNA (Langfelder and Horvath 2008) and DiffCorr 
(Fukushima 2013) have been applied, e.g., to compare networks 
across health and disease stages and to evaluate how the connec-
tion of nodes is affected by disease state compared to healthy 
state. For scientists without programming skills, the web-
based tool webCEMiTool https://​cemit​ool.​sysbio.​tools/ offers 
a comprehensive modular analysis in a fully automated man-
ner to perform WGCNA-based analysis of their data (Cardozo 
et al. 2019). In recent years, many user-friendly computational 
tools for scientists without a computational background have 
been build, which allow multi-omics data visualization, analysis 
and construction of correlation, gene regulatory, and PPI net-
works including Networkanalyst https://​www.​netwo​rkana​lyst.​ca/ 
(Zhou et al. 2019), RegNetwork http://​www.​regne​twork​web.​org/​
home.​jsp (Liu et al. 2015), OmicsNet http://​www.​omics​net.​ca 
(Zhou and Xia 2018), Mibiomics https://​shiny-​bird.​univ-​nantes.​
fr/​app/​Mibio​mics (Zoppi et al. 2021), Paintomics http://​www.​
paint​omics.​org/ (Hernandez-de-Diego et al. 2018), or Metabo-
analyst https://​www.​metab​oanal​yst.​ca/ (Chong et al. 2018). One 
of the best and very powerful network visualization and integra-
tion tool is Cytoscape https://​cytos​cape.​org/ (Otasek et al. 2019; 
Shannon et al. 2003). Since its launch in 2003, more than 200 

apps have been developed for complex network analysis and 
visualization. For further information on network-based analysis, 
refer to Ramos et al. (2019).

Consortia

The comprehensive investigations of kidney disease patients 
using omics and non-omics data can hardly be accomplished 
by an individual research group or center but requires the 
establishment of complex infrastructures utilizing a distrib-
uted research networks of clinical centers, biobanks, regis-
tries, and highly specialized analytical laboratories, as is also 
done within the framework of the Collaborative Research 
Center described in this issue.

As potential molecular disease mechanism or identified 
biomarkers emerge a crucial part pertains to the validation in 
independent cohorts with different clinical, environmental, 
and genetic exposures.

In the past 20 years, many cohorts/consortia have been 
initiated to enable comprehensive studies of different kidney 
diseases and provide resources to the research community. 
Cohorts with relationship to the Collaborative Research 
Center are among others the ERCB (European Renal cDNA 
Bank), NEPTUNE (Nephrotic Syndrome Study Network), 
C-Probe (Clinical Phenotyping Resource and Biobank Core), 
the CRIC cohort (Chronic Renal Insufficiency Cohort), and 
the Kidney Precision Medicine Project (KPMP).

The ERCB has been launched more than 20 years ago and 
represents one of the first multi-center initiatives for compre-
hensive tissue level molecular analysis of human renal biopsies 
from patients with different chronic kidney diseases (Cohen 
et al. 2002). While the ERCB covers the entire renal disease 
spectrum observed in Europe, the NEPTUNE cohort study 
focuses mainly on patients with primary glomerular diseases 
(minimal change disease, focal segmental glomerulosclerosis, 
membranous nephropathy) (https://​www.​neptu​ne-​study.​org/). 
NEPTUNE includes not only sampling of kidney biopsies but 
also urine and blood samples, collection of a wide range of 
demographic and clinical data, histopathological scoring and 
morphometry, whole genome sequencing, kidney compart-
ment specific gene expression profiles, and comprehensive 
follow-ups of at least 36 months (Gadegbeku et al. 2013), 
with more than 800 patients enrolled. Two other cohorts of 
well-characterized patients with chronic kidney disease are 
C-PROBE (https://​kidne​ycent​er.​med.​umich.​edu/​clini​cal-​
pheno​typing-​resou​rce-​bioba​nk-​core) and the CRIC-study 
(http://​www.​crist​udy.​org/​Chron​ic-​Kidney-​Disea​se/​Chron​ic-​
Renal-​Insuf​fi cie​ncy-​Cohort-​Study/). C-PROBE is an ongo-
ing, prospective multi-center cohort study of currently more 
than 1600 adult and pediatric participants with kidney disease 
from diverse clinical, ethnical, and socio-economic back-
grounds. It encompasses a deep clinical phenotyping, as well 
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as a collection of urine, blood, DNA, renal tissue biospecimen, 
and a longitudinal follow-up. The CRIC-study is one of the 
largest data and biospecimen collection in nephrology. To date, 
around 5.500 patients with different severity of CKD have been 
enrolled and characterized, more than 150.000 blood and urine 
biosamples as well as clinical data, data on quality of life, life 
style data and others, and longitudinal follow-ups have been 
collected. The KPMP project is a multidisciplinary effort by 
the nephrology research community with the goal to apply-
ing cutting-edge OMICs as well as imaging technologies on 
biopsy tissue obtained by research renal biopsies from AKI 
and CKD patients (https://​www.​kpmp.​org/).

These data and samples serve as resources to the research 
community and help to pave the way to a more personalized 
medicine by defining disease subgroups, identifying cells, 
pathways, and targets for novel therapies.

Application of systems biology approaches 
in Nephrology

An accurate disease taxonomy is important for the diagno-
sis and treatment of patients with CKD. At present, however, 
many patients with CKD often do not respond to treatment. 
The reason for this is, amongst others, the descriptive clas-
sification of diseases according to primarily presenting clini-
cal symptoms and histopathological findings. Despite its 
comprehensive clinical application, this classification system 
does not reflect well individual patient factors and lacks the 
necessary understanding of the underlying molecular mecha-
nisms required for effectively targeted treatment strategies. The 
employment of systems biology approaches can enable the 
identification of the underlying molecular disease mechanisms, 
individual patient factors, mechanism-based patient stratifica-
tion, and disease classification as well as mechanism-based 
diagnostics using diagnostic and prognostic biomarkers and 
the discovery of new molecular, disease-specific therapies.

Disease mechanism and disease classification

One goal of systems medicine is the identification of molec-
ular disease mechanisms, which in turn enables the reclas-
sification of diseases based on the underlying molecular 
mechanism and patient stratification based on their molecu-
lar characteristics. Linking molecular programs to structure 
and function on a cellular level has become an important 
tool not only for identifying and classifying cell types but 
also for uncovering disease mechanisms and refining disease 
classifications.

A recent study of the Kidney Precision Medicine Project 
(KPMP) (www.​kpmp.​org) can be used to illustrate the power 
of these approaches. The study used a deconvolution strategy 
by integrating scRNA data from human reference biopsy 

samples with bulk RNA seq data from patients with various 
chronic kidney diseases to identify cell type–specific gene 
signatures and define molecular subgroups in glomerular 
diseases (Kammer et al. 2019). Different reference tissue 
sources were used to create a reference atlas of 31 different 
renal cell types, including three different endothelial cell 
clusters. The scRNAseq-directed endothelial cell gene sig-
natures enabled the generation of a glomerular endothelial 
cell (GEC) score, which after integration with CKD bulk 
RNA data led to the identification of two distinct groups 
of FSGS patients and showed an association between GEC 
activation and exposure to immunosuppressive treatment at 
time of biopsy. The analysis of the molecular endothelial 
gene signatures of the two FSGS subgroups revealed sig-
nificant differences in intrarenal α-2-macroglobulin (A2M) 
gene expression levels and an association of A2M transcript 
levels with disease progression, suggesting A2M as a cell 
type-specific outcome predictor.

In studies published in 2019 (Arazi et  al. 2019; Der 
et al. 2019), single-cell RNA-Seq technique has been applied 
to explore the heterogeneity of lupus nephritis (LN), deci-
pher intercellular interactions, and identify novel prognostic 
markers. For this purpose, kidney and skin biopsy samples 
from patients with LN and healthy controls were analyzed. 
The scRNA-Seq analyses indicated that lupus patients 
experienced a higher IFN response in renal tubule cells and 
keratinocytes compared to healthy controls and that these 
correlated strongly with each other. Furthermore, they could 
show that specific molecular signatures of tubular epithelial 
cells and keratinocytes such as the upregulation of type I 
IFN-response and TNF signaling differentiated patients with 
proliferative LN from membranous or mixed LN. Besides 
the dysregulation of immune-related pathways, patients with 
lupus nephritis exhibited an upregulation of fibrosis markers 
in tubular epithelial cells and keratinocytes which also cor-
related with each other in the individual patients. Based on 
these results, Der and colleagues were able to establish IFN-
response and fibrosis signatures in tubular epithelial cells, 
which allowed a prediction of treatment response 6 months 
after biopsy and might be used as potential prognostic 
biomarkers and stratification tools in the future. Finally, 
single-cell analysis of matching urine samples allowed the 
definition of a macrophage subtype present in both kidney 
tissue and urine with the potential for effective non-invasive 
monitoring of the intrarenal states.

Another interesting and powerful tool that has been 
developed in recent years for the identification and analysis 
of disease mechanisms are kidney organoids derived from 
human-induced pluripotent stem cells (iPSCs). By applying 
single-cell RNASeq technologies to kidney organoids, recent 
studies have shown on the one hand that the reproducibil-
ity and quality of kidney organoids derived from different 
human iPSC lines can be reliably assessed with scRNA-Seq 
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(Subramanian et al. 2019). Secondly, data integration analy-
sis of different single-cell data sets demonstrated the conser-
vation of different cell types between kidney organoids and 
fetal kidney and provided evidence that kidney organoids 
can mimic normal fetal development in terms of cellular 
identity and complexity (Combes et al. 2019). In another 
study, a combination of single-cell data sets and bulk RNA-
Seq data not only identified robust and reproducible gene 
expression signatures of cells present in organoid cultures 
shared with developing human kidneys but also detected a 
gene expression signature characteristic of developing glo-
merular epithelial cells in glomerular tissue of patients with 
CKD (Harder et al. 2019).

Biomarker discovery

In addition to elucidating molecular mechanisms and reclas-
sifying diseases, systems biology plays an important role in 
the discovery and development of diagnostic and prognostic 
biomarkers. Prediction of renal function loss is still difficult 
to achieve, as until now there are no reasonable biomarkers 
available in routine diagnostics that could improve the pre-
dictive power beyond the established markers ofc proteinu-
ria and eGFR. In recent years, however, systems biology 
approaches have been used to identify prognostic markers 
for the differentiation of courses in CKD patients.

A recently published study explored the potential of multi-
omics-derived biomarkers to improve the prediction of disease 
courses in patients with type 2 diabetes and incident or early 
CKD in addition to existing clinical predictors (Kammer et al. 
2019). Applying Bayesian multi-variable logistic regression 
models, the authors analyzed 402 potential biomarker can-
didates, including clinical parameters, proteome, lipidome, 
and metabolome panel data, for their prognostic potential to 
distinguish eGFR trajectories in a cohort of patients with a 
stable eGFR course and with a rapid eGFR decline. Of these 
candidates, only KIM-1 and NTproBNP together with base-
line eGFR contributed to a refined, but modest differentiation 
between stable and progressive courses, while the metabo-
lomic and lipidomic biomarkers seemed to have no impact 
on the prognostic capability.

In recent years, several studies have suggested an influence 
of inflammation and inflammation-associated factors on DKD 
progression. For instance, the circulating TNFR family mem-
bers TNFR1 and 2 have been shown to be promising predic-
tive biomarkers for DKD progression in patients with type 1 
and type 2 diabetes (Gohda et al. 2012; Niewczas et al. 2012). 
Using a customized SOMAscan platform of 194 inflamma-
tory proteins, Niewczas and colleagues recently succeeded 
in identifying a kidney risk inflammatory signature (KRIS) 
consisting of 17 proteins associated with the development of 
ESRD (Niewczas et al. 2019). Among these 17 proteins, 6 
were members of the TNFR superfamily, including TNFR1 

and 2, serving as predictive biomarkers for renal outcome in 
patients with type 1 and type 2 diabetes.

Another example represents urinary EGF, which was 
identified as a prognostic marker for CKD progression 
through a systems biology approach based on kidney biopsy 
transcriptome data, urinary proteome data, and clinical 
follow-up data from CKD patients with different disease 
entities (Ju et al. 2015). Ju et al. did not only show that uri-
nary EGF protein correlated positively with intrarenal EGF 
mRNA, which is mainly expressed in the distal tubules, but 
could also predict the risk of disease progression as demon-
strated by the positive correlation of EGF with eGFR slope 
as a measure of loss of renal function. The integrative use 
of urinary EGF with the standard parameters proteinuria 
or eGFR could enhance their predictive power of disease 
outcome. Further studies have validated and confirmed the 
potential of urinary EGF as a prognostic marker for loss of 
renal function in a wide range of CKD patients with differ-
ent disease entities (Azukaitis et al. 2019; Li et al. 2018; 
Segarra-Medrano et al. 2017; Wu et al. 2018b).

Drug target discovery and drug repurposing

A key goal of systems medicine is the discovery of new 
therapeutic targets. To improve the process of target identi-
fication and drug development novel strategies are currently 
emerging. This includes systems-biology-based target dis-
covery, drug repurposing, a process which attempts to iden-
tify new targets for already approved or investigational drugs 
as well as novel model systems like kidney organoids as drug 
screening platforms.

A good example of systems biology-based drug target 
discovery is the identification of JAK-STAT as a potential 
drug target for diabetic kidney disease (DKD). Using cross-
species transcriptome analysis, Hodgin et al. demonstrated 
a key role for the JAK-STAT pathway in diabetic kidney 
disease (Hodgin et al. 2013). The causal role of the pathway 
was supported by podocyte-specific overexpression of JAK2 
and treatment of mice with an oral JAK inhibitor (Zhang 
et al. 2017), ultimately leading to a phase 2 clinical trial in 
diabetic kidney disease. Treatment with the selective JAK1 
and JAK2 inhibitor baricitinib resulted in a dose-dependent 
decrease in albuminuria, indicating a potential benefit of 
JAK1/JAK2 inhibitors as a new therapy for DKD patients 
(Tuttle et al. 2018). Another study in patients with focal 
segmental glomerulosclerosis (FSGS) demonstrated activa-
tion of the JAK/STAT pathway as a marker of renal disease 
progression, suggesting this pathway might be affected by 
drug treatment in patients with FSGS (Tao et al. 2018).

An attractive strategy to identify novel therapies for kidney 
diseases is drug repurposing, which can help reducing risks, 
costs, and time in drug development. In drug repurposing, both 
computational and experimental approaches can be employed. 
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Computational approaches can include both omics data (such 
as transcriptome, genomic, or proteome data) as well as non-
omics data of any kind (e.g., chemical structure or electronic 
health records (EHRs)). For the systematic analysis of the data, 
different approaches such as signature matching, pathway map-
ping, or genetic association can be applied individually or in 
combination (Pushpakom et al. 2019). For example, by using 
a transcriptome-based signature matching approach, Williams 
and colleagues were able to identify lysine deacetylase inhibi-
tion as a potential new treatment option for progressive CKD 
(Williams et al. 2020). In a first step, a chronic renal disease 
progression signature was defined using Col4a3-/- mice, which 
showed proteinuria and progressive loss of renal function. A 
comparison of this signature with the molecular signatures in 
the Connectivity Map database identified vorinostat, a lysine 
deacetylase inhibitor, as a candidate with potential impact on 
CKD progression. Treatment of Col4a3-/- mice with vorinostat 
was shown to significantly prolong the lifespan of the animals 
and exert renoprotective effects, indicating lysine deacetylase 
inhibition as potential treatment approach for chronic kidney 
disease. Previous studies in diabetic mice could already dem-
onstrate renoprotective effects of vorinostat. The drug not only 
reduced albuminuria, mesangial collagen IV deposition, and 
oxidative-nitrosative stress in streptozotocin (STZ)-treated 
mice (Advani et al. 2011) but also revealed an inhibitory effect 
on diabetes-associated renal growth in STZ-treated rats, partly 
due to modulation of the EGF-EGFR axis (Gilbert et al. 2011), 
further supporting the potential of vorinostat as a treatment 
strategy for chronic kidney disease and the important role of 
the EGF pathway in CKD.

Defining pattern in large data sets via artificial 
intelligence

The accumulation of large omics and non-omics data over 
the last two decades, advances in computer performance and 
the development of algorithms for deep and machine learn-
ing have fostered many applications of AI to develop data-
driven early detection, diagnosis, and management of kidney 
disease (PD) (Yuan et al. 2020). One of the most recent AI 
applications in KD is a deep learning program developed 
by Google called “Deepmind” that can predict acute kid-
ney injury (AKI) based on patient electronic health records 
(EHR) (Powles and Hodson 2017). Deepmind trained and 
tested on 703,782 adult patients and 620,000 characteristics 
in over 1243 healthcare facilities (sites) in the UK and the 
USA. The model was able to predict AKI episodes of hos-
pitalized patients with a sensitivity of 55.8% up to 48 h in 
advance and a false alarm rate of 2:1, allowing physicians 
to intervene early enough to prevent patients’ kidney failure. 
Although Deepmind is still in need of improvement in terms 
of its accuracy and further validation on other independent 
and more comprehensive population data sets (e.g., only 6% 

of the patients studied were female in the Deepmind train-
ing set), it opens the door for the incorporation of artificial 
intelligence into the clinical setting and could represent a 
potential approach to risk prediction for AKI in the future.

Another application of AI in non-omic data is the devel-
opment of an automated computerized pipeline for anno-
tation and classification of human kidney biopsies from 
digitized histological images. Recent studies demonstrated 
the successful use of convolutional neural networks (CNN) 
to automatically segment and classify transplant biopsies 
(Hermsen et al. 2019), biopsies of patients with diabetic 
kidney disease (Ginley et  al. 2019), and the automated 
interpretation of immunofluorescence specimen of kidney 
biopsies (Ligabue et al. 2020). By applying deep-learning 
algorithms on whole slide images (WSI), Hermsen and col-
leagues achieved a multiclass segmentation of renal tissue 
in routinely PAS-stained sections. The algorithm displayed a 
robust performance in terms of sample preparation, scanning 
performance, and inter-laboratory differences and was able 
to successfully analyze both healthy and pathological tissue 
samples. In addition, significant concordance was achieved 
in the quantification of CNN segmentation data and the com-
ponents of the Banff classification system visually assessed 
by renal pathologists in whole transplant biopsies (Hermsen 
et al. 2019). In the second study by Ginley et al., the authors 
successfully extracted and segmented glomerular bounda-
ries, nuclei, and glomerular structures from whole slide 
images (WSIs) of human and murine diabetic kidney tissue 
using an iterative whole-slide CNN training interface—the 
human-artificial-intelligence-loop (HAIL). Despite the small 
sample size used, the classification approach showed a high 
sensitivity and specificity of the newly developed method 
and a moderate Cohen’s Kappa k = 0.55 compared to senior 
pathologists, which is similar to a comparison among pathol-
ogists. Due to the flexibility of the pipeline, this work could 
be extended to other diseases such as IgA nephropathy or 
lupus nephritis and used for outcome prediction of numeric 
labels such as proteinuria. In addition to analyses of PAS 
images, immunofluorescence staining plays an important 
role in the histopathological evaluation of a disease (Ginley 
et al. 2019). The recent study by Ligabue and colleagues 
represents a first attempt to use AI-based methods in the 
evaluation and classification of IF-detected immune depos-
its in kidney biopsies. By analyzing 12,259 immunofluo-
rescence images from 2542 kidney biopsies taken over the 
last 18 years, they were able to build an automated report-
ing pipeline of the key characteristics normally collected 
in immunofluorescence analysis of kidney biopsies using 
conventional neural networks. This was accomplished with 
a significant accuracy and comparable performance to visual 
inspection by human experts (Ligabue et al. 2020).

These studies show that AI can be a useful tool to improve 
research of kidney diseases and support clinical practice. 
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However, till these methods can be introduced into routine 
diagnostics and clinical practice, further validations and 
improvements in algorithms are needed.

Conclusion and outlook

As described in this review, emerging technologies and rapidly 
developing computer methods are opening up new horizons in 
nephrology. In this context, data integration of different data 
layers (omics and non-omics data) plays a crucial role.

However, despite major efforts to collect more accessible 
multi- and non-comics data, data integration still has many 
challenges (Subramanian et al. 2020). One of these chal-
lenges is the variety of protocols used to collect and store 
omics data, which are only suitable for individual types of 
omics. Therefore, minimum standards such as the already 
established quality standards for microarray (MIAME), 
RNA-Seq (MINSEQ), or proteome (MIAPE) experiments 
should generally be agreed upon for the design of experi-
ments (data preparation and extraction) in order to allow data 
comparison between different omics types. This would lead 
to a general improvement in the quality of research when 
integrating omics data. On the other hand, the transparency 
and reproducibility of multi-omics data is a critical point. 
For example, most omics studies require samples to be stored 
at −80 °C or below and a fast processing time to prevent 
degradation of RNA, proteins, and metabolites. However, 
some omics experiments, such as metabolomics, are more 
sensitive to environmental disturbances such as temperature 
and humidity than other omics experiments such as proteom-
ics, genomics, and transcriptomics. These interfering factors 
should be reported, documented, and published for each sam-
ple so that these factors can be taken into account by other 
researchers. Third, many omics data such as metabolomics, 
proteomics, and transcriptomics are poorly reproducible 
when produced on different platforms and in different labo-
ratories, which limits the generalization of results. The use of 
reference standards, standardized protocols for sample stor-
age and preparation, and quality control samples can improve 
the reproducibility of studies with omics data, while other 
factors such as the inherent bias of sampling are difficult to 
avoid. For an example of a comprehensive capture of omics 
related experimental data sets with a focus on experimental 
metadata see (El-Achkar et al. 2020).

In addition to these challenges, there are other factors that 
play a critical role and should be considered when integrat-
ing data. For example, the relationship from gene to protein 
to metabolite is not necessarily linearly proportional. There-
fore, the correlation is not always associated with functional 
differences. Secondly, poorly designed multi-omics studies 
lead to false positive and negative results; i.e., the quality 
of the individual omics data must be checked and validated 

before integrating the various omics data. Furthermore, the 
number of samples required to extract meaningful results 
should be calculated for each omics study, because each 
individual omics data requires a different sample size; for 
example, untargeted metabolomics and proteomics studies 
(non-quantitative experiments) require a larger sample size 
than targeted experiments (quantitative experiments).

The recent efforts by many international projects such as 
KPMP (de Boer et al.  2021; Hansen et al. 2020) and HuB-
MAP (Hu 2019) try to overcome these challenges by providing 
access to large number of patients, standard operating proce-
dures for sample and data collection, and data analysis. While 
with the current scRNA-seq and snRNA-SEQ omics technol-
ogies the mRNA expression from thousands of cells can be 
measured, the spatial locations of these cells are lost due to the 
required cell dissociation (Wilbrey-Clark et al. 2020). As the 
cell location in the tissue is important to understand its func-
tion, therefore, new technologies such as spatial transcriptom-
ics (Lindström et al. 2020) which combines transcriptomics 
with imaging techniques have developed that help us putting 
cells into tissue context. The technology of spatial transcrip-
tomics is still in a maturing phase, requires expensive imaging 
equipment, and is time- and labor-intensive and difficult to 
interpret in complex tissue such as the kidney. Meanwhile, 
many other tools have been developed to reconstruct 3D organs 
from RNA and proteins, such as CLARITY (Du et al. 2018) in 
the mouse and 3DISCO (Zhao et al. 2020), the first example 
in which an entire human brain and kidney were reconstructed 
in 3D using tissue clearing and deep learning methods. This 
in turn opens up new ways to better understand the molecular 
and structural architecture of organs. Other omics data technol-
ogy such as spatial metabolomics (Neumann et al. 2020) have 
emerged providing further insights in a cell state.

In the near future, these new technologies and integrative 
analytical methods will contribute to a better understanding 
of the molecular pathophysiology kidney disease, molecular 
disease classification, and mechanistic patient stratification 
for clinical studies. This in turn will lead to improved diag-
nostics and to selecting the right treatment for each patient. 
Precision nephrology is moving ever closer.
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