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A hierarchical cellular structural model to unravel
the universal power-law rheological behavior of
living cells
Jiu-Tao Hang1, Yu Kang 2, Guang-Kui Xu 1✉ & Huajian Gao 3,4✉

Living cells are a complex soft material with fascinating mechanical properties. A striking

feature is that, regardless of their types or states, cells exhibit a universal power-law rheo-

logical behavior which to this date still has not been captured by a single theoretical model.

Here, we propose a cellular structural model that accounts for the essential mechanical

responses of cell membrane, cytoplasm and cytoskeleton. We demonstrate that this model

can naturally reproduce the universal power-law characteristics of cell rheology, as well as

how its power-law exponent is related to cellular stiffness. More importantly, the power-law

exponent can be quantitatively tuned in the range of 0.1 ~ 0.5, as found in most types of cells,

by varying the stiffness or architecture of the cytoskeleton. Based on the structural char-

acteristics, we further develop a self-similar hierarchical model that can spontaneously

capture the power-law characteristics of creep compliance over time and complex modulus

over frequency. The present model suggests that mechanical responses of cells may depend

primarily on their generic architectural mechanism, rather than specific molecular properties.
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The mechanical properties of living cells are of crucial sig-
nificance for a number of biological processes, such as
development, tumor metastasis, and lesions screening1–4.

Living cells are a complex active material with both solid-like
elastic and fluid-like viscous properties. In response to dynamical
forces, cells exhibit viscoelastic behavior such as creep and stress
relaxation. A striking feature is that, regardless of cell types or cell
states (e.g., drug-induced), the complex moduli E* of cells show a
power-law dependence on loading frequency f, E* � ðif Þα, rather
than a classical exponential-type response4–9. This is similar to
experimental observation that, in response to a step force,
cell deformation follows a power-law dependence on time t,
d � tα10–12. The power-law exponent α ¼ 0 or α ¼ 1 is indicative
of a purely elastic solid or viscous fluid, respectively, and therefore
it can reflect the viscoelastic characteristics of the cell. In reality, α
usually falls in the range of 0.1–0.5 for different cell types or
states10–14. Amazingly, the power-law exponent can be collapsed
into a universal master curve, which decreases linearly with
increasing cell stiffness in a semi-logarithmic plot14. In addition,
cells exhibit stress stiffening behavior under static loads, in that
their instantaneous stiffness increases linearly with the external or
internal stresses15–17.

A variety of mechanical models have been developed to
understand the fascinating power-law rheological properties of
cells. Andreas et al. used a traditional viscoelastic model con-
sisting of two springs and two dashpots to fit the creep com-
pliance of cells18. However, the drawbacks of such linear
viscoelastic models are that a large number of springs and
dashpots are required to fit the power-law characteristics, often
without a clear physical interpretation13,19. Fabry et al.8 suc-
ceeded in explaining the power-law behavior by using a soft
glassy rheology (SGR) theory, but the predictions based on the
SGR theory showed a stress softening behavior, which is opposite
to that of living cells. While a tensegrity model described the
stress stiffening of cells15,20,21 and predicted the power-law
rheological phenomenon by using viscoelastic tendons20, it

typically cannot quantitatively tune the power-law exponent and
cannot explain the unified relationship between the power-law
exponent and cell stiffness. Some bottom–up models, such as
those based on polymer molecules, may realize both stress stif-
fening and power-law rheology, yet the power-law exponent of
these models ranges from 0.5 to 0.7522–26. To date, to the best of
our knowledge, no single model can capture the full phenom-
enology of the cellular mechanical behavior.

In addition to cells, the power-law rheological behaviors have
also been observed in a wide variety of biological materials of
different molecular compositions9,27, suggesting that the common
rheological features may have no specific molecular properties but
instead arise as a result of similar structural architecture. A suc-
cessful comprehensive model of cell mechanics is thus likely of a
generic and mechanistic character. Here we propose a cellular
structural model, which includes membrane, cytoskeleton, and
cytoplasm as its main components. By examining its mechanical
responses under both step and cyclic loads, we show that this
structural model is capable of reproducing the power-law rheol-
ogy and the unified relation between the power-law exponent and
cell stiffness. Subsequently, a self-similar hierarchical theory is
proposed to capture the power-law rheology characteristics with
tunable power-law exponents in the range of 0.1–0.5.

Results and discussion
Model: cell structure. A finite element-based cell model con-
sisting of membrane, cytoskeleton and cytoplasm is established
and then used to simulate the viscoelastic responses of the cell
between two microplates, as in experiments12,13. In the cytoske-
leton, microtubules (MTs) emanate from the centroid, grow
straight, and partly reach the membrane28. As the MT length
varies greatly, there exist some short MTs that do not reach the
membrane29. Here we use emanative MTs with different lengths
as the cytoskeleton (see inset of Fig. 1a). The cell volume is taken
as ~3000 μm3, with a diameter of 15 μm and a height of 15 μm30.
MTs are hollow, tubular structures with an internal radius of
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Fig. 1 Rheological responses of the adopted cell model under step and cyclic loads. a Displacement over time on the log–log scale for EMT ¼ 120MPa
and EMT ¼ 1200MPa. b Storage modulus E0 and loss modulus E00 over the loading frequency f on the log–log scale for EMT ¼ 120MPa and
EMT ¼ 1200MPa. Lissajous figures of stress–strain curves under different frequencies for c EMT ¼ 120MPa and d EMT ¼ 1200MPa, respectively.
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7.5 nm and an external radius of 12 nm31. The cell membrane
is modeled as a one-layer viscoelastic shell with a thickness
of 6 nm32.

Model: material properties. In our finite element simulations,
the MTs are treated as linear elastic materials and the cytoplasm
and cell membrane as Kelvin–Voigt viscoelastic materials. The
cytoplasm is a crowded aqueous solution filled with ions and
proteins. Hence, different cells exhibit different viscosities
depending on the volume fraction of each component in the
cytoplasm, as well as the interaction between the cytoplasm and
the cytoskeleton. In this sense, the viscous coefficient η represents
the effective viscosity of the entire cytoplasm. Due to Poisson’s
effect (the Poisson’s ratio of the cytoplasm is 0.3733), the trans-
verse elastic expansion of the cytoplasm makes the creep com-
pliance in three-dimension (3D) different from that of the
Kelvin–Voigt model (see Supplementary Note 1). The material
parameters of each component are listed in Table 1. Here we use
the above simple constitutive relation to examine the viscoelastic
responses of our model with proposed structural characteristics.

Power-law rheology. We first simulate the creep responses of a
cell under step loads σðtÞ ¼ σ0uðtÞ with σ0 being the amplitude
and uðtÞ the step function, as well as under cyclic loads σðtÞ ¼
σ0 sinð2πftÞ with f being the frequency. Under a step force of
10 nN, Fig. 1a shows that the deformation increases linearly with
time on the log–log scale (i.e., d � tα), as found in many
experiments10–12, for different moduli of MTs. For cyclic load-
ings, Fig. 1b shows that both the storage modulus E0 and the loss
modulus E00 exhibit a power-law dependence on the loading
frequency f, in agreement with experiments4,5,8,9. Lissajous figures
plot the corresponding stress–strain curves under different fre-
quencies (Fig. 1c, d), and their shapes mimic symmetric ellipses as
in experiments34,35. Interestingly, the power-law exponent α of
the storage modulus obtained in the frequency domain (Fig. 1b) is
very similar to that of the creep response obtained in the time

domain (Fig. 1a). Therefore, we use the creep response to
investigate the rheological behavior of cells in the sequel. In
addition, the power-law exponent α of the loss modulus is slightly
larger than that of the storage modulus (see Fig. 2b), which is also
observed in experiments5,8, and will be clarified in a later section.

Power-law exponent. For different cell types or cell states, cell
stiffness can vary greatly, and the viscoelastic characteristics may
differ significantly. By varying the number of MTs, we will show
that the cellular stiffness can be regulated, and their creep
responses are analyzed to assess the generality of this model. For
example, we plot the calculated creep responses of cells with
respect to the number of emanative MTs (Fig. 2a). It can be seen
that increase in the amount of MTs can reduce the power-law
exponent from 0.564 to 0.189. These findings demonstrate that
the cell behaves more like a solid as the number of MTs increases
and more like a liquid when it decreases. In fact, changes in MT
number and stiffness are among a number of factors that can alter
the power-law exponent of cells. Similarly, changes in mechanical
properties of other components of the cytoskeleton (microfila-
ments (MFs)5,6 and intermediate filaments (IFs)36,37) or the
cytoplasm38,39 can also regulate the power-law exponent of cells.
Therefore, it is possible that, through re-configuring the network
of the cytoskeleton or changing the mechanical properties of the
cytoplasm, the power-law exponent can be quantitatively tuned in
the range of 0.1–0.5, which may explain why the power-law
exponent differs for different cell types or states (e.g., drug-
induced)5,7,8. Besides, α is found to decrease linearly with
increasing cellular stiffness E0 in a semi-logarithmic plot (Fig. 2b),
which will be further investigated shortly. Hence, our model can
yield a wide range of values for the power-law exponent α, which
cannot be achieved by the existing SGR theory or bottom–up
models.

A self-similar hierarchical model. In cells, abundant MTs and
MFs interpenetrate with each other to form a 3D cytoskeleton
network bathed in the cytoplasm40–42 composed of water, solutes,
and small molecules. Based on the structural characteristics of the
cells, we propose a self-similar hierarchical model to study their
rheological behavior. Since the cytoplasm is ubiquitous, its spatial
component can be discretized and regarded as infinite springs
with elastic stiffness E1 immersed in a viscous fluid with the
viscous coefficient η, as shown in Fig. 3a. The cytoplasm is treated
as the 1st-level hierarchy, which fills the entire cell. A single MT
can be discretized into an infinite series of springs with elastic
stiffness E2, with each node connected to the cytoplasm (the
1st-level structure). Then, each MT embedded into the cytoplasm
is considered as the 2nd-level self-similar hierarchy with the

Table 1 Material properties of the cellular components.

Cytoplasm Membrane Microtubules

Elastic
modulus (Pa)

10032 100032 1.2 × 109 31

Poisson’s ratio 0.3733 0.332 0.331

τ (s) 300a 20 0

aAt present, there is no clear data on the viscosity η of cytoplasm. Based on experimental data12,
we take τ ¼ η=E as 300 s.
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Fig. 2 Simulated power-law rheology of cells with adjustable power-law exponents as the number of emanative MTs is varied. a Displacement
responses of cells with different numbers of emanative MTs (from 0 to 80). b The power-law exponent decreases linearly with the increase of cellular
stiffness E0 in a semi-logarithmic plot.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26283-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6067 | https://doi.org/10.1038/s41467-021-26283-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


1st-level hierarchy as a building block, as shown in Fig. 3b.
Because there are many MTs with different lengths and orien-
tations in the cell, the whole structure network is equivalent to a
large number of parallel MTs (the 2nd-level hierarchy) connected
by springs (the transverse expansion of the cytoskeleton and the
cytoplasm) with elastic stiffness E3. Then the entire cell can be
modeled as the 3rd-level self-similar hierarchy with the 2nd-level
hierarchy as a building block (see Fig. 3c). In this way, from a
macroscopic perspective, the cell is treated as a three-level self-
similar hierarchical structure with E1, E2, and E3 representing,
respectively, the effective stiffness of the cytoplasm, MTs in the
load direction, and the transverse expansion of the cytoskeleton
and the cytoplasm and η representing the effective viscosity of
the entire cytoplasm.

Because of the orderly arrangement of springs and dashpots in
the model, we propose a simple yet robust method to obtain the
creep compliance and complex modulus of this self-similar
hierarchical model. The creep compliances of 1st-, 2nd-, and 3rd-
level hierarchies over time are (see Supplementary Note 2)

J1 ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t=τ
p

Þ=2E1; ð1Þ

J2 ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4E2J1
p

Þ=2E2; ð2Þ

J3 ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4E3J2
p

Þ=2E3; ð3Þ

respectively, where τ ¼ η=E1. When t � τ, the creep com-
pliances become J1 � t0:5, J2 � t0:25, and J3 � t0:125, suggesting
the scale-free power-law rheology. As shown in Supplementary
Note 2, the power-law exponents α of the 2nd- and 3rd-level
hierarchies fall in the ranges of 0.25–0.5 (Supplementary Fig. 3a)
and 0.125–0.5 (Supplementary Fig. 3b), respectively. Interestingly,
the upper limit of α in our self-similar hierarchical model is 0.5,
which is found and not understood in experiments11,14. In the
case of α ¼ 0:5, the cell architecture may be messy, but the 1st-
level hierarchical structure (i.e., the cytoplasm) serves as the
major constituent bearing the external force with creep response
J1 � t0:5. By varying the parameters (e.g., E1, E2, E3, η), the
power-law exponent can be tuned within the range of 0.1–0.5 (see
Supplementary Fig. 3), as found in many experiments10,12,13.
Thus, the present model can spontaneously capture the power-
law characteristics of cell rheology. More importantly, one can
quantitatively regulate the power-law exponent by varying the
relevant stiffness or viscosity of cells, with these properties
relating to cell types or states.

The complex moduli of 1st-, 2nd-, and 3rd-level hierarchies
over frequency are given by (see Supplementary Note 3)

G1 ¼ E1
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ðiωτÞ�1
p

2ðiωτÞ�1 ; ð4Þ

G2 ¼
G1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
1 þ 4E2G1

p

2
; ð5Þ

G3 ¼
G2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
2 þ 4E3G2

p

2
: ð6Þ

When the frequency is very low (e.g., ωτ � 1), the complex
moduli can be rewritten as G1 � ðiωτÞ0:5, G2 � ðiωτÞ0:25, and
G3 � ðiωτÞ0:125. The power-law exponents of the 2nd- and 3rd-
level hierarchies are, respectively, in the ranges of 0.25–0.5 and
0.125–0.5, which are consistent with those of creep compliances
over time. With increasing frequency, the loss modulus increases
faster than the storage modulus, as the term iωτ increases the
proportion of the imaginary part of the complex modulus (see Eq.
(4)). Thus, the power-law exponent of the loss modulus will be
larger than that of the storage modulus at high frequencies, as in
experiments5,8 and our simulation results (Fig. 1b).

Using this self-similar hierarchical model, we have analyzed
experimental data on the complex modulus over frequency8. The
predictions of the present model are in excellent agreement with
experimental results on both storage and loss moduli for HASM
cells under different drug treatments, as shown in Fig. 4. The drug
Histamine43 can enhance the permeability of cells, which reduces
the cytoplasmic stiffness E1 (see Fig. 4b). This drug also promotes
cell contraction that can increase the stiffness of the cytoskeleton
network (E2 and E3). For cells treated with DBcAMP, the
contraction of cells is inhibited8,44, which reduces the stiffness of
the cytoskeletal network (E2 and E3), as shown in Fig. 4c. When
the cells are treated with cytochalasin D8, the cytoskeleton is
dissolved, resulting in a reduction in stiffness (E2 and E3) of the
cytoskeletal network (see Fig. 4d). Furthermore, the fitted values
of the cytoplasmic viscosity for HASM cells under different drug
treatments are consistently close to the measured value
(1:41 Pa � s) from experiments8. In addition, the self-similar
hierarchical model can also be used to study the power-law
rheology observed in the cytoplasm whose storage modulus
follows a similar power-law form G0 � ωβ with β ¼ 0:1538.
When using this model to investigate the rheological response
of the cytoplasm, the structural details of the cytoplasm should
be considered. The interstitial fluid inside the cytoplasm
(containing water, ions, and small proteins) can be treated as
the 1st-level hierarchy, the large-scale proteins in the cytoplasm
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as the second-level hierarchy, and the interactions between the
proteins as the third-level hierarchy. In this sense, the present
model can be extended to investigate the dynamical mechanical
response of the cytoplasm. With this self-similar hierarchical
model, one can describe, explain, and predict the rheological
behavior of living cells with different types or states, as well as the
viscoelastic cytoplasm. The application of this model can also
avoid the time-consuming computation of a large number of
finite element models.

The relation between power-law exponent and cellular stiff-
ness. As shown in our simulation results (Fig. 2b) and sum-
marized from experimental data14, the power-law exponent
decreases linearly with the cellular stiffness in a semi-logarithmic
plot. To explore the underlying mechanisms, we calculate the
creep responses of cells (Fig. 5a) and plot the power-law exponent
with respect to the cell stiffness in Fig. 5b. It can be seen from
Fig. 5a that, when the stiffness is not high, the creep compliance
can intersect at a point (τ0, j0) and be described as
JðtÞ ¼ j0ðt=τ0Þα, where j0 is a characteristic prefactor and the time
t is normalized by a timescale τ0. Letting J0 ¼ j0=τ

α
0 denote the

compliance value at t ¼ 1 s, we get

α ¼ � logð1=J0Þ
logð1=τ0Þ

þ logðj0Þ
logðτ0Þ

: ð7Þ

From the above, the power-law exponent α is found to decrease
linearly with the cell stiffness (1=J0) in a semi-logarithmic plot.
Furthermore, by analyzing the data in Fig. 5b, we obtain the value
of logðj0Þ= logðτ0Þ ¼ 0:55, which is almost the upper bound of
power-law exponents observed in both experiments14 and our
model. Kollmannsberger et al.11 experimentally presented that j0
and τ0 are approximately 5:59 ´ 10�7 Pa�1 and 5:5 ´ 10�13 s,
respectively. Our predicted value 0.55 is also close to their
experimental data (0.51). It should be noted that, with the
increase of cell stiffness, the creep response curves no longer pass
through the intersection point, rather they become parallel with
each other. In this case, the relation in Eq. (7) no longer holds,
and the power-law exponent (the slope of the curve) tends to be a
constant, as shown in Fig. 5b. In our self-similar hierarchical
model, the power-law exponent of the third-level hierarchy takes
the lower limit of 0.125, when the cell stiffness is extremely high.

Here we summarize the existing experimental results5,11,45,46

for different cell types and states and plot the power-law exponent
with respect to the cellular stiffness, as shown in Fig. 6. It is clearly
seen that our predictions agree well with the experimental results
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and the cells become more solid-like as their stiffness increases.
These results confirm our predictions that, for moderate cellular
stiffness, the power-law exponent decrease linearly with the cell
stiffness in a semi-logarithmic plot. Moreover, the power-law
exponent of cells gradually converges to a certain threshold with
increasing stiffness, which was not discussed in previous
literature14. These broad agreements between experimental
findings and our predictions show the robustness of our self-
similar hierarchical model in describing cell rheology.

In summary, we have proposed a cellular structural model that
successfully captures the power-law rheological characteristics of
cells where the power-law exponent can be subtly tuned by the
stiffness or the architecture of cytoskeleton. Based on the
structural features of this model, we further develop a self-
similar hierarchical model of cells to describe their power-law
rheological behavior of creep compliance over time and complex
modulus over frequency. The predictions of our model are in
broad agreement with a vast variety of experiments involving
different cell types or cell states. When studying the creep
response of cells under small deformations, we have ignored the
effect of IFs, since they contribute little to the cortical stiffness in
this case47. Very recently, Hu et al. studied the effect of IFs on the
mechanical properties of cells and showed that, under large
deformations, the IF network behave as a strain-stiffening
hyperelastic network that substantially enhance the strength,
stretchability, resilience, and toughness of cells36. Supplementary
Note 4 shows that, by treating IFs and MFs as strings in a
prismatic tensegrity structure, the cells can exhibit the remarkable
strain-stiffening behavior found in experiments,15–17,36 while
holding the rheological characteristics. In addition, IFs play an
important role in the mechanics of epithelial monolayers37,48,
which can also be studied by our model. This suggests a strong
potential of self-similar hierarchical models for investigating the
mechanics of natural biological materials.

Methods
We adopt a cylinder bulging out in the middle as a general geometric repre-
sentation of a single cell taken from ref. 12. The geometrical and mechanical
properties of each part are given in the text. The commercial finite-element soft-
ware Abaqus 6.13-1 and Python scripts are used to generate the model config-
urations and evaluate the finite-element model solutions. The cytoplasm was
meshed with eight-noded linear brick and hybrid elements. The membrane was
meshed with four-noded shell reduced integration elements. The MT was meshed
with two-noded linear beam elements in space. The embedded constraint elements
between the cytoskeleton elements and the “host” cytoplasm elements are used to
confine the translational degrees of freedom of embedded nodes. A tied constraint
between the membrane and the cytoplasm is used to ensure the displacement
continuity.

We performed two types of loading conditions. The first was a step loading
condition aimed to characterize the creep response of the cell in the time domain.
The power-law exponent is calculated as the slope of the creep compliance over
time on the log–log coordinate. The second was a cyclic loading condition aimed to
characterize the complex modulus of the cell in the frequency domain. The power-
law exponent is calculated as the slope of the complex modulus over frequency on
the log–log coordinate. For both types of loading conditions, we used the same
geometric and material model and obtained similar power-law exponents.

For both step and cyclic loads, we simulated the viscoelastic cytoplasm and
viscoelastic membrane by the Kelvin–Voigt model with the following constitutive
relations:

σcyto ¼ Ecytoεcyto þ Ecytoτcyto _εcyto; ð8Þ

σmem ¼ Ememεmem þ Ememτmem _εmem; ð9Þ
where Ecyto and Emem represent the elastic moduli of the cytoplasm and membrane
and τcyto and τmem the relaxation times of the cytoplasm and membrane, respec-
tively. For MTs and MFs, we adopt linear elastic constitutive relations with cor-
responding elastic moduli EMT and EMF. The relevant parameters were taken as:
Ecyto ¼ 100 Pa, τcyto ¼ 300 s, Emem ¼ 1000 Pa, τmem ¼ 20 s, EMT ¼ 1200MPa, and
EMF ¼ 2400MPa. A detailed description of the Kelvin–Voigt model can be found
in Supplementary Note 1. The detailed geometric parameters of the cell structure
can be seen in the “Model: cell structure” section. All simulations were carried out
by using the commercial finite element software Abaqus 6.13-1 and can be set

automatically by running a python script (see Supplementary Software 1) in
Abaqus 6.13-1.

Data availability
The authors declare that the data supporting the findings of this study are available in the
Source data file provided with this paper. Any data can be made further available upon
reasonable request. Source data are provided with this paper.

Code availability
The python scripts code is included in the Supplementary Software 1 file.
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