
Quantifying Direct and Indirect Effect for Longitudinal Mediator 
and Survival Outcome using Joint Modeling Approach

Cheng Zheng,
Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.

Lei Liu
Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, U.S.A.

Summary:

Longitudinal biomarkers are widely used in biomedical and translational researches to monitor 

the progressions of diseases. Methods have been proposed to jointly model longitudinal data and 

survival data, but its causal mechanism is yet to be investigated rigorously. Understanding how 

much of the total treatment effect is through the biomarker is important in understanding the 

treatment mechanism and evaluating the biomarker. In this work, we propose a causal mediation 

analysis method to compute the direct and indirect effects, when a joint modeling approach 

is used to take the longitudinal biomarker as the mediator and the survival endpoint as the 

outcome. Such a joint modeling approach allows us to relax the commonly used “sequential 

ignorability” assumption. We demonstrate how to evaluate longitudinally measured biomarkers 

using our method with two case studies, an AIDS study and a liver cirrhosis study.
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1. Introduction

There is a need for biomedical and translational researches to discover biological surrogates, 

namely biomarkers, to monitor the progressions of diseases. For example, in HIV studies, 

researchers are trying to establish biomarkers from short-term laboratory tests, such as 

CD4+ counts, CD4/CD8 ratio and viral loads, as surrogates for the long-term disease 

progressions, so the long-term treatment benefits can be revealed in a more timely manner 

(Tsoukas and Bernard, 1994; Hughes et al., 1998). The key to establishing the validity 
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of such biomarkers is to quantify the correlation between a candidate biomarker and its 

corresponding endpoint of interest, which is usually a time to event variable, such as death 

or development of a new symptom. For single-time measured biomarkers, various criteria 

have been proposed to evaluate the validity (Lange and Hansen, 2011; Martinussen et al., 

2011; Zheng and Zhou, 2017; Huang and Yang, 2017; Luo and Geng, 2016). However, many 

candidate biomarkers, such as CD4 counts for HIV, hemoglobin levels for end-stage renal 

disease, and a prostate-specific antigen for prostate cancer, are measured longitudinally. 

Understanding the role of such biomarkers in the causal pathway from treatment to disease 

outcome is important for future treatment design. However, methods to investigate such a 

mechanism are limited.

There are three most commonly encountered causal mechanisms between the biomarker and 

the survival outcome after adjusting for all the measured variables: (1) the biomarker is a 

“cause” for the outcome without unmeasured confounding; (2) the association between the 

biomarker and the outcome is purely from unmeasured confounding; or (3) the biomarker 

is a “cause” for the outcome, but the association is partly confounded by unmeasured 

variables (Figure 1). Previously, under the context of surrogate evaluation, the estimation 

of the proportion of treatment effect through the biomarker surrogate for survival outcomes 

have been studied (Wang and Taylor, 2002; Taylor et al., 2005; Parast et al., 2017; Wang 

et al., 2020); and Liu et al. (2018) proposed a method to qualitatively identify the causal 

mechanism between the longitudinal biomarker and the survival outcome. However, there 

remains a gap to quantify how much of the treatment effect is through changing the 

biomarker under each of the three causal mechanisms above. This quantification is often 

meaningful in evaluating the quality of the biomarker and in understanding the mechanism 

of the treatment. Take the HIV study as an example, if we could quantify how much of the 

treatment effect is through the change of CD4+ counts, CD4/CD8 ratio and/or viral loads, 

we are able to use this information to choose the most effective biomarker. In addition, we 

gain a better knowledge of the treatment mechanism.

In causal mediation analysis, natural direct effect (NDE) and natural indirect effect (NIE) 

are important quantities to decompose the total treatment effect (TE). First, NDE and 

NIE provide information on the mechanism of the treatment; second, for the biomarker 

development case, NIE can be used to quantify the mediation effect of the biomarker 

as a measure of the utility of the biomarker. So far there is limited research on the 

causality in the joint analysis of longitudinal and survival data. Ibrahim et al. (2010) gave 

a brief introduction to the causality in the joint models of longitudinal and survival data 

without calculating NDE and NIE. Zheng and van der Laan (2017) provided a flexible 

nonparametric estimation of the NDE and NIE for the longitudinal exposure/mediator with 

the survival outcome under the “sequential ignorability” (SI) assumption. In the survival 

setting with a time-varying exposure or mediator, the interventional direct effect (IDE) and 

the interventional indirect effect (IIE) are used to generalize the definition of the NDE and 

NIE. Lin et al. (2017) proposed a method with a SAS Macro to estimate the IDE and IIE 

using g-formula under SI assumption. Didelez (2019) discussed the problem of defining the 

causal mediation effect when the longitudinal biomarker is only well defined up to the event 

time and provided a solution to the problem by decomposing the treatment hypothetically 

into two components. All these methods depend on the stringent SI assumption, which 
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indicates that (i) conditioning on observed covariates, there is no confounding between the 

treatment and mediator process; (ii) conditioning on observed covariates and the treatment, 

there is no confounding between the mediator process and the outcome of interest.

In this paper, we first provide estimators for NDE and NIE when the longitudinal biomarker 

and the survival outcome are jointly modeled under the SI assumption; then we provide 

estimators for NDE and NIE with a weaker assumption that allows confounding in the form 

of shared random effects between the mediator and outcome, which relaxes part (ii) of the 

SI assumption. Depending on whether the shared latent variable (unmeasured confounding) 

is continuous or categorical, shared random-effects models and shared latent class models 

have been proposed (Wulfsohn and Tsiatis, 1997; Liu et al., 2007, 2008; Liu and Huang, 

2009; Tsiatis and Davidian, 2004; Lin et al., 2002; Proust-Lima and Taylor, 2009; Liu et 

al., 2015). We focus our method on the shared random-effects model. The extension to the 

shared latent class model will be straightforward following similar derivations. There is no 

closed-form solution to our defined NDE and NIE. To tackle the computational difficulty, 

we proposed a Monte-Carlo method for numerical integration. We studied the finite sample 

performance of the NDE and NIE estimators and the sensitivity to model misspecification 

with simulations. We also demonstrated the application of NDE and NIE in understanding 

the mediation effect in two clinical trial examples. Our first example, the CPCRA study, is 

a comparative trial of didanosine and zalcitabine in HIV patients. In this study, the CD4 

counts are longitudinally measured, enabling us to study its mediation effect. With this 

study, we illustrate how to quantify the mediation effect of longitudinally measured CD4 

counts on the treatment of HIV in the survival study. Our second example, the prothrombin 

study, is a clinical trial on the treatment effect of prednisone in patients with liver cirrhosis. 

In this study, the prothrombin index (PI) is longitudinally measured, allowing us to study its 

mediation effect. We illustrate how to infer about the mediation effect using the NDE and 

NIE we proposed for both examples.

The rest of this paper is organized as follows. In Section 2, we define our notations and 

present the formula for calculating the NDE and NIE followed by a discussion of the 

numerical computation approach. In Section 3, we present simulation studies to explore the 

finite sample performance of our proposed method. In Section 4, we apply our method to 

two clinical trials: an AIDS study and a liver cirrhosis study. In Section 5, we summarize our 

findings and discuss the potential extensions.

2. Method

We consider a potential outcome framework. We denote the treatment of individual i with 

Zi ∈ {0, 1}, where Zi = 1 represents being assigned to the treatment group and Zi = 

0 represents being assigned to the control group. Under the stable unit treatment value 

assumption (SUTVA), we define the time-varying potential mediator for individual i at 

time u with treatment z as Mi
z(u), and the corresponding biomarker mediator process 

Mi
z = Mi

z(u):u ∈ [0, τ] ∈ ℳ, where τ is the largest possible follow-up time, and ℳ
is the set of all possible biomarker mediator processes. Define the potential time to 

event with treatment z and biomarker mediator process m = m(u), u ∈ [0, τ]  as Ti
zm, and 
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the corresponding potential censoring time as Ci
zm. As noted in Didelez (2019), the 

counterfactual biomarker definition can be problematic and cause identification issues 

if we allow the survival status to affect the biomarker value. Here we define and 

model the biomarker process as the potential mediator process if the individual is alive 

and under certain treatment. Also, we adopt the consistency assumption which links 

the potential outcomes to the observed outcomes. So we have potentially observable 

mediator Mi(u) = Mi
Zi(u), time to event Ti = Ti

ziMi and censoring time Ci = Ci
ziMi, 

where Mi = Mi
Zi(u):u ∈ [0, τ] . For our data examples, we cannot measure the mediator 

continuously and Mi(u) are only observed at ti1, ⋯tini. The first part of the SUTVA 

assumption, namely no-multiple-versions-of-treatment, requires the potential outcomes for 

each patient under each treatment level can only take a single value. This assumption is 

reasonable because for each level of Z, the treatment is clearly defined and no subcategories 

are involved. The second part of the SUTVA assumption, i.e., no interference between 

individuals, is also likely to hold because the outcome is not infectious disease and one 

individual’s treatment assignment is unlikely to affect the outcome of other individuals. 

The consistency assumption requires no measurement error in the biomarker process and 

this assumption is reasonable given the magnitude of the measurement error for the two 

biomarkers in our examples is relatively small comparing to the biomarkers’ variation over 

time (Young et al., 2005; Croquet et al., 2002). Due to censoring, we observe the follow-up 

time Ti* = Ti ∧ Ci and the event indicator Δi = I(Ti ⩽ Ci). We denote the observed baseline 

covariates for individual i as Xi ∈ Rp. With survival outcome, the TE of Z on T, as well 

as the NDE and the NIE can be defined on different scales; for example, the survival 

function, the cumulative hazard, or the hazard function. We will discuss the estimation of the 

NDE and NIE on the scale of survival probability as defined in Equations (1)and (2) under 

different assumptions:

NDE t, z, z′ = Pr T z′Mz
> t − Pr T zMz

> t , (1)

NIE t, z, z′ = Pr T z′Mz′
> t − Pr T z′Mz

> t . (2)

2.1 Sequential Ignorability

We first consider the setting under the strong SI assumption. SI assumes that

Z ⫫ Mz, T zm, Czm ∣ X for all z ∈ 0, 1 , m ∈ ℳ, (3)

M ⫫ T zm, Czm ∣ Z, X for all m ∈ ℳ . (4)

Under the SI assumption, the NDE and NIE as defined in equations (1) and (2) can be 

written as
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NDE t, z, z′ = ∫x∫m S t ∣ Z = z′, M = m, X = x − S(t ∣ Z = z, M = m, X = x) dFM ∣ Z, X(m ∣ z, x)dFX(x

), NIE t, z, z′ = ∫x∫mS t ∣ Z = z′, M = m, X = x (dFM ∣ Z, X(m ∣ z′, x) − dFM ∣ Z, X(m ∣ Z, x))dFX(x),

where S(·) is the survival function and FX(·) and FM ∣ z, X( ⋅ ) are distribution functions. If we 

are interested in the calculation of NDE and NIE within a specific subgroup X = x, then we 

do not need the outer integration over x.

To estimate the NDE and NIE, we first model the longitudinally measured potential 

mediator Mi
z(u) with a linear mixed model:

Mi
z(u) = β0 + β1z + β2

⊤Xi + β3u + β4zu + ai0 + ai1u + ei(u), (5)

where Mi
z(u) is linearly associated with the treatment indicator z with coefficient β1, some 

other known covariates Xi with coefficient β2, the time u with coefficient β3, the interaction 

between treatment and time with coefficient β4, and a random intercept ai0 and a random 

slope ai1. The residual term ei(u) is the individual specific biomarker fluctuation over time 

plus measurement error (if any), which is assumed to be independent of z, Xi and ais, but can 

be dependent on u.

To estimate S(·), we use a Cox model, λi
zm(t) = λ0(t)exp α1z + α2

⊤Xi + ηm(t) , where λi
zm(t) is 

the potential hazard for individual i, when Zi = z and Mi
z = m at time t, and λ0(t) is the 

baseline hazard. In this model, we assume that λi
zm(t) depends on m only through the term 

m(t)η. If we would like to consider interactions between the treatment and mediator, we can 

modify the survival model as λi
zm(t) = λ0(t)exp α1z + α2

⊤Xi + ηm(t) + δzm(t) .

Next, FM ∣ Z, X( ⋅ ) can be estimated with the distribution assumption of ei(u). For example, 

in (5), we assume ei(u)i . i . d .N 0, σe2 , and ai = ai0, ai1
⊤i . i . d .N 0, Σa  is independent of ei(u). 

Then we obtain that M follows a Gaussian process conditioning on Z and X.

2.2 Confounding via Shared Random Effect

Usually, the randomized trial can only guarantee that Z is randomized. However, (4) requires 

that the biomarker mediator M can also be treated as being randomized conditional on Z. 

Therefore the second part of the SI assumption is too strong and hard to satisfy. To weaken 

this assumption and make it more plausible, we relax the second part of SI (4) that we only 

require M(t) to be independent with (T zm,Czm) if we condition on Z and X, as well as the 

unobserved latent shared random effect a, i.e. we assume

M ⫫ T zm, Czm ∣ Z, X, a for all m ∈ ℳ, (6)

where a is the shared random effects which represents the individual heterogeneity. Under 

such assumption, we have the following expressions for the NDE and NIE:
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NDE t, z, z′ = ∫
x
∫

a
∫m

S t ∣ Z = z′, M = m, a, X = x − S(t ∣ Z = z, M

= m, a, X = x) dFM ∣ Z, a, X(m ∣ z, a, x)dFadFX(x),
(7)

NIE t, z, z′ = ∫
x
∫

a
∫m

S t ∣ Z = z′, M = m, a, X = x

dFM ∣ Z, a, X(m ∣ z′, a, x) − dFM ∣ Z, a, X(m ∣ z, a, x) dFadFX(x) .
(8)

If we are interested in the effects within a specific subgroup X = x, we can simply ignore the 

outer integration over x.

To consistently estimate the NDE and NIE, we first model Mi
z(u) as in (5). We can estimate 

Fa and FM ∣ Z, a, X by further assuming ai ~ N(0, Σa) and ei(t) is white noise with scale 

σ2. Next, along the lines of Liu et al. (2018), to estimate S(·), we model the hazard for 

the counterfactual survival time when individual i is assigned to a treatment level z and is 

assigned a mediator level m, λi
zm(t), as

λi
zm(t) = λ0(t)exp α1z + α2

⊤Xi + ηm(t) + γ⊤ai (Model 1)

which will lead to the derived survival function for observed data as 

S(t ∣ Z, M, a, X) = exp −exp α1Z + α2
⊤X + γ⊤a ∫0

tλ0(u)exp(ηM(u))du , where compared with 

the previous section, we added the shared latent variable. Since we cannot observe Mi(u) 

continuously, we approximate the integration ∫0
tλ0(u)exp ηMi(u) du in likelihood computation 

by ∫0
tλ0(u)exp ηMi(u) du, where Mi(u) is the last value carry forward imputation of Mi(u) 

based on the observation at discrete time points ti1, ⋯, tini. If we assume interactions between 

the shared latent effect and mediator, we can model λi
zm(t) as

λi
zm(t) = λ0(t)exp α1z + α2

⊤Xi + ηm(t) + γ⊤ai + δ⊤m(t)ai (Model 2)

and S(t ∣ Z, M, a, X) = exp −exp α1Z + α2
⊤X + γ⊤a ∫0

tλ0(u)exp ηM(u) + δ⊤M(u)a du .

2.3 Numerical integration to estimate the NDE and NIE

Since m is with infinite dimensions, there is no closed form for the defined integrations 

for the NDE’s and NIE’s in the previous section. We can use a Monte-Carlo method to 

numerically compute this integration. We choose K points 0 = t0 < ⋯ < tK = t and denote t 
= (t1, ⋯ , tK) and m = (m1, ⋯ , mK) where mj = m(tj). These time points are different from 

the actual measurement time points, and K usually needs to be much larger than the number 

of measurements per individual to make the approximation accurate. Then we can estimate 

the NDE and NIE by plugging in the specific form of survival function and normal density 
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of the mediator process where the integrations can be computed numerically (details shown 

in the Web Appendix A). The confidence interval can be computed via Bootstrap. Also, the 

Monte Carlo error can be evaluated by varying the number of nodes used for the integration 

as well as the number of time points K. When the computational resource is limited, we 

can sample parameters from the asymptotic variance-covariance matrix of the estimated 

parameters and compute the corresponding NIE and NDE distribution correspondingly. This 

approach is used in our simulation studies.

3. Simulation

Although the finite sample performance of the joint modeling fitting approach we used has 

been studied through extensive simulation (Wulfsohn and Tsiatis, 1997; Liu et al., 2007), 

it is unknown whether using the fitted parameters to calculate the NDE and NIE as we 

proposed yields good results. In this section, we perform simulation studies to evaluate 

the performance of our proposed estimator for NDE and NIE and their robustness to the 

misspecification of the model. The details on the simulation setting can be found on the Web 

Appendix B.

Table 1 shows the simulation reuslts. When the random effect follows normal distribution 

N(0, 1) and the joint model assumed is correctly specified (settings I and II), the fitting 

for both NIE and NDE perform well with small bias and approximate correct coverage rate 

when our model is correctly specified. Slight low coverage was observed for NIE when there 

is interaction which might reflect the insufficient sample size for the asymptotic normality to 

work well. When the random effect is misspecified (settings III) and there is interaction that 

are not included in the specified model (setting IV). From the results, we see our estimator is 

robust to the misspecification of the random effect distribution but is a little sensitive to the 

misspecification of the fixed effect form. This suggests the need of the goodness of fit test 

evaluation in real data analysis to determine the correct fixed effect model and avoid using 

an oversimplified model when sample size allows.

4. Real data analysis

4.1 CPCRA Study

We apply our method to the Terry Beirn CPCRA study. The study evenly randomize 467 

patients who previously received zidovudine and had 300 or fewer CD4 cells per cubic 

millimeter into two groups to receive either didanosine (ddI, n=230) or zalcitabine (ddC, 

n=237). The primary outcome of interest is the overall survival. There are 100 and 88 

deaths in the ddI and ddC groups respectively during the follow-up period (median 13 

months; range 1–21 months). The biomarker of interest in this study is the CD4 counts, 

which is measured longitudinally at baseline and approximately every two months up to 

twenty months. Since the original CD4 measures are highly skewed and there are about 

2.3% of measures being zeros, we use log(CD4+1) as the biomarker mediator M in our 

model. Five baseline covariates are included in both the biomarker and the survival models 

as X including: (1) treatment (1: ddC; 0: ddI), (2) gender (1: female; 0: male), (3) previous 

opportunistic infection (1: AIDS diagnosis at baseline; 0: no AIDS diagnosis), (4) stratum 

(1: AZT intolerance; 0: AZT failure), and (5) baseline hemoglobin (centered at mean = 12).
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Although the total effect of the ddI and ddC is non-significant (p = 0.15), this may be due 

to a lack of power or the cancellation between the direct and indirect effects. Therefore 

we further estimate NDE and NIE separately to see how the treatment affects the outcome 

and CD4. In Model 1, we assume there is no interaction between the random effects a and 

the biomarker mediator M(t); while in Model 2, we consider the interaction between the 

random intercept a0 and random slope a1 and the biomarker mediator M(t). We model the 

baseline hazard as a piecewise constant function with ten pieces, with the endpoints of the 

pieces being every 10th percentiles of the death time. To see the impact of SI assumption 

on the estimation of NDE and NIE, we also fit the longitudinal model and survival model 

separately and calculate the NIE and NDE from that fitting (we call this model the separate 

model).

The estimates for the parameters involved in the biomarker model (5) and the survival 

model (Model 1) or (Model 2) are shown in Table 2. The fitting of the biomarker model 

shows that the treatment does not have a statistically significant effect on the biomarker 

for both the main effect and the interaction effect, suggesting that there is no evidence 

showing ddC’s effect on CD4 compared with ddI. The fitting for the survival model shows 

that there is neither statistically significant treatment effect (p = 0.17 in Model 1 and p = 

0.14 in Model 2) nor biomarker effect (p = 0.06 in Model 1 and p = 0.12 in Model 2) on 

survival after adjustment for the observed covariates and shared latent effects. This shows 

that neither ddC nor CD4 has an evident direct effect on the outcome. For this study, Model 

1 is more appropriate than Model 2, since there is no evidence that the interactions exist 

(p = 0.29 and p = 0.33). Also, the significant effect of the shared latent effect suggests 

the violation of the SI assumption. The estimated NIE and NDE (solid line in Figure 2) 

with the 95% pointwise confidence intervals (dashed lines in Figure 2) from the two joint 

models as well as the separate models are presented. Also, we compare the summation 

of the estimated NDE and NIE with the estimated TE. The fittings of Models 1 and 2 

are similar, while the separate model provides very different results, where the NDE is 

overestimated with some significance shown at early time points; and the NIE estimation 

changes direction (from positive to negative). This shows the potential confounding effect 

of the shared random effect. This is in accordance with the test results that there is no 

significant interaction between the latent random effect a and the biomarker mediator M(t). 
According to our result, although there is a relatively higher magnitude in NDE compared 

to NIE, both values are not significantly different from 0 except for Model 2 at the larger 

time points where we observe a marginal significant NDE. Therefore there is no evidence to 

support that the biomarker mediates the effect of treatment on the survival outcome. These 

results indicate that the observed association between CD4 and the outcome is statistically 

insignificant after adjusting for the latent random effect. This finding is consistent with the 

previous qualitative finding from Liu et al. (2018) that the association between CD4 and 

outcome is purely due to time-independent unmeasured confounding (modeled as the latent 

random effect here). Also we notice that the sum of estimated NDE and NIE are close to the 

estimated TE as expected. This study suggests that (1) there is no evidence to support CD4 

as a good mediator for the treatment effect of ddC, and (2) the association between CD4 

and the outcome might be purely from unmeasured confounding, therefore it might not be a 

desirable target to intervene on. This result might be due to the limitation of the data that the 
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patients selected all had relatively low CD4 (300 or fewer CD4 cells per cubic millimeter). 

Thus, the change of CD4 is relatively small during the trial, and most of the associations of 

low CD4 and high death risk is explaind by the baseline shared random effect which might 

attribute to health status. In addition, the correlation between the shared random effect and 

CD4 would likely cause some variance inflation. These might lead to the insufficient power 

to detect the CD4 effect for the outcome and thus only marginal significant result is found (p 
= 0.06).

4.2 Prothrombin

The second data example to illustrate our method comes from a clinical trial to study the 

effect of prednisone on liver cirrhosis. In this study, 488 patients are followed longitudinally 

with an average of 6.1 measurements of the biomarker of interest (prothrombin index, PI) 

per individual. A low PI is usually considered as an indication of the high risk of serious 

liver damage or cirrhosis. The primary outcome is overall survival. In the follow-up period, 

292 events (death) were observed, leading to a censoring rate of 0.40. The question of 

interest is how the prednisone treatment effect is mediated through the change of PI on the 

risk of death.

We fit models with and without including the interaction terms between the mediator and 

the latent random effects. In Model 1, we assume there is no interaction between the 

latent random effects and the biomarker mediator M(t); while in Model 2, we consider the 

interaction between the latent random effects and the biomarker mediator M(t). The baseline 

hazard is modeled as a piecewise constant function with ten pieces, separated at every 

10th quantile of the death time. The estimated covariance between the random intercept 

and random slope is close to zero. For the estimation efficiency, we perform the analysis 

assuming Σa to be a diagonal matrix. Similar as in Section 4.1, we also fit the longitudinal 

model and survival model separately and calculate the NIE and NDE from that fitting (we 

call this model the separate model).

The estimates for the parameters involved in the biomarker model (5) and the survival model 

(Model 1) or (Model 2) are shown in Table 3. The fitting of the biomarker model shows 

that the treatment has a significant main effect on the biomarker (p = 0.0001 in both Models 

1 and 2) and the interaction between treatment and time is not statistically significant. The 

fitting for the survival model shows that there is no significant treatment effect on survival 

(p = 0.37 in Model 1 and p = 0.38 in Model 2) after adjusting for the mediator, but there 

is a significant main effect of the biomarker on the survival outcome (p < 0.0001 in both 

Model 1 and 2). These results indicate that there is strong evidence that the prednisone 

treatment effect is purely mediated through the change of PI. From Table 3, we can see 

that there is a statistically significant interaction between the biomarker (PI) and the latent 

random slope on the survival outcome with p < 0.0001. Therefore, in this case, Model 2 

is more appropriate than Model 1. Also, the significant shared effect in the survival model 

suggests the failure of SI assumption. The estimated NIE and NDE with the 95% point-wise 

confidence intervals for these models are shown in Figure 3. Also, the sum of estimated 

NDE and NIE are plotted in comparison with estiamated TE. We can see strong NIE through 

PI from both models, and the model with interaction (Model 2) shows a stronger estimated 
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NIE. The fitting from the separate model is very similar to the result from Model 1, which 

is consistent with the fact that the coefficients of random effects are not significant in the 

survival part of Model 1. The interaction term is statistically significant; this suggests that 

the model misspecification potentially bias the estimation of NIE. In this data example, 

failing to model the interactions between the mediator and the latent random effects leads to 

an underestimation of the mediation effect of PI. After removing the effect through PI, we 

notice that the direct effect is not statistically significant from 0, which suggests we cannot 

reject the null hypothesis that all treatment effects are mediated through PI. This finding 

suggests that the working mechanism of the treatment is likely through PI, which opens the 

potential opportunity in developing new treatments of liver cirrhosis through regulating PI. 

We notice that the sum of estimated NDE and NIE is slightly larger than to the estimated TE 

as expected, but the difference is not significant. The difference might be mitigated if more 

observed covariates are made available and added into the model, as in the CPCRA Study.

5. Discussion

In this work, we illustrate how to quantify the relationship between a longitudinal biomarker 

and a time to event outcome through joint modeling in the potential outcome framework, 

either under the assumption of sequential ignorability, or allowing confounding between 

the mediator and the latent shared random effect. This method can provide very important 

information for practitioners. For example, it can be used to evaluate the performance of 

a biomarker as a surrogate for the treatment, to understand the working mechanism of a 

treatment, or to identify a possible target for curing a certain disease.

In real data applications, the performance of the estimation of NDE and NIE depends on 

the selection of an appropriate joint model. Therefore, before applying our method, we 

recommend the practitioners to do model selection using some traditional model building 

techniques, such as AIC, BIC, or test for higher-order terms. We note a different formulation 

in the joint model by using ai0+ai1t to characterize the “unmeasured variables” in the bottom 

plot of Figure 1. In an earlier paper on joint model (Liu and Huang, 2009), we found that it 

has a poorer fit (though the difference is small) for the CD4 data than using (ai0, ai1)⊤ for the 

CD4 datasest. It is of interest to consider this formulation in other application studies.

Our method for computing NDE and NIE allows the relaxation of the sequential ignorability 

assumption by including confounding of latent shared random effects. This relaxation is 

very meaningful in practical uses. For clinical trials, although the treatment and control 

groups are randomized, it is very difficult, or unrealistic to also randomize the biomarker 

simultaneously given the limited sample size and the longitudinal feature of the biomarker.

Although the joint model presented in this paper is not new, it is only used as an example 

to demonstrate our novel way to handle the unmeasured confounders. When either the 

biomarker model is nonlinear or the proportional hazards model does not hold, our proposed 

framework of using shared random effects to model baseline unmeasured confounding and 

the general integration formula for NIE and NDE (Equations 7 and 8) can still be applied 

in principle. But the specific formula for the survival function, the distribution of random 

effect a and the distribution of FM|Z,a,X need to be modified and the fitting of parameters 
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in those alternative models require advanced joint modeling methods. For example, if the 

mediator is not continuous but categorical, a latent class model can be used. Similarly, the 

Cox model can be replaced with other survival regression models if the corresponding joint 

modeling approach is available, for example, Cox model with time dependent coefficients or 

accelerated failure time model. Future work will be needed to allow the existence of multiple 

biomarker processes and to evaluate their relative strength as mediators.

The main idea of this method is to use a mixed effects model to estimate the unmeasured 

confounders. A similar idea that has shown success in learning unmeasured confounders 

from the observational study. Instead of specifically using measurement at different times, 

unmeasured confounders are estimated using factor analysis when there are more than one 

exposures of interest that are affected by these unmeasured confounders (Wang and Blei, 

2019). One key assumption we make behind this idea is that the unmeasured confounders 

are time-independent. We also require that the unmeasured confounders affect more than 

a single time biomarker process for identifiability. Therefore in real data applications, we 

must keep in mind that potential unmeasured confounding with only instant effects are not 

taken care of with this method. Alternatively, we can try to find an instrumental variable to 

help identify such effects by extending the mediation method in the setting of single-time 

mediator and survival outcome (Zheng and Zhou, 2017) to longitudinal mediator setting.

One limitation for our analysis is that we treat CD4 and PI biomarker processes as external 

and assume their values are not affected by death, which is a common assumption in 

the joint model framework. Though this technical assumption is not entirely realistic 

philosophically, mathematically it leads to the correct estimation of regression parameters 

given that the observed likelihood does not depend on the biomarker process after death. 

The calculation of usual NDE and NIE does depend on the model of biomarker process after 

death and is not identifiable as mentioned in Didelez (2019), which leads us to redefine the 

NDE and NIE based on a hypothetical biomarker rather than the true biomarker as a remedy. 

It is worthy of future study to explore additional model assumptions that will allow us to 

estimate the usual NDE and NIE.

The consistency assumption might be violated when the potential measurement error issue 

exists for the biomarker process. In general, the term ei(u) contains both the biomarker 

variability over time as well as the measurement error and these two parts are not 

identifiable nonparametrically without replicate measures at the same time points. In our 

example, the measurement of CD4 and PI is relatively mature which might result in relative 

small measurement error. But for biomarker process that are less accurately measured, we 

might need the information from replicate measurements for the magnitude of the error. 

Mediation analysis with measurement error has been studied for non-time-to-event outcome 

(Valeri et al., 2014; Valeri and TJ, 2014; Loh et al., 2020). In the joint modeling setting, 

instead of considering the effect of the observed error-prone biomarker on the outcome, the 

effect of the underlying true biomarker needs to be modeled. The extension of our proposed 

method to such models with measurement error in biomarker is worth future research. Given 

that the biomarker is not measured at each time continuously, we note that the last value 

carried forward imputation is a common and simple approach to handle time dependent 
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covariates in survival analysis.. Better imputation approach and smoothing technique might 

worth exploring in future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Directed acyclic graph for commonly encountered causal mechanisms between the 

biomarker and the survival outcome.
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Figure 2. 
Estimation (solid lines) with bootstrapped 95% point-wise confidence intervals (dash lines) 

of the natural direct effect (NDE) and natural indirect effects (NIE) of treatment on overall 

survival probability for CPCRA study.
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Figure 3. 
Estimation (solid lines) with bootstrapped 95% point-wise confidence intervals (dash lines) 

of the natural direct effect (NDE) and natural indirect effects (NIE) of treatment on overall 

survival probability for prothrombin data.
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Table 1

Bias, standard deviation (SD), median estimated standard error (MeSE), and coverage rate for 95% nominal 

confidence interval (CR) from four simulation settings.

Setting Time Effect Bias SD MeSE CR

I 2 NDE −0.005 0.051 0.046 94.0%

NIE 0.000 0.044 0.041 93.5%

4 NDE −0.004 0.055 0.051 95.0%

NIE 0.001 0.037 0.033 92.5%

6 NDE −0.003 0.051 0.049 97.0%

NIE 0.003 0.028 0.026 92.0%

8 NDE −0.001 0.045 0.046 98.0%

NIE 0.003 0.023 0.023 93.0%

II 2 NDE 0.001 0.049 0.050 96.0%

NIE −0.003 0.035 0.032 91.0%

4 NDE 0.000 0.052 0.053 95.5%

NIE −0.002 0.031 0.028 90.0%

6 NDE 0.000 0.048 0.050 95.5%

NIE −0.001 0.025 0.024 89.5%

8 NDE 0.000 0.043 0.046 96.5%

NIE −0.001 0.021 0.023 90.5%

III 2 NDE 0.010 0.053 0.048 92.5%

NIE −0.002 0.047 0.042 90.0%

4 NDE 0.006 0.056 0.053 93.5%

NIE −0.005 0.037 0.034 93.5%

6 NDE −0.003 0.052 0.050 92.5%

NIE −0.005 0.028 0.027 95.5%

8 NDE −0.011 0.046 0.045 93.5%

NIE −0.004 0.022 0.023 96.5%

IV 2 NDE 0.034 0.063 0.054 87.0%

NIE −0.010 0.057 0.045 86.5%

4 NDE 0.019 0.070 0.062 89.0%

NIE 0.010 0.053 0.042 84.5%

6 NDE 0.001 0.065 0.059 90.5%

NIE 0.016 0.041 0.035 79.0%

8 NDE −0.012 0.056 0.052 94.0%

NIE 0.017 0.031 0.029 79.5%
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Table 2

Results from the CPCRA study

Model 1 Model 2

Variable Est SE p-value Est SE p-value

Longitudinal

Intercept 4.07 0.18 <0.0001 4.06 0.18 <0.0001

Treatment −0.08 0.11 0.47 −0.08 0.11 0.49

Year −0.79 0.10 <0.0001 −0.77 0.11 <0.0001

Gender 0.24 0.19 0.20 0.25 0.19 0.19

PrevOI −0.95 0.14 <0.0001 −0.94 0.14 <0.0001

Stratum 0.12 0.13 0.38 0.13 0.13 0.34

HgB 0.23 0.03 <0.0001 0.24 0.03 <0.0001

Treatment × Year −0.09 0.12 0.45 −0.10 0.12 0.43

Random Effect: Intercept 1.21 0.09 <0.0001 1.22 0.09 <0.0001

Random Effect: Slope 0.67 0.11 <0.0001 0.66 0.11 <0.0001

Random Effect Covariance −0.03 0.07 0.73 −0.02 0.07 0.77

σ2
e 0.30 0.01 <0.0001 0.30 0.01 <0.0001

Survival

Treatment −0.26 0.19 0.17 −0.28 0.18 0.14

CD4 0.36 0.19 0.06 0.32 0.21 0.12

Shared Effect Intercept −0.92 0.24 0.0001 −0.71 0.31 0.02

Shared Effect Slope −0.75 0.30 0.01 −0.90 0.39 0.02

CD4×Shared Effect Intercept NA NA NA −0.06 0.06 0.29

CD4×Shared Effect Slope NA NA NA 0.09 0.09 0.33

Gender −0.19 0.32 0.55 −0.16 0.31 0.62

PrevOI 1.47 0.36 <0.0001 1.37 0.35 0.0001

Stratum −0.18 0.21 0.41 −0.20 0.21 0.34

HgB −0.50 0.08 <0.0001 −0.49 0.09 <0.0001
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Table 3

Results from the prothrombin data.

Model 1 Model 2

Variable Est SE p-value Est SE p-value

Longitudinal

Intercept 76.9 1.3 <0.0001 76.9 1.3 <0.0001

Treatment −7.3 1.9 0.0001 −7.3 1.9 0.0001

Time 0.73 0.5 0.15 0.77 0.4 0.08

Treatment × Time 0.38 0.6 0.52 0.4 0.5 0.43

Shared Effect Intercept 337.2 27.5 <0.0001 337.2 26.8 <0.001

Shared Effect Slope 12.9 2.4 <0.0001 12.9 2.3 <0.001

σ2
e 301.1 9.2 <0.0001 301.1 9.2 <0.001

Survival

Treatment −0.11 0.1 0.37 −0.13 0.1 0.38

PI −0.034 0.004 <0.0001 −0.040 0.005 <0.0001

Shared Effect Intercept 0.009 0.006 0.88 −0.004 0.02 0.78

Shared Effect Slope −0.054 0.04 0.14 −0.78 0.1 <0.0001

PI×Shared Effect Intercept NA NA NA 0.0002 0.0002 0.41

PI×Shared Effect Slope NA NA NA 0.010 0.0001 <0.0001
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