
Neurobiology of Stress 15 (2021) 100408

Available online 11 October 2021
2352-2895/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Transcriptomics of the depressed and PTSD brain 

Jing Zhang a, Alfred P. Kaye b, Jiawei Wang c,d, Matthew J. Girgenti b,e,* 

a Department of Computer Science, University of California- Irvine, Irvine, CA, USA 
b Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA 
c Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA 
d Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA 
e National Center for PTSD, U.S. Department of Veterans Affairs, USA   

A R T I C L E  I N F O   

Keywords: 
PTSD 
MDD 
Stress transcriptomics 
Postmortem brain 
Animal behavior 

A B S T R A C T   

Stress is the response of an organism to demands for change, yet excessive or chronic stress contributes to nearly 
all psychiatric disorders. The advent of high-throughput transcriptomic methods such as single cell RNA 
sequencing poses new opportunities to understand the neurobiology of stress, yet substantial barriers to un
derstanding stress remain. Stress adaptation is an organismal survival mechanism conserved across all organisms, 
yet there is an infinity of potential stressful experiences. Unraveling shared and separate transcriptional programs 
for adapting to stressful experience remains a challenge, despite methodological and analytic advances. Here we 
review the state of the field focusing on the technologies used to study the transcriptome for the stress neuro
biologist, and also attempt to identify central questions about the heterogeneity of stress for those applying 
transcriptomic approaches. We further explore how postmortem transcriptome studies aided by preclinical an
imal models are converging on common molecular pathways for adaptation to aversive experience. Finally, we 
discuss approaches to integrate large genomic datasets with human neuroimaging and other datasets.   

1. Introduction 

Neuropsychiatric disorders cause considerable disability and burden 
economically and to the health of people around the world. Significant 
efforts have been made to understand these disorders; however, their 
underlying molecular pathology remains elusive. Preclinical and clinical 
studies indicate that psychiatric disorders onset is multifactorial: part 
environment and part genetic and arise from structural and molecular 
changes in corticolimbic and mesolimbic circuits (Jovanovic et al., 
2010; Jovanovic and Ressler, 2010; Shin and Liberzon, 2010). Specif
ically, aversive psychosocial stressors are known to cause major 
depressive disorder (MDD) and post-traumatic stress disorder (PTSD). 
There is now a substantial literature describing the genetic architecture 
and risk for developing MDD (Wray et al., 2018) and PTSD(Gelernter 
et al., 2019; Nievergelt et al., 2019). However, few of the identified risk 
variants have been functionally annotated. 

The human genetic code contains 3 billion base pairs and an its 
annotation (introns, exons, intergenic regions, etc.) is still an area of 
extensive research (Kundaje et al., 2015). The transcriptome is the “read 
out” of the genetic code and studying it reduces the dimensions from 3 
billion base pairs to approximately 25,000 coding transcripts. 

Transcriptomic studies of neuropsychiatric disorders in both animal 
models and human postmortem tissue provide the best strategy for un
derstanding how risk variants and stress exposure affect the molecular 
pathology of the central nervous system (CNS). Postmortem brain tissue 
provides us with a direct measurement of how risk variants may affect 
gene expression and perturbation of these genes in animal models pro
vides critical functional validation. The transcriptome can be thought of 
a molecular phenotype of a particular trait or illness state in the same 
way as neurological disruptions such as plaques and tangles are 
phenotypic of Alzheimer’s disease. This analogy is particularly relevant 
as there are no macro-neurological features that distinguish patients 
with psychiatric disorders. For example, functional genomic studies of 
autism have consistently identified atypical gene co-expression net
works across multiple ASD cohorts (Adhya et al., 2021; Wang et al., 
2018). 

There are currently major efforts to understand the molecular pa
thology of stress disorders. Preclinical work on stress disorders has been 
directed at understanding how much of the disease transcriptomic 
changes are recapitulated by each stress model (Scarpa et al., 2020). 
Increased collection of human postmortem tissue from donors with 
psychiatric illness has contributed to advances in understanding the 
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transcriptomic changes of MDD and PTSD and provided comprehensive 
genomic atlases which can be used to identify clinically relevant changes 
in animal model comparisons. Here we review the current state of 
technologies used in transcriptomic studies: from RNA-sequencing of 
bulk-tissue to single cell-types. We explore how animal models have 
contributed to our understanding of the molecular pathology of MDD 
and PTSD. And finally, we describe how postmortem genomics work has 
revolutionized our understanding of MDD and PTSD and how inte
grating these large, rich data sets with other human analyses such as 
neuroimaging are providing critical information necessary for better 
biomarker identification and therapeutic design. 

2. Transcriptomic methods 

Technical advances have made high-fidelity measurements of gene 
expression changes following stress at cellular resolution possible 
(Macosko et al., 2015), as well as enabling simultaneous large-scale 
studies of other cellular measurements (“multi-omics”) (Macaulay 
et al., 2017). This rapidly advancing methodological approach is 
yielding insights into fundamental building blocks of pathophysiology 
across biomedical fields. Here we provide a brief summary of ap
proaches to transcriptomic measurements relevant to understanding 
stress in order to facilitate psychiatric neuroscience investigators who 
wish to adopt these approaches in the understanding of stress-related 
disorders. 

Recent advances in our understanding of the genomic structure of 
the mammalian CNS have been directed by the development of high 
throughput sequencing approaches such as RNA-seq. RNA-seq provides 
three to four magnitudes more information than previous gene expres
sion systems. Deep sequencing has been applied to many different 
genomic levels including genomic DNA sequencing (DNA-seq) (Yu et al., 
2017), non-coding RNA profiling (smRNA-seq) (Choi et al., 2005; Xu 
et al., 2011; Zhou et al., 2021), DNA-protein interactions (ChiP-seq) 
(Barski et al., 2007) and DNA structure (e.g., open chromatin) 
(ATAC-seq) (Bryois et al., 2018). The actual process of RNA-seq is 
detailed elsewhere but we will briefly review here. RNA is extracted and 
ribosome depleted before cDNA synthesis. Ribosome depletion has 
become the gold standard for RNA sample preparation as it removes 
biological contaminants (rRNA and mitochondrial RNA) that may 
obscure other relevant molecular changes. Each cDNA fragment (usually 
75–100 bp) is sequenced normally in a paired end fashion where the 
fragment is sequenced 3′ to 5′ and then again from 5′ to 3’. The resulting 
sequence reads are aligned to the genome of interest but can also be 
assembled without reference. This allows for unprecedented analysis of 
the transcriptome-not just what is expressed but also how it is expressed 
(i.e., alternative splicing, exonic SNP detection, and novel transcript 
prediction). 

A major limitation of bulk-tissue RNA sequencing, particularly in the 
brain, lies in the intrinsic heterogeneity of cell-types within brain re
gions – any anatomically-based collection of RNA samples will be a 
weighted average of expression levels of all cells present, and potentially 
biased by cell-size and other confounds. In order to overcome this bar
rier, several solutions have been developed even prior to the develop
ment of single-cell sequencing (Macosko et al., 2015). Cell-type specific 
RNA sequencing can be obtained via methods that use a 
Cre-recombinase systems to tag translating ribosomes with GFP within 
specific cell-types (translating ribosome affinity purification, TRAP) 
(Doyle et al., 2009). Conditional transgenic animals can thus be used to 
isolate actively translating mRNAs from a cell-type of interest within 
anatomically localized tissue, as long as a transgenic Cre mouse exists for 
that cell type. 

The development of microfluidic-based approaches such as droplet- 
based RNA sequencing (Macosko et al., 2015), in turn, has produced a 
dramatic change in neuronal gene expression studies over the past few 
years (Ofengeim et al., 2017). Instead of being limited to a small number 
of pre-specified cell-types in transgenic animals, individual cells within a 

brain region can be isolated and sequenced separately after embedding 
them onto gel droplets and adding nucleic acid barcodes which allow for 
later identification of transcripts by cell-type. The power of this 
approach lies in the ability to sequence individual cells at scale in an 
unbiased fashion, although the high dimensionality of single cell 
sequencing data presents new bioinformatic challenges (Vallejos et al., 
2017). Single nucleus sequencing, in particular, permits extraction of 
mRNA with a high correlation to expression levels in the entire cell thus 
permitting extensions of droplet-based approaches to difficult tissues 
such as human postmortem brain tissue (Lake et al., 2016). 

Extensions of droplet-based sequencing are rapidly progressing, 
particularly with regard to acquiring other data simultaneously on the 
sequenced cells. Spatial RNA sequencing, in which nucleic acid barcodes 
for two-dimensional position are applied before subsequent droplet- 
based sequencing (Rodriques et al., 2019), permit fine-scale localiza
tion of expression across anatomical axes and was named the 2020 
method of the year by Nature Methods (Marx, 2021). Multiplexing of 
genomic information such as chromatin accessibility sequencing 
(ATAC-seq) or even protein expression levels within individual 
cell-types (Macaulay et al., 2017) may allow stress biologists to under
stand the impact of transcriptomic changes on cellular state. 

3. Models of stress for transcriptomic studies 

Hans Selye defined stress in 1936 as “the non-specific response of the 
body to any demand for change,“(Selye, 1998) an organismal response 
to a challenge. The brain serves a central role in this response, taking in 
sensory and physiological evidence of this demand for change and 
orchestrating behavioral responses. Alterations in neural circuit func
tions related to stress have a causal role in major psychiatric illnesses 
(McEwen, 2008) such as depression, anxiety, posttraumatic stress dis
order, and substance abuse. Three brain regions in particular have 
contributed to our knowledge of the cellular and molecular mechanisms 
of stress in the brain. The hippocampus is perhaps the best studied 
structure. Stress causes dendritic shrinkage and loss of spines in the 
hippocampus. The prefrontal cortex suffers from debranching and 
shrinkage of dendrites after chronic stress (McEwen et al., 2016). 
Traumatic stressors have been shown to increase spine density of 
basolateral amygdala dendrites and induce loss of spines in the medial 
amygdala. These structural changes have been implicated in the devel
opment of PTSD behaviors (Mitra et al., 2005). Molecularly, stress in
duces transcriptomic and epigenetic changes to excitatory amino acids, 
glucocorticoids, and chromatin modifiers. Extracellular and intracel
lular mediators such as endocannabinoids and brain-derived neuro
tropic (BDNF) have also been shown to play a role in stress development 
(McEwen et al., 2016). 

Similarly, the ability to induce stress in animal systems is essential to 
understanding the transcriptomic signatures of stress-induced psycho
pathology (Scharf and Schmidt, 2012). As the kind of stress that is 
believed to lead to psychiatric illness is not under the experimenter’s 
control in humans, such studies will always be limited to observational 
or quasi-experimental approaches (James and Ice, 2006). Thus, the in
duction of psychological stress in animals is an essential component of 
understanding transcriptomic programs induced by aversive experience. 
While the larger project of summarizing animal models of stress lies 
outside the purview of our review, we choose to focus here on the key 
aspects of animal models of stress that have impacted our understanding 
of transcriptional programs induced by it. 

Following McEwen and colleagues (McEwen, 2008; Mcewen, 2004), 
these experimental models can broadly be classified into those relating 
to an individual episode of stress (acute stress) or those relating to a 
cumulative experience of stress (allostatic load; chronic stress). The 
former is amenable to an experimental strategy in which tissue is 
collected from animals at a series of time points after an initial event and 
used for sequencing. The latter, in contrast, have typically been collected 
at a fixed delay after a more persistent stressful experience in order to 
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create a contrast between two conditions (stressed and unstressed). 
Importantly the effects of acute and chronic stress are frequently 
different in terms of transcriptomic changes (Simmons et al., 2020). One 
large gene expression atlas of different kinds of stress in rodent brain 
meta-analyzed gene expression data from 18 projects studying the effect 
of stress on the transcriptome of the brain (Flati et al., 2020). They 
observed a consistent pattern between acute and chronic stressors and 
brain gene expression. GO analysis of genes modulated a short time after 
stress (acute) enriched for genes involved in enzymatic activities and 
transcription factors. At longer time points after stress (chronic) func
tional annotation of DEGs revealed enrichment for structural changes 
such as axonogenesis and synapse organization. These findings are 
consistent with known structural and plasticity responses to chronic and 
acute stress. 

Acute stress offers the ability to identify direct gene expression me
diators of persistent changes after stress (Floriou-Servou et al., 2021). A 
recent study of the ventral hippocampus after exposure to three different 
types of acute stressors found that gene expression patterns related to 
different stressors were quite divergent, but that there were some 
common changes across different stress types (Floriou-Servou et al., 
2018). Since acute stress responses evolve over hours to days, future 
studies and modeling efforts may facilitate understanding the temporal 
evolution and key elements of stress responsivity. 

While chronic stress manipulations vary, the most common have 
either been repetitive unpredictable sensory stimuli (Girgenti et al., 
2019), social defeat stress (Bagot et al., 2016), or early life stress (Peña 
et al., 2017). Social defeat stress, in which a mouse is exposed repeatedly 
to another aggressive mouse over 10 days, leads to differential expres
sion of large numbers of genes throughout limbic circuits (Bagot et al., 
2016). One advantage of this model is the ethological nature of the stress 
manipulation, as well the ability to distinguish resilient vs susceptible 
animals by their level of future social interaction. In transcriptomic 
studies, this has been used to identify gene networks and key gene 
expression programs. In one remarkable study, early life stress induced 
widespread and persistent changes in gene expression in the ventral 
tegmental area (Peña et al., 2017). Interestingly, this response was 
orchestrated by a brief change in expression of the transcription factor 
OTX2 which was not sustained into adult gene expression changes. 
Importantly, these studies highlight the critical need of tying gene 
expression changes to neuronal activity as both studies provide causal 
evidence for specific genes in the control of the stress response. Chronic 
stress has an impact on the individual cell’s regulation of gene expres
sion. One group performed single cell RNA-seq on each component of 
the HPA axis and identified a previously unknown subcluster of cells 
that were Abcb1b+ and which play an important role in the plasticity 
and adaptation processes of chronic stress in the adrenal cortex and 
highlights the need to move this work to the single cell-type level (Lopez 
et al., 2021). 

However, neurobiological research on stress has reached a major 
obstacle - the very “non-specific” nature of the phenomenon has blocked 
further study (Simmons et al., 2020). The wide variety of ways to induce 
stress lead to diverse and often contradictory responses in neural cir
cuits. Stress is typically induced in neurobiological studies by the stan
dardized application of different aversive experiences – say, 4 h of 
physical restraint (Conrad et al., 1999) or ten days of a mouse being 
placed for 10 min per day with an aggressive mouse (Golden et al., 
2011). These approaches have yielded tremendous insight into the 
neurobiology of stress but are difficult to compare across conditions. In 
the next section, we address one potential approach to this problem. 

4. Exploring stress space with transcriptomics 

Understanding the nature of stressful experiences requires environ
mental manipulations that vary across multiple dimensions: sensory 
variability, higher-order unpredictability, controllability, aversion, 
chronicity (McGonagle and Kessler, 1990; Peters et al., 1998; Seligman, 

1972). The space of potentially stressful events is infinite, with 
contemporary human stress induced by diverse socioeconomic factors 
(Lantz et al., 2005) such as social isolation, threat of danger, grief, 
economic resource instability, diminished appetitive stimuli, loss of 
control and increased threat of violence. In human psychological 
studies, the observation that stressors of specific types can induce 
diverse behavioral manifestations has been an important facet of study 
going back to the beginning of the field. Yet in animal neurobiology 
research, the ability to compare across causal manipulations of distinct 
stressors has been limited by the difficulty of exploring an infinite space 
of stressors (although see recent efforts at comparison across acute 
stressors (Floriou-Servou et al., 2018)). 

Typically, neurobiologists choose one or a few distinct types of stress, 
which can be thought of as points in the space of potential stressors. Yet, 
comparing neurobiological manifestations between two classes of 
stressors is equivalent to choosing two points, and does not permit 
inference into the nature of the structure of stressors within that space. 
Given that stress typically constitutes a series of aversive experiences 
over time, each individual incident within the stressful experience can 
be considered as a small directed perturbation in stress space. One 
quantitative way to conceptualize the transcriptomics of stress is as a 
mapping from the space of potential stressful (uncertainty- or aversion- 
inducing) (Peters et al., 2017) experiences to the space of cellular states. 

In some ways, our understanding of transcriptomics of stress is thus 
limited by our ability to control and elicit stress in model systems. As 
discussed in the previous section, stress in animal models is usually 
either a single acute or chronic stressor with contrasts between stressed 
and unstressed conditions. However, this level of quantitative and 
individualized description has been limited by the lack of theoretical 
model for stress in which to localize transcriptomics data. In order to 
truly understand the commonalities across behavioral stress and its cell- 
type specific transcriptomic consequences, it may be necessary to 
develop improved behavioral programs and modeling approaches as 
well as make comparisons with human postmortem tissue of stress dis
orders. Work is currently underway to identify the molecular in
tersections between animal models of stress and postmortem tissue 
genomics work. One study compared a large postmortem, MDD cohort 
to three separate stress paradigms to identify whether one model better 
captured the molecular pathology of MDD than another (Scarpa et al., 
2020). Interestingly, the authors found that each model captured 
different aspects of the depression molecular signature. The authors 
suggest that this is not an impediment but an opportunity to expand the 
types of mouse models of MDD. Because all three behaviors in this study 
capture parts of the MDD molecular profile, future work should be 
expanded into other stress disorders such as PTSD where a complete 
molecular profile of the animal models is still lacking. Further, future 
work in the depression model area should be to expand this into cell 
type-specific work. Despite the tremendous progress in transcriptomic 
methods, linking new bioinformatic methods for understanding cellular 
state trajectories after stress to an improved quantitative understanding 
of stress itself may be essential to understanding how stress alters neural 
circuit function. 

5. Bioinformatic approaches to brain transcriptomic studies 

5.1. Differential gene and isoform identification 

The original, most direct and informative analyses of transcriptomic 
data involve identifying lists of differentially expressed genes between 
sample groups such as discrete brain regions, diseased tissue, or even 
between the two sexes. RPKM or FPKMs counts for individual transcripts 
are normalized based on the total number of effective counts for a 
particular gene in each sample. Programs such as EdgeR(Robinson et al., 
2010), DESeq (Love et al., 2014) and LimmaVoom (Law et al., 2014) 
perform well for most data sets and are effective in ranking differentially 
expressed genes. EdgeR and DESeq2 both assume that no transcripts are 
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differentially expressed. DESeq uses a geometric normalization strategy 
where a scaling factor for a given sample is computed as the median of 
the ratio for each gene and its read count over its geometric mean across 
all samples. EdgeR calculates a weighted mean of log ratios between 
sample cohorts after exclusion of the most expressed genes and genes 
with the largest log ratios. Limmavoom was historically used to analyze 
microarray data but has been updated to work with sequencing data. 
Limma/voom matches distributions of gene counts across samples to 
normalize expression (Shahjaman et al., 2020). 

Alternative splicing (AS) is a critical component of gene expression 
regulation. Through the inclusion or exclusion of exons and intronic 
sequences, the transcriptome adds to the diversity of the proteome (Pan 
et al., 2008). AS can have a profound effect on gene function and 
different isoforms of the same gene can be involved in different or even 
opposing functions. AS can be measured using traditional RNA-seq 
methods. Numerous bioinformatical tools have been developed for 
identifying alternative splicing patterns from RNA-seq including Leaf
Cutter (Li et al., 2018), MISO (Katz et al., 2010), rMATs (Shen et al., 
2014), MAJIQ (Vaquero-Garcia et al., 2016), RSEM (Li and Dewey, 
2011), Kallisto (Bray et al., 2016), and Salmon (Patro et al., 2017). 
While RNA-seq data is generally analyzed on the gene level these 
packages can be used to analyze this data on the exon level to detect and 
quantify novel splicing events. AS is usually reported as percent spliced, 
a metric of the percentage of how efficiently sequences of interest are 
spliced into a full transcript (Li et al., 2018). A recent study (Gandal 
et al., 2018b) by the Geschwind group identified that more than 25% of 
the human frontal cortex exhibits differential alternative splicing and 
that isoform-level changes captured the largest disease effects for donors 
with autism spectrum disorder, schizophrenia and bipolar disorder. 
While there is a high degree of common polygenicity in these disorders 
these findings suggest that alternative splicing of the transcriptome most 
differentiates these disorders from one another. 

Traditionally, RNA-seq is performed on small fragments of RNA (75- 
150bp). Current detection methods for identifying AS events relies on 
concatenation of these small sequence fragments. The ability to 
sequence longer pieces of cDNA are allowing for more accurate identi
fication of splicing events. These so-called long read sequencing assays 
allow sequencing of full-length transcripts or up to 10 kb or longer 
(Wang et al., 2016). These sequences can be compared to known AS 
annotations or can be used for de novo splicing identification. While this 
technology has not been applied extensively to brain tissue, one recent 
report (Estill et al., 2021) looked at isoform usage in the nucleus 
accumbens (NAc) of mice and found that 46% of the detected transcripts 
harbored novel splicing events not detected by previous RNA-seq ex
periments, indicating that we are missing significant amounts of AS 
events using normal RNA-seq for isoform detection and that long read 
Iso-seq technologies will be necessary for complete isoform detection. 

5.2. Pathway analysis and gene set enrichment 

Gene-set enrichment has emerged as one of the most popular ana
lyses available on large genomic data sets. Functional annotation ana
lyses seek to aid in interpretation of large transcriptomic and 
methylomic datasets by utilizing a statistical methodology to identify 
functionally related groups of genes annotated using systems such as 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) for biological process and pathway identification. While very 
popular, recently evidence suggests significant inflation of significant 
findings relative to expectations in both mouse and human datasets. One 
study found that the probability of a GO category being reported as 
significant in a given dataset increases with its estimated false-positive 
rate (Fulcher et al., 2020). They showed that this bias is driven by 
co-expression patterns within GO categories and by spatial autocorre
lation. It is also important to point out that many GO and KEGG path
ways were organized from large cancer datasets that make 
interpretation using brain-specific transcriptomic profiles difficult. One 

mouse study characterizing the sex-specific, single cell transcriptomics 
of SST and Pvalb interneuron populations provides an example case 
(Girgenti et al., 2019). Differentially expressed genes in female SST +
interneurons that had been exposed to chronic unpredictable stress 
enriched for GO category GO: pancreatic adenocarcinoma, a category 
which on the face of it would seem have little to do with stress. However, 
examination of the GO found it was primarily made up of growth factors 
including vascular endothelial growth factor (VEGF), fibroblast growth 
factor receptors (FGFRs) which has known roles in both angiogenesis 
and neurogenesis pathways with known roles in the regulation of stress 
and antidepressant use. Taken together, these findings point toward a 
critical need for development of a brain specific gene ontology 
organization. 

5.3. Gene Co-Expression analysis and deep learning 

Transcriptional regulation plays a key role in many homeostatic 
functions and in disease states. Traditionally, bioinformatic approaches 
to transcriptomic datasets have focused on the identification of genome- 
wide significant differentially expressed genes and is the logical exten
sion from the traditional candidate gene studies that predominated early 
gene profiling studies. However, additional tools have been developed 
to provide far more information about transcriptional regulation and 
organization in tissue. One approach that has been consistently popular 
is gene co-expression network analysis. The underlying biological 
principle of this analysis is that genes do not operate alone and likely 
require co-regulated transcriptional control. Thus, gene levels with 
correlated levels of expression across cohorts are grouped into network 
modules and differences in module connectivity and membership pro
vide insight into dysregulated gene assemblies. Further, these modules 
can also be enriched for cell-type specific markers, allowing for identi
fication of the cell types likely responsible for the aberrant transcrip
tional differences. 

A popular tool for this type of analysis is Weighted Gene Co- 
Expression Network Analysis (WGCNA) (Langfelder and Horvath, 
2008). This tool is been used to study co-expression patterns in normal 
brain tissue (Oldham et al., 2008), major depressive disorder (Labonté 
et al., 2017) and PTSD (Girgenti et al., 2021). Importantly, co-expression 
analysis can be used in prioritizing illness-state DEGs and linking these 
to genetic risk. For example, the largest postmortem study of PTSD brain 
tissue identified a PTSD associated co-expression network with 
numerous down regulated molecular key drivers important in inter
neuron function (Girgenti et al., 2021). Using a global, step-wise 
approach the authors combined transcriptome-wide imputation (tran
scriptome-wide association (TWAS)) using eQTL data from the GTEx 
portal and integrated it with the largest PTSD GWAS generated by the 
Million Veteran Program. One of the molecular key drivers identified in 
their WGCNA modules, ELFN1, achieved transcriptome-wide signifi
cance for PTSD by TWAS. This was an important first step in identifying 
convergences between cortical co-transcriptomics and PTSD genetic 
signals, a pipeline that can be exploited to identify high confidence 
molecular targets for potential therapeutics for PTSD. TWAS is quickly 
becoming one of the most popular transcriptomic analysis tools in stress 
disorders (Stein et al., 2021,Huckins et al., 2020) and its application and 
development has been reviewed extensively elsewhere (Cano-Gamez 
and Trynka, 2020; Chatzinakos et al., 2021). Deep learning technology 
is also being applied to large transcriptomic screens to identify 
gene-gene relationships (Yuan and Bar-Joseph, 2019). This study 
designed a novel pipeline which encoded single cell type gene expres
sion data and followed that up with deep neural network analysis. This 
framework allows for detection of a diverse number of relevant bio
logical phenomenon including transcription factor target prediction and 
identification of disease-related causal, co-expressed genes. 

J. Zhang et al.                                                                                                                                                                                                                                   



Neurobiology of Stress 15 (2021) 100408

5

5.4. Single cell transcriptomics in brain 

With an immense number of cell types and cellular connections, the 
brain is arguably the most complex organ in the human body. The recent 
single cell sequencing revolution opens a new avenue for dissecting the 
complexity of the human brain at the single cell level. As we have 
touched on previously, in no realm is the development of bioinformatics 
tools more crucial or expanding more rapidly than those for single cell- 
type analysis. In this section, we will describe broad techniques and 
methods for conducting single cell analysis in brain tissue. 

5.4.1. Preprocessing and quality control (QC) 
Computational modeling of scRNA-seq data is challenging due to its 

ultra-high dimensionality, low capture efficiency, and high level of 
technical noise. Therefore, a series of QC steps are vital for accurate 
downstream analyses. For instance, bulk RNA-seq QC tools, such as 
FastQC, can be employed to check the sequencing quality of scRNA-seq 
data. Then cells with very few genes detected, mitochondrial genes or 
extremely high portion of reads mapped to the spike-ins will be 
removed. Further, several tools have been developed to further remove 
doublets to avoid artifactual libraries generated from more than one cell 
(Bais and Kostka, 2019; Bernstein et al., 2020; McGinnis et al., 2019; 
Wolock et al., 2019). In addition, multi-sample scRNA-seq analysis 
usually suffers from severe batch effects when integrating data gener
ated by distinct operators at different times or from multiple laboratories 
using disparate protocols and sequencing platforms. Recent computa
tional methods such as MNN and KBET can be used to correct batch 
effects for improved performance (Büttner et al., 2019; Haghverdi et al., 
2018). Single cell type transcriptomics datasets are prone to noise and 
circumstantially there has been advances in tools for processing these 
datasets particularly in the areas of cluster and drop out analysis (Bou
land et al., 2021). 

5.4.2. Cell level analysis 
Normalization is usually carried out to correct unwanted biases (e.g., 

dropout, sequencing depth, and capture efficiency). Recently, a gener
alized linear model has been widely used to omit the need for heuristic 
parameterizations in normalization (e.g., pseudocount addition and log- 
transformation), benefiting downstream analytical tasks such as vari
able gene selection, dimensional reduction, and differential expression 
(Hafemeister and Satija, 2019). Afterward, highly variable genes are 
selected as informative features to perform various dimension reducing 
techniques. To identify distinct cell populations, we can perform either 
supervised clustering methods based on known marker genes or identify 
de novo cell types using unsupervised algorithms based on k-means, 
hierarchical clustering, density-based clustering and graph-based clus
tering. In addition, to accommodate a continuous spectrum of cellular 
status, cell trajectories and pseudotime can be reconstructed based on 
scRNA-seq using various tools, such as Monocle (Qiu et al., 2017), 
Waterfall (Shin et al., 2015), Wishbone (Setty et al., 2016), and Cell
Router (Rocha et al., 2018). 

5.4.3. Gene level analysis 
Distinct from bulk level analysis, scRNA-seq data can identify 

differentially expressed genes (DEGs) between disease and controls 
within each subpopulation or group of cells. Although traditional 
methods designed for bulk RNA-seq DE analysis can be used, recently 
several methods have been specifically developed for scRNA-seq data 
with improved performance, such as MAST (Finak et al., 2015), SCDE 
(Kharchenko et al., 2014), and DEsingle (Miao et al., 2018). 

5.4.4. Network level analysis 
Various network inferences, such as gene co-expression network and 

gene regulatory network (GRN) have been widely conducted using bulk 
RNA-seq data. A number of existing tools such as WGCNA and SCENIC 
can be directly applied to scRNA-seq data although caution is warranted 

due to the higher level of noise in single cell experiments. Several recent 
tools, such as PIDC(Chan et al., 2017) and CNNC(Yuan and Bar-Joseph, 
2019), have been developed specifically for GRN construction using 
scRNA-seq data. Additionally, inter-cellular communication is particu
larly critical for the development and functionality of the human brain 
and one obvious advantage of scRNA-seq data is the ability to system
atically dissect the cellular connectome. Recently several tools have 
been developed to construct cell-to-cell communication networks, such 
as cellPhoneDB (Efremova et al., 2020), CellChat (Jin et al., 2021), and 
cellTalkDB (Shao et al., 2020), from single cell data. 

Recently, several high profile papers have begun mapping the single 
cell transcriptomic contribution to the human and mouse brain (Dar
manis et al., 2015; Hodge et al., 2019; Lake et al., 2018). These studies 
have challenged our traditional views of the number of potential 
neuronal subtypes found in the brain. For example, the Hodge et al. 
paper identified 75 distinct cell type clusters, including 24 types of 
excitatory neurons and 45 types of inhibitory neurons which precise 
laminar placement. Most of these clusters represent new, previously 
unknown cell subtypes. While Hodge is considered the standard by 
which other brain single cell type studies are being compared, one 
caveat of the study was the general lack of identification of novel 
non-neuronal cell subtypes. For example, it is likely that microglia 
would cluster into at least two transcriptional cell types (activated and 
quiescent) and there is good evidence of at least 2 separate oligoden
drocyte populations in human cortex defined by myelination status 
(Kleijn et al., 2019). The classification of all cell types in the brain is one 
of the primary goals of neuroscience and will require the creation of 
additional bioinformatic tools to parse out the different cell types and 
subtypes. Further, this work could also help to identify molecules 
converging between different species (e.g., mice and non-human pri
mates) as these are used extensively as models of human disease. 

6. Transcriptomic insights into the molecular pathology of 
stress implicates interneuron and microglial dysfunction 

Postmortem studies of the brains of psychiatric patients has proved 
essential in understanding the molecular effects of these disorders. This 
work has been aided by the creation of many large brain banks collecting 
tissue across numerous neurological and neuropsychiatric disorders. 
Further, this work has expanded rapidly by the establishment of several 
large consortia such as Common Mind (Fromer et al., 2016), BrainSeq 
(Consortium et al., 2018), and PsychENCODE (Wang et al., 2018) which 
are compiling large disparate genomics datasets and uniformly 
analyzing them to increase the number of brains analyzed. 

Recent postmortem studies of stress disorders including major 
depressive disorder (MDD) (Duric et al., 2010; Kang et al., 2012; Lab
onté et al., 2017; Ota et al., 2014; Seney et al., 2018) and post-traumatic 
stress disorder (PTSD) (Girgenti et al., 2021; Licznerski et al., 2015; 
Logue et al., 2021; Young et al., 2015) have identified several hundred 
differentially expressed (DE) genes. Most postmortem studies of the 
MDD brain have focused on the prefrontal cortex, hippocampus and 
nucleus accumbens. Evidence has consistently pointed to GABAergic 
interneuron dysfunction, specifically the subtype that express the neu
ropeptide somatostatin (SST), as having a significant role in MDD pa
thology (Levinson et al., 2010; Luscher et al., 2011). Transcript levels of 
SST have been reported to be reduced in the dorsolateral prefrontal 
cortex (DLPFC) and the anterior cingulate cortex (ACC) across cortical 
layers and the amygdala (Seney et al., 2015; Tripp et al., 2011). Studies 
in knock out mice of SST demonstrate a causal role in several MDD 
behavioral models, increased corticosterone, and reduction in 
brain-derived neurotrophic factor (BDNF) and Gad67 transcripts 
(Soumier and Sibille, 2014). Reductions in interneuron marker genes 
including parvalbumin (PV), VIP, and SST have also been reported in 
schizophrenia and autism spectrum disorder (Chung et al., 2018; Gandal 
et al., 2018a). However, there is inconsistent evidence of reduced PV 
and VIP expression in MDD (Fee et al., 2017) indicating significant 
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differences in the cell types driving the molecular pathology of these 
disorders. 

Nearly 50% of patients diagnosed with PTSD are comorbid for MDD 
(Flory and Yehuda, 2015; Kessler et al., 1995; Rytwinski et al., 2013). 
Recently, the largest postmortem study of PTSD frontal cortex was 
performed using a matched MDD cohort to disentangle the differences 
between the two disorders (Girgenti et al., 2021). Similar to MDD, this 
study also discovered GABAergic signaling deficits in PTSD and identi
fied the interneuron-specific transporter ELFN1 as significantly down 
regulated and associated with PTSD by transcriptomic imputation using 
the largest PTSD GWAS from the Million Veteran Program (Fig. 1). 
While this decrease in SST expression would seem to be a function of 
comorbidity between MDD and PTSD, formally testing the differentially 
expressed (DE) gene overlap revealed few DEGs in common: 111 DEGs 
in the DLPFC, 67 in the mOFC, 14 in the dACC, and 0 in the sgPFC with 
the most significant being ceruloplasmin (Cp), c-c motif chemokine 
ligand 2 (Ccl2), and ADAM Metallopeptidase with Thrombospondin 
Type 1 Motif 2 (Adamts2) (Girgenti et al., 2021). Further, the tran
scriptomic correlation between PTSD, MDD, and an aggregated, uni
formly analyzed MDD profile from the PsychENCODE consortium 
(Gandal et al., 2018a) revealed no significant correlation between the 
transcriptomic patterns of the two disorders suggesting different mo
lecular pathologies. However, it should be noted that there was also a 
lack of correlation between the MDD cohorts of both studies as well. 
While there are many possible reasons for this, we believe it stems from 

technical variance between meta-analyzed microarray data with 
RNA-seq data and differences in MDD diagnosis criteria. The 
meta-analysis by Gandal was from multiple labs and different brain 
banks making it likely that MDD cases varied especially for depression 
subtype, ancestry, trauma load, etc. Twelve DEGs were shared between 
cohorts and were consistent in fold change direction. Perhaps the most 
interesting common DEG was corticotropin releasing hormone 1 (CRH). 
CRH has been a fundamental neurobiological correlate of stress disor
ders and MDD in particular for twenty years (Holsboer, 2000; Pariante 
and Miller, 2001). It has been extensively studied for its role in regu
lating HPA axis function in the stressed brain (Menke, 2019) and the 
robustness of these findings are highlighted by its appearance in the two 
largely disparate datasets. On the other hand, a separate PTSD tran
scriptomic study found in this issue (Logue et al., 2021) compared 
expression changes between their PTSD cohort and the Girgenti PTSD 
cohort. 50% of this cohort overlaps with donors in the Girgenti study 
and they found that 17% of their nominally significant DEGs overlapped 
with the Girgenti cohort- significantly greater than would be expected 
by chance. Additionally, the Girgenti cohort is made up of tissue from 
two brain banks (UPMC and the VA National PTSD Brain Bank) and 
despite no overlap between donors in the UPMC group, the Logue cohort 
had significant overlap in DEGs with this group alone. Further, the 
Logue cohort found significant global correlation (r = 0.75, p < 2.2 ×
10− 16) overall between their transcriptomic signature and the Girgenti 
cohort. The strong correlation between two PTSD transcriptomic data 

Fig. 1. Cell type-specific transcriptomic changes in PTSD frontal cortex. A. GABA-related key drivers and transcripts exhibiting regional (DLPFC) down regulation in 
PTSD postmortem brain. B. Microglial marker genes are down regulated in PTSD frontal cortex. 

J. Zhang et al.                                                                                                                                                                                                                                   



Neurobiology of Stress 15 (2021) 100408

7

sets versus weak correlation between two MDD transcriptomic datasets 
implies greater differences not only between MDD and PTSD as disor
ders but also in the way MDD is diagnosed or presents and suggests a 
need to better evaluate how we diagnose depression in future brain bank 
collections. 

There is considerable evidence for the role of microglia in many 
neural processes including the stress response (Wohleb et al., 2016). 
Chronic stress induced overactivation of microglia has been implicated 
in reduced neurogenesis in the hippocampus and in synaptic protein 
reduction in prefrontal cortex of subjects with MDD (Wohleb, 2016). A 
role for microglial dysfunction in PTSD has been suspected based on 
blood transcriptomic work identifying inflammatory and immune 
related gene dysregulation (Passos et al., 2015). Recent work has iden
tified dysregulation of microglia in the CNS PTSD transcriptome. The 
immune gene UBA-7 was identified by TWAS as associating with PTSD 
and is a significant transcriptomic key driver in females with PTSD 
(Girgenti et al., 2021)(Fig. 1). Another study using this same dataset 
stratified their cohorts (PTSD and neurotypical controls) by normal and 
high BMI for each sex (Stone et al., 2020). They identified numerous 
DEGs across comparisons and identified the cytokine IL-1B as a putative 
upstream regulator of transcription in PTSD males with high BMI. Pre
vious work in the periphery of PTSD subjects has identified regulation of 
IL-1B (Passos et al., 2015). However, high BMI alone has not been shown 
to regulate IL-1B levels in human prefrontal cortex (Lauridsen et al., 
2017), suggesting a possible molecular intersection between PTSD and 
BMI in human brain and may imply further functional implications as 
genetic variation in IL-1B has been linked to risk of PTSD in males 
(Hovhannisyan et al., 2017). Taken together, these transcriptomic 
findings point to vulnerabilities in neuroimmune function as promoting 
behavioral and neurobiological consequences of stress disorders. 

7. Cell-type specificity of stress induced transcriptomic changes 

One of the goals of gene regulation biology is to understand the 
contribution individual cell types have in regulating the transcriptome. 
The human brain is made of many diverse cell types each contributing its 
own unique molecular signature to a “bulk-tissue” RNA-seq experiment 
(Newman et al., 2019). One possible confound is that shifts in cell type 
proportions may accompany a particular neuropsychiatric disorder and 
that may affect our ability to translate a particular gene expression 
difference. There are currently several methods for cell type deconvo
lution of gene expression from bulk-tissue RNA-seq data including 
CIBERSORTx (Newman et al., 2019), Braininablender (Hagenauer et al., 
2018), and Bisque(Jew et al., 2020). These programs quantify relative 
population proportions from bulk tissue transcriptomics by using cell 
type-specific expression profiles derived from single -cell/nuclei 
sequencing data from specific regions as a background dataset. CIBER
SORTx was used in a study examining the transcriptome of the PTSD 
frontal cortex (Girgenti et al., 2021). The study identified regional 
changes in cell type proportions, most notably a significant increase in 
excitatory neurons and a decrease in microglia. 

Bioinformatic inference of cell type proportions and gene expression 
from bulk-tissue RNA-seq is limited, however. There are subtypes of 
interneurons and layer specific excitatory neurons that are generally 
missed and undoubtedly reflect important information on how gene 
regulation is altered in a given disorder. To overcome this hurdle several 
laser cell-capture microscopy techniques (LCM) have been developed. A 
recent LCM study of gene expression isolated granule cells from the 
dentate gyrus in a large cohort of schizophrenia, bipolar disorder, and 
major depressive postmortem tissue (Jaffe et al., 2020). Few MDD DEGs 
(7) were identified. The authors then compared a subset of their MDD 
cohort treated with an SSRI to those that were not. Interestingly, none of 
the DEGs identified were involved in adult neurogenesis, a process 
where there is considerable evidence of SSRI’s function in treating 
depression (Eisch and Petrik, 2012). This finding and the relatively few 
genes identified across all diagnostic groups, highlights the limits of this 

technology. In addition, LCM suffers from antibody specificity issues and 
throughput- while it is relatively easy to isolate granule cells in the 
hippocampus it is much more difficult to adopt the described LCM 
methods to a more cell-diffuse region such as the prefrontal cortex. 

To more robustly identify cell type-specific changes, isolation of in
dividual cells or their nuclei is necessary for transcriptomic interroga
tion. Single-nuclei transcriptomics (snRNA-seq) is an emerging 
technology that has been used to study postmortem brains from several 
neuropsychiatric and neurological disorders however, there are 
currently few studies that have used this on postmortem tissue of stress 
disorders. The first study using postmortem dlPFC of donors with MDD 
used snRNA-seq on 80,000 nuclei from 17 MDD donors and 17 normal 
controls (Nagy et al., 2020). The study used 10X Genomics Chromium 
version 2 and isolated mRNA from approximately 3000 nuclei per 
sample. They identified 26 clusters (transcriptional cell types) with most 
(60%) having significant numbers of DEGs. They identified 96 DEGs 
almost 50% of which occurred in the excitatory neuron and oligoden
drocyte precursor cells (OPC) clusters. Three DEGs had been identified 
in previous MDD postmortem studies (FADS2, CKB, and KAZN) and 26 
have been previously linked to mental illness including the synaptic 
genes GRIN2A and Synapsin 1. The authors point out that cell-type 
proportions are difficult to estimate from snRNA-seq datasets in large 
part because of the inconsistency in dissections. However, deconvolu
tion of a bulk-tissue RNA-seq dataset from a separate, large MDD cohort 
did find reductions in the oligodendrocyte and OPC populations of the 
dlPFC(Girgenti et al., 2021). This study (Nagy et al., 2020) was the first 
to use single cell type gene expression profiling and sets the groundwork 
necessary for future studies focused on disentangling the role of each cell 
type in the diseased and neurotypical brain. 

8. Integration of neuroimaging and transcriptomics of stress 
disorders 

Human neuroimaging using functional magnetic resonance imaging 
(MRI) and positron-emission tomography (PET) scanning have proved 
indispensable to understanding how brain regions are connected and 
formed and the role that particular molecules play in disease state. This 
interest has led to the creation of large consortia, such as ENIGMA whose 
goal is correlating genetic variation with image-derived phenotypes 
(Thompson et al., 2020). The ENIGMA consortium has made substantial 
progress in linking neuroimaging derived structural changes with ge
netic research through over 200 studies across a wide-array of neuro
psychiatric disorders. 

There is currently much interest in integrating neuroimaging with 
gene expression states rather than allelic variation (Arnatkevic;iūtė 
et al., 2019; Fornito et al., 2018). Multiple factors outside of genetic 
architecture can affect a genes activity and as a result, the mechanisms 
through which variants influence how a phenotype manifests are un
clear. This work correlates gene expression levels with variation in one 
or more imaging-derived phenotypes. Modern advances in large gene 
expression assays have allowed these studies to move from single gene 
correlates to genome-wide level. Gene expression assays provide a direct 
measure of genes activity and combined with neuroimaging can help 
resolve how spatial variation on the molecular level manifests on the 
structural level. Large multi-region transcriptomic atlases such as the 
Allen Human Brain Atlas which is comprised of measures for more than 
20,000 genes from over 3702 spatially distinct brain tissue samples of
fers the greatest range of coverage for healthy brain gene expression. 
There is now unprecedented capacity to link gene function to structural 
brain organization particularly as relates to canonical resting-state 
networks; fiber connections between discrete regions; and perhaps 
most importantly for this review pathological changes in brain 
disorders. 

Recent studies linking stress disorders by integrating human imaging 
with postmortem brain transcriptomics has been quite fruitful in 
advancing our understanding of the neurobiology of major depression 
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and PTSD. Indeed, work in this area has shown that there is significantly 
higher cortical mGluR5 availability in PTSD in vivo using a radioligand 
that binds to mGluR5 protein (Holmes et al., 2017). Dysfunction of the 
glutamate system has been implicated in trauma and stress psychopa
thology. Up regulation of the transcript SHANK1, a mGluR5 cell mem
brane anchor was identified in a concurrent postmortem transcriptomic 
study. Another recent study using PET imaging of the microglial marker 
TSPO found prefrontal-limbic availability was lower in patients with 
PTSD (Bhatt et al., 2020). The TSPO and microglial-associated genes 
TSPOAP1 (an upstream regulator of TSPO) and TNFRSF14 were found to 
be down regulated in postmortem PTSD cortex (Fig. 1). These findings 
suggest that PTSD is associated with suppression of the immune 
response (through microglia) and not through neuroimmune activation 
as previously thought. Taken together, these studies highlight how 
combining neuroimaging with gene expression studies can link struc
tural findings to a molecular mechanisms. 

9. Conclusion 

Transcriptomic studies have provided critical information on the 
pathophysiology of stress disorders. While genetic studies have illumi
nated the inherited genetic risks for these disorders, transcriptomics has 
provided a window into understanding the functional output of these 
risks and of the illness itself. Our current understanding of the molecular 
pathology of MDD suggests disruptions in GABAergic signaling, specif
ically in the SST interneuron subtype (Bajbouj et al., 2006; Levinson 
et al., 2010; Sanacora et al., 1999). SST expression is reduced in the 
frontal cortex and other regions and its reduction appears to correlate 
with symptom severity (Seney et al., 2015; Tripp et al., 2011). SST 
expression is also reduced in the frontal cortex of PTSD subjects and 
suggests a molecular intersection between these two highly comorbid 
disorders. Further, neuroimmune dysfunction has been reported in both 
MDD and PTSD though neuroimaging of live subjects and suggests that 
this occurs in opposing directions, with MDD being characterized with 
increases in inflammatory signaling and PTSD with immune suppression 
and reduced microglial signaling (Bhatt et al., 2020). It should be noted 
that there are currently no strongly identified genetic risk loci associated 
with GABAergic signaling or microglia, highlighting the need to move 
genetic work to functional genomic studies. 

Future work in the transcriptomics of stress disorders should be 
focused in three directions: single cell RNA-sequencing, multi -omics 
integration and comparative overlap of animal models with postmortem 
findings. The brain is comprised of a myriad of cell types and it is critical 
that we understand how these individual cells contribute to the mech
anistic function of the cell types involved, as some gene pathways may 
have effects in only single cell types or opposite effects in different cell 
types. Bulk-tissue transcriptomics would miss the roles of such genes and 
pathways. Multi-omic approaches should be explored as well. Currently, 
most genetic variants fall within non-coding regions and their impact on 
the transcriptome and by extension cell biology is obscured. snATAC-seq 
and HiC assays will be crucial for understanding how the genomic and 
nuclear structure of the cell regulates the transcriptome. Spatial tran
scriptomics is emerging as one of the most promising genomic tech
nologies. The spatial organization of the brain defines many of its 
functions with different regions exhibiting differing patterns of cell 
morphology and physiology. Outside approaches such 3-dimensional 
organoids and exosomes will also be critical as will identifying the an
imal models with the closest molecular changes to those measured in 
human (postmortem) brain. There is much more to be gained through 
transcriptomic work in the field of stress-disorders and basic research in 
this area is needed to identify promising therapeutic targets. 
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