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Abstract 

GTPase-activating protein (GAP) is a negative regulator of GTPase protein that is thought to promote the conversion 
of the active GTPase-GTP form to the GTPase-GDP form. Based on its ability to regulate GTPase proteins and other 
domains, GAPs are directly or indirectly involved in various cell requirement processes. We reviewed the existing 
evidence of GAPs regulating regulated cell death (RCD), mainly apoptosis and autophagy, as well as some novel RCDs, 
with particular attention to their association in diseases, especially cancer. We also considered that GAPs could affect 
tumor immunity and attempted to link GAPs, RCD and tumor immunity. A deeper understanding of the GAPs for 
regulating these processes could lead to the discovery of new therapeutic targets to avoid pathologic cell loss or to 
mediate cancer cell death.
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Introduction
The human Ras superfamily (monomeric GTPases) of 
small guanosine triphosphatases (small GTPases) com-
prises more than 150 members [1] and is usually divided 
into five main families: the Ras, Rho, Rab, Arf and Ran 
families [2]. They are associated with diverse cellular pro-
cesses, including signal transmission, material transport 
and construction of the cytoplasmic skeleton [3]. Small 
GTPases have two different conformational states and 
cycle back and forth between them. In the activated state, 
they are bound to GTP, and the opposite is true for GDP. 
This state transition is managed by three regulators: gua-
nine nucleotide exchange factors (GEFs), guanine nucleo-
tide dissociation inhibitors (GDIs) and GTPase activating 
proteins (GAPs) [4]. Among these, GEFs are positive fac-
tors that activate GTPase by promoting binding to GTP, 

while GDIs and GAPs are both negative factors that 
inactivate GTPase by sequestering and hydrolyzing GTP, 
respectively [3, 4].

GAPs are multiple structural domain proteins  (Fig.  1) 
that range from 50 to 250 kDa in size [5]. Corresponding 
with the Ras superfamily of GTPases, GAPs can also be 
divided into five principal families: the Ras-GAPs, Rho-
GAPs, Rab-GAPs, Arf-GAPs and Ran-GAPs families. In 
contrast to GAPs for the Ras superfamily, a class of GAPs, 
called regulators of G protein signaling (RGSs), acts on 
heterotrimeric G proteins [5, 6]. Once in the GDP-bound 
conformation, GAPs can generally terminate the corre-
sponding downstream signaling cascades by hydrolyzing 
GTP. The GTP hydrolysis reaction is extremely slow, but 
GAPs can expedite the cleavage step by several orders of 
magnitude to increase the hydrolysis rate. During Ras-
GTP hydrolysis, traditional GAPs insert the arginine fin-
ger or the asparagine thumb into the nucleotide-binding 
groove of the targeted GTPase to stimulate hydrolysis 
[7, 8], while RGS proteins directly bind to the active Gα 
subunits of the G-protein coupled receptor (GPCR) to 
induce hydrolysis [6].
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Physiologically, cell death is a homeostatic mecha-
nism that regulates and maintains the function and size 
of tissues and organs. Significantly different from acci-
dental cell death (ACD), the consequences of external 
environmental disturbance, regulated cell death (RCD), 
is required for physiological or pathological nuisances 
that activate endogenous genetically encoded molecular 
structured signaling cascades and mechanisms, which 
can be interfered with by genetic or pharmacologic medi-
cine. RCD can be classified into two master types: apop-
totic and nonapoptotic. Apoptosis is the most common 
form of programmed cell death (PCD), while another 
major category of nonapoptotic RCD, which includes 
necroptosis, autophagy, mitotic catastrophe, pyrop-
tosis, ferroptosis, methuosis, paraptosis, parthanatos, 
lysosome-dependent cell death, entosis and oncosis, is 
also gaining attention [9, 10]. These different types of cell 
death are distinct by the morphological changes and bio-
chemical features caused by their death stimuli, but some 
forms of cell death are not completely independent of 
others, with certain intersections of molecular character-
istics, such as apoptosis and autophagic cell death [11]. 
Irrespective of the rules of normal cell death, cancer cells 
survive when not supposed to, in large part, by producing 

relevant genetic mutations or epigenetic modifications 
that affect the transmission of cell death signals to cir-
cumvent RCD.

The regulation of GTPase activity by GAPs triggers 
a series of signaling changes, specifically in cell growth, 
proliferation, and death, and we framed what we can 
observe in terms of RCD and tumor immunity to explore 
the links among these three. In this review, we first will 
discuss the understanding of the molecular mechanisms 
of GAPs for different RCDs, illustrating with a large num-
ber of individual examples (Table 1), and finally, a major 
focus will be placed on the regulation of tumor immunity 
by GAPs. By summarizing this knowledge, we will fur-
ther elaborate on the pathophysiological implications of 
GAP regulation of these processes and highlight promis-
ing cancer therapeutic approaches in light of these new 
findings.

Apoptosis
Apoptosis is a form of PCD and is also termed ‘shrink-
age necrosis’ [12] because of the morphological charac-
teristics of chromatin condensation and cell shrinkage 
(pyknosis). In addition, its features include DNA frag-
mentation (karyorrhexis), apoptosome formation and 

Fig. 1  GAPs are multidomain proteins. GAPs have typical GAP active structural domains that interact with GTPase proteins, and other protein 
structural domains might also be present to play regulatory functions



Page 3 of 15He et al. J Hematol Oncol          (2021) 14:171 	

membrane blebbing [9]. Two common signaling path-
ways induce apoptosis: one pathway is the intrinsic path-
way, which is due to changes in mitochondrial membrane 
potential and outer membrane permeability and then 
promotion of the release of mitochondrial proteins such 
as cytochrome c, thereby activating caspase 3 and form-
ing apoptosomes [13]. This process is regulated by the 
BCL-2 family of proteins, mainly proapoptotic proteins 
(BAX, BAK, BIM, PUMA and BID) and antiapoptotic 
proteins (BCL-2, BCL-XL and MCL1) [14]. The other 
pathway is the extrinsic apoptosis pathway that is initi-
ated by the death-inducing signaling complex (DISC) and 
death receptors (cell membrane protein), such as Fas, 
tumor necrosis factor (TNF) receptors, and TNF-related 
apoptosis-inducing ligand (TRAIL) receptors, which ulti-
mately activate the caspase protease family, the execu-
tors of cell apoptosis, and induce cell apoptosis [13, 15]. 

Apoptosis disorders are closely related to the occurrence 
and development of autoimmune diseases, neurodegen-
erative diseases and tumors. For example, cancer cells 
often have the characteristics of inhibiting apoptosis to 
ensure unlimited proliferation.

Emerging studies have indicated that GAPs are closely 
associated with apoptotic progression  (Fig.  2). Some 
GAPs can promote apoptosis of tumor cells to protect 
the organism. p120RasGAP, regulator of G-protein sign-
aling 3 (RGS3), deleted in liver cancer 1 (DLC1), DOC-2/
DAB2 interacting protein (DAB2IP), and STARD13 are 
typical examples because the five GAPs can influence 
the balance of antiapoptotic proteins and proapoptotic 
proteins and/or the corresponding signaling pathway to 
induce apoptosis. p120RasGAP (also known as RASA1), 
the classical GAP of the RAS, induces Ras-dependent 
tumorigenicity when its transcriptional regulation is 
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Fig. 2  Examples of the involvement of GAPs in tumor cell apoptosis. Some GAPs can promote apoptosis in tumor cells by regulating 
apoptosis-related proteins and pathways and thus become collaborators of antitumor drugs. Some GAPs also exert apoptosis-inhibiting effects and 
thus promote tumor progression
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repressed. Sorafenib, as a targeted agent in hepatocellular 
carcinoma (HCC), can induce apoptosis of tumor cells. 
Studies have shown that its important pathway upregu-
lates the level of p120RasGAP for its therapeutic effect by 
promoting the phosphorylation of pituitary homeobox 1 
(PITX1) to increase its expression and stability [16]. 
However, whether apoptosis can be successfully induced 
depends on the degree of signaling pathway activity. Cas-
pase-3 is more mildly activated, which counteracts apop-
tosis and promotes cell survival by cleaving p120RasGAP 
into two fragments; its N-terminal fragment activates the 
PI3k/Akt pathway, and only the hyperactivation of cas-
pase will promote apoptotic cell death [17, 18]. In HCC, 
the expression of RGS3 is influenced by the oncogenic 
lncRNA HOXD-AS1, which decreases the mRNA levels 
of RGS3 and activates the MEK/ERK signaling pathway 
to prevent apoptosis [19]. HOXD-AS1 also upregulates 
the expression of ARHGAP11A (a RhoGAP) and leads 
to the induction of metastasis by serving as a competing 
endogenous RNA (ceRNA) and repressing miR19 [19]. 
Similar to HOXD-AS1, the STARD13 (DLC2, a RhoGAP) 
3’UTR acts as a ceRNA and increases Bcl-2 modifying 
factor (BMF) expression by competitively binding with 
miR-125b in breast cancer. Meanwhile, the STARD13 
3’UTR could promote the interaction of BMF/Bcl-2 to 
release Bax and cytochrome c to activate the intrinsic 
pathway of apoptosis [20]. DLC1 and DAB2IP directly 
affect the corresponding pathway and target protein to 
induce apoptosis. For example, DLC1 (a RhoGAP) dereg-
ulates the expression of TNFAIP3/A20 and upregulates 
the expression of BCL211/BIM and caspase-3 to induce 
cell death by inactivating NF-кB signaling in angiosar-
coma [21]. The DAB2IP effect on promoting apoptosis 
involves multiple signaling pathways in cancer [22]. In 
prostate cancer (PCa), DAB2IP has a dual role in influ-
encing apoptosis. First, DAB2IP directly interacts with 
STAT3 and inhibits its phosphorylation (tyrosine 705 
and serine 727) and transactivation, thereby disturbing 
the balanced expression of pro-apoptotic genes (Bax) and 
anti-apoptotic genes (surviving, Bcl-2 and Bcl-xL) and 
promoting apoptosis. Second, DAB2IP activates intrin-
sic pathways, including disruption of the mitochondrial 
membrane potential and release of cytochrome c, Omi/
HtrA2 and Smac, ultimately activating the caspase cas-
cade [23].

RACGAP1 can promote the metastasis and develop-
ment of cancer by inhibiting apoptosis. RACGAP1 acts 
on small G proteins of the Rho family, stimulating GTP 
hydrolysis and regulating CDC42 and RAC1. The expres-
sion and stability of RACGAP1 are influenced by STAT3 
and epithelial cell transforming sequence 2 (ECT2). 
In HCC, STAT3, a transcription factor of RACGAP1, 
can upregulate the expression of RACGAP1, and then, 

RACGAP1 reduces the Hippo signaling pathway through 
the accumulation of F-actin to activate the transcription 
coactivator yes-associated protein (YAP). With YAP, the 
transcription of the nucleoporin translocated promoter 
region (TPR) is upregulated. TPR in turn can regulate 
the phosphorylation and localization of RACGAP1 in the 
central spindle. As a result, apoptosis is inhibited while 
the growth of tumor cells is promoted [24]. ECT2, the 
catalytic agent of guanine nucleotide exchange on small 
GTPases [25], interacts with RacGAP1. In HCC, on the 
one hand, ECT2 promotes RacGAP1 protein stability, 
and on the other hand, RacGAP1 promotes ECT2-medi-
ated RhoA activation and HCC cell metastasis [26]. In 
basal-like breast cancer (BLBC), knockdown RACGAP1 
cells have also been shown to fail in cytokinesis and cause 
the initiation of apoptosis [27].

Certainly, GAPs also play a significant role in other 
apoptosis-related diseases except for cancer. Untimely 
and inappropriate apoptosis will elevate the occurrence 
rate of cardiovascular disease. Seventy percent of capil-
lary malformation-arteriovenous malformation patients 
present with inactivated mutations in the RASA1 gene. 
Most likely, based on the function of the cleaved N-ter-
minal fragment of RASA1 in mediating anti-apoptosis, 
RASA1 deficiency leads to apoptosis of lymphatic vessel 
(LV) endothelial cells, triggering the impaired formation 
of LV valves [28]. In addition, RGS5 not only coordinates 
the activity of proapoptotic proteins, antiapoptotic pro-
teins and caspase-3 but also inhibits the JNK1/2 and p38 
signaling pathways to inhibit the apoptosis of cardiomyo-
cytes, which exists in myocardial ischemia reperfusion 
[29]. Unnecessary apoptosis is also related to neurologi-
cal diseases and optic neuropathy. Researchers suggest 
that the overexpression of DAB2IP, which has the new 
name apoptosis signal-regulating kinase 1-interacting 
protein-1, can promote the development of Alzheimer’s 
disease by mediating β-amyloid-induced apoptosis of 
cerebral endothelial cells, while the overexpression of 
TBC1D17 will promote retinal cell death to achieve optic 
neuropathy [30, 31].

In summary, the aforementioned GAPs interact with 
their target protein or signaling pathways to activate or 
inhibit apoptotic signaling pathways and influence apop-
tosis, thereby affecting the development of the disease. 
Continuously, scholars have paid strong attention to the 
mechanisms and therapeutic strategies of tumors. Here, 
we introduce some GPAs that affect apoptosis to reveal 
the pathological process and improve the therapeutic 
effect of tumors. Of course, GAP research also reveals the 
special mechanisms of other pathological processes to 
give us a better understanding of the design and help us 
to develop an effective treatment for special targets.
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Non‑apoptotic RCD
This section covers not only autophagy-dependent cell 
death to explain the association with GAPs but also novel 
forms of cell death, such as ferroptosis, pyroptosis and 
other informal types (Fig. 3).

Autophagy‑dependent cell death
To maintain our physical homeostasis and health, it is 
necessary to activate autophagy to eliminate the redun-
dant and harmful components of the cell. Autophagy is 
an important, conserved and normal cellular process 
that is always divided into several steps: induction of 

phagophores, formation of autophagosomes and autol-
ysosomes, and degradation and recirculation of luminal 
contents. The main characteristics are special membrane 
structures, including phagophores, autophagosomes and 
autolysosomes. Autophagy is considered to be a cell sur-
vival mechanism, but when autophagy is overactivated 
beyond the cell’s capacity, it leads to cell death, called 
autophagy-dependent cell death (ADCD). The identi-
fication of ADCD requires features of an increased rate 
of autophagic activity and exclusion of cell death due to 
other forms, and it can be modified by genetic and/or 
pharmacological inhibition of autophagy factors [32]. 
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Fig. 3  Signaling pathways of GAPs that affect nonapoptotic RCD. GAPs regulate vesicle transport and autophagosome maturation during 
autophagy and are involved in mTOR-related pathways. In addition, GAPs regulate ferroptosis, entosis, MC and other RCDs
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However, the concept of ADCD is still highly controver-
sial. On the one hand, the existence of crosstalk between 
autophagy and other RCDs, such as apoptosis, makes it 
difficult to define ADCD as an independent cell death 
process only by relevant molecular and morphological 
markers, and on the other hand, a threshold to classify 
lethal and nonlethal autophagy is difficult to determine 
[33, 34]. The role of autophagy in tumors could be two-
sided. Although the loss of autophagy promotes tumor 
progression in mouse models, more evidence dem-
onstrates that autophagy can suppress tumor-specific 
inflammatory responses and assist tumor cell metabolic 
activities in a nutrient-limited microenvironment, pro-
moting tumor growth [35, 36]. It has been shown that 
some anticancer drugs, such as resveratrol and arsenic 
trioxide, can induce ADCD [37–39], and in addition, 
ADCD occurs in oncogenic Ras-expressing cells in the 
absence of other cotransformed genes [40], but its role 
in various tumors remains to be explored. Therefore, we 
provide only a limited introduction to the role of GAPs in 
autophagy here.

Autophagosomes are morphological markers of 
autophagy, while autophagy (ATG)-related proteins 
are key to autophagosome formation and are molecu-
lar markers of autophagy. RAB GTPases can control 
the transport of intracellular vesicles [41] and designate 
autophagosome maturation [42]. Approximately 10 RAB 
proteins have definite functions in autophagy [43]. There-
fore, RABGAPs, including TBC (TRE2-BUB2-CDC16) 
domain-containing RABGAPs, are also involved in 
autophagy. RAB33B affects the formation of autophago-
somes by recruiting the Atg12-Atg5-Atg16L1 complex 
into phagocytes, and Atg16L1 is the binding protein of 
RAB33B [44]. One study showed that OATL1 is a GAP 
acting on RAB33B, and its overexpression can delay 
autophagosome maturation by regulating the fusion 
between autophagosomes and lysosomes [45]. RalA/B 
(RAS like A/B), a member of the Ras GTPase family, is 
also a key regulator of vesicle transport [46]. In the mam-
malian cell model, RalB and its effector protein Exo84 
together induce ULK1-Beclin1-VPS34 assembly, which 
is required for autophagosome formation. Under experi-
mental conditions lacking nutrient limitation, a decrease 
in RalGAP can activate RalB and induce an increase in 
autophagy [47]. In another experiment using Drosophila 
as a model, researchers found that Ral GTPase regulates 
autophagy in the context of PCD [48], which could be 
considered to be ADCD.

The mechanistic target of rapamycin (mTOR) inte-
grates growth factors and nutrient signals to inhibit 
autophagy. mTORC1, which is a signaling complex with 
mTOR as the major component, promotes phosphoryla-
tion of ULK1 (unc-51-like kinase 1) in the presence of 

sufficient nutrients [49]. Under the regulation of AKT 
and AMPK signaling kinases, tuberous sclerosis com-
plex 1/2 (TSC1/2) acts as the GAP of Rheb (the Ras 
homolog enriched in the brain) to inhibit the formation 
of GTP-bound Rheb and participates in the regulation 
of the Rheb-mTORC1-ULK1 signaling pathway to pro-
mote autophagy [49–51]. Tsc1/2 deficiency is respon-
sible for the development of tuberous sclerosis complex 
(TSC), an autosomal dominant disorder that predis-
poses patients to the development of tumors of multi-
ple organ systems [52]. Therefore, defective autophagy 
in TSC could lead to the accumulation of autophagic 
substrates, including abnormal proteins and organelles, 
within the cell, promoting tumorigenesis. Studies have 
also shown that the deletion of RalGAP induces an 
increase in mTORC1 activity, leading to a decrease in 
autophagy. Meanwhile, in pancreatic cancer, RalGAP 
suppresses tumor cell invasion through mTORC1 sign-
aling [53]. Autophagy increases the resistance of tumor 
cells to chemotherapy and radiotherapy. Temozolomide 
(TMZ) for the treatment of glioblastoma (GBM) is prone 
to induce autophagy and could make tumor cells resist-
ant to the drug. DAB2IP was found to negatively regulate 
ATG9B expression through the Wnt/β-catenin signaling 
pathway, thereby inhibiting TMZ-induced autophagy and 
increasing drug sensitivity in GBM cells [54]. In addition, 
DAB2IP has also been shown to be a negative regulator 
of autophagy-related radiation resistance in PCa. As an 
upstream regulator of DAB2IP, miR-32 downregulates 
the protein level of DAB2IP by targeting its 3’-UTR and 
inhibiting its translation [55]. Subsequently, the down-
stream mTOR-S6K pathway is activated, but autophagy 
activity is enhanced, which could be the result of negative 
feedback inhibition of Akt [56], ultimately enhancing the 
radiation resistance of PCa cells [55, 57].

Some GAPs influence the nervous system by regulat-
ing autophagy. SIPA1L2, a Rap GTPase-activating pro-
tein, regulates the process of neurotransmitter liberation, 
which is linked to TrkB/Rap1 signaling and amphisomes 
that are the fusion organelles of TrkB-late endosomes 
with autophagosomes [58], while others, including 
TBC1D5 and TBC1D15, are associated with motor neu-
ron disease, and these GAPs cause the disorder-degra-
dable process of autophagy and the aggregation of toxic 
proteins [59–63]. SGSM3/RABGAP5 and TBC1D10A 
both inactivate the corresponding GTPases to terminate 
autophagy and have effects on the immune system when 
autophagy eliminates pathogens and damages the orga-
nelles of cells [64, 65]. The absence of GAPs could lead 
to genetically heterogeneous autosomal diseases. For 
example, deletion of the TBC1D20 protein can increase 
the accident rate of Warburg Microsyndrome 4, which 
is an autosomal disorder and possesses abnormal eye, 



Page 7 of 15He et al. J Hematol Oncol          (2021) 14:171 	

brain and genital functions [66]. Autophagy is also an 
intrinsic mechanism to maintain metabolism and recycle 
nutrients during starvation or stress. TBC1D5 binds and 
sequesters LC3+ autophagic compartments and increases 
glucose transporter GLUT1/Slc2a1 expression on the 
plasma membrane, facilitating glucose uptake and glyco-
lytic flux [67].

In conclusion, most GAPs downregulate the corre-
sponding GTPase activity to directly regulate autophagy 
to influence our physical functions, but few serve as 
effectors to indirectly regulate autophagy to achieve that 
goal. Autophagy is closely related to physical homeostasis 
and health. Significantly, GAPs influence the process of 
autophagy. Unfortunately, ADCD itself has many unre-
searched areas, and as a result, there are few studies on 
ADCD and GAPs. We can only infer the possible role of 
GAPs in ADCD from the connection between autophagy 
and GAPs. Therefore, further studies are necessary to 
give us a better understanding of how GAPs regulate 
ADCD in physiological and pathological situations, cor-
rectly understand pathological development and find 
therapeutic targets.

Ferroptosis
Ferroptosis is a novel oxidative RCD in which the con-
sequences are accumulated by lethal iron dependence 
of lipid hydroperoxides [68]. Its scientific observation 
initiates the experiment of erastin-induced selective cell 
death in 2003, and the term “ferroptosis” was coined in 
2012 [69]. Afterward, scholars generated a surge in fer-
roptosis research. The unique feature of its morphology 
is mitochondrial changes that include small size, altera-
tion of membrane densities, reduction or vanishing of 
mitochondrial crista, and rupture of outer membranes 
[70]. Ferroptosis is associated with a variety of diseases, 
including acute kidney injury, cancer, and cardiovascu-
lar disease. Part of the induction of ferroptosis is RAS-
dependent [71]. In Ras mutant cancer cells, blocking the 
RAS-RAF-MEK pathway inhibits ferroptosis induced by 
erastin, which is an antitumor drug that promotes cell 
death [72]. However, relatively little is known about the 
connection between GAPs and ferroptosis.

A large number of molecular markers and pathways 
have been described for autophagy as possible processes 
of ferroptosis [9, 73]. GTPases and GAPs that have a 
role in autophagy could also be regulators of ferropto-
sis. RAB7A is involved in autophagy-induced degrada-
tion of lipid droplets (LDs), and the accompanying lipid 
peroxidation exacerbates ferroptosis [74]. Accordingly, 
TBC1D2, as a negative regulator of RAB7A, could regu-
late ferroptosis in a RAB7A-dependent manner [75]. 
G3BP1 (Ras-GTPase-activating protein-binding pro-
tein 1) is involved in the adjustment of the Ras signaling 

pathway. The process of it-induced cell death is linked to 
the long noncoding RNA P53RRA, which is regulated by 
LSH and p53. During that process, nucleotides 1 and 871 
of P53RRA directly interact with the RNA recognition 
motif interaction domain of G3BP1 (aa 177–466), form-
ing the P53RRA-G3BP1 complex. In the cytoplasm, the 
P53RRA-G3BP1 interaction displaces p53 from a G3BP1 
complex, leading to the redistribution of p53 through 
p53 transfer from the cytoplasm to the nucleus, which 
activates the p53 signaling pathway and influences the 
expression of several metabolic genes, such as TIGAR 
and SLC7A11, eventually causing cell cycle arrest, which 
leads to apoptosis and ferroptosis [76].

Pyroptosis
Pyroptosis is a type of inflammatory RCD that is an innate 
immune mechanism to resist pathogen invasion and 
maintain physical homeostasis [77]. Caspase-1/4/5/11 
activation is induced by some inflammasomes, which 
increase the cleavage rate of gasdermin D and secrete 
mature inflammatory cytokines, such as interleukin-18 
and interleukin-1β [78]. Its features are DNA fragmen-
tation, cell swelling, and bubbles that ultimately rupture 
the plasma membrane.

The connection between pyroptosis and GAPs is 
reflected in the cell death induced by certain microorgan-
isms. YopE is a type of Yersinia outer protein (Yops) and 
can act as the host GAP of Rho GTPase by hydrolyzing 
GTP-bound Rho GTPase in a noncovalent manner in 
Yersinia. During Yersinia infection and cell death induc-
tion, YopE has another collaborator, YopT, a cysteine pro-
tease that covalently decomposes the C-terminus of Rho 
GTPase, therefore leading to Rho GTPase dissociation 
and inactivation. Although YopE and YopT are essentially 
different from Rho GTPase inactivation, both are Rho-
modifying toxins that influence host cell physiology and 
evade immune responses. This process is directly induced 
in a manner that dephosphorylates the active Ser205 and 
Ser241 sites of pyrin and forms a pyrin inflammasome, 
ultimately leading to pyroptosis [79].

Entosis cell death
In 2007, researchers described the nonapoptotic cell 
death process entosis to account for the cell-eating phe-
nomenon observed between tumor cells [80, 81]. When 
living cells are consumed by the same or different types 
of cells, a “cell within a cell” structure occurs, resulting 
in the death of internalized cells (entotic cells). Dying 
entotic cells do not have the morphological and molec-
ular characteristics of apoptosis but exhibit autophagy 
dependence, with lysosome and vacuolar membrane 
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autophagy protein-dependent fusion inducing entosis 
[82, 83].

Cell adhesion and cytoskeletal rearrangement are key 
processes in entosis and cannot be deficient in epithe-
lial cadherin and Rho-ROCK signaling [80]. The recruit-
ment of p190A RhoGAP at cell–cell junctions inhibits the 
activity of the Rho pathway, leading to a decrease in myo-
sin light chain phosphorylation, which reduces actomy-
osin contraction and suppresses calmodulin levels. Due 
to the polarized distribution of p190A RhoGAP, the con-
traction of actin at the distal end of cell adhesion is sig-
nificantly higher than that at the cell adhesion site [84]. In 
addition, Rho is activated by RhoGEF at the distal end of 
cell adhesion [85]. Therefore, RhoGAP and RhoGEF act 
separately for Rho but synergistically for the induction of 
entosis.

Mitotic catastrophe
Mitotic catastrophe (MC) is a type of abnormal mitotic 
cell death that is also an effective anticancer mechanism 
and therapy [86]. Its morphological characteristics are 
unique nuclear alterations that usually exhibit multinu-
cleation and/or micronucleation [87]. To be precise, MC 
is not a type of RCD because MC, like autophagy, does 
not necessarily cause cell death, and thus, the Nomencla-
ture Committee on Cell Death 2018 recommends using 
the term mitotic death as the name of this type of death 
[10]. Moreover, studies have shown that the ultimate fate 
of most MC cells is intrinsic apoptosis [10, 88], with dif-
ferences and connections between the two.

Three types of GAPs are linked with aberrant mitosis: 
RasGAP NF1, p190RhoGAP and RanGAP. Mutations 
in NF1 can activate RAS-related downstream signaling 
pathways. In this case, coordination of other signaling 
pathways, such as PKC-related pathways, is needed to 
regulate the cellular disturbance of RAS overactivation 
and needed to ensure cell survival. Under Nf1-deficient 
conditions, the suppression of endogenous protein kinase 
C (PKC) most likely cooperates with the Akt (one of the 
downstream effectors of aberrant Ras) pathway to acti-
vate Chk1, prolonging mitotic arrest and subsequently 
causing apoptosis via MC [89]. Overexpression of mul-
tiple copies in T-cell malignancy 1 (MCT-1) confronts 
the presentation of the PTEN gene and negatively influ-
ences the stability and functional activity of its proteins, 
activating phosphoinositide 3 kinase/AKT signaling. 
In addition, MCT-1 downregulated p190RhoGAP and 
upregulated the expression of p190B, which binds Src, 
interacts with MCT-1 and activates Src/p190B signaling. 
In the end, the increased presentation of MCT-1 and the 
inhibited PTEN synergistically augment the Src/p190B 
pathway, which causes the depression of RhoA activity 
and enhances the occurrence rate of MC [90]. In contrast 

to the description of the above GAPs, in addition to the 
kinetochore and spindle localization of RanGAP1 being 
influenced by importin β1, which is a regulator involved 
in the vector of the main interphase nuclei and mitotic 
progression, RanGAP1 sumoylation is also related to 
importin β1 and shows a positive correlation. The mech-
anism is most likely that RanBP2 directly interacts with 
the N-terminus of importin β1, sequesters endogenous 
RanBP2, decreases it and importin β1, and diffuses both, 
leading to abnormal spindle formation and impaired 
chromosome alignment, which ultimately causes cell 
death [91]. In summary, the abnormal regulation of the 
corresponding GTPase protein activity by GAPs could 
disrupt the normal signal cascade and finally increase the 
rate of MC accidents.

Methuosis
Methuosis is a unique form of RCD, and its special char-
acter is vacuolization, the accumulation of vesicles (sin-
gle membrane and from macropinosomes, distinguishing 
the structure of double membranes of autophagosomes) 
and eventually plasma membrane rupture [92]. Methuo-
sis is closely associated with the Ras signaling pathway 
(continuous activation), which is clearly characterized in 
GBM and gastric carcinoma [93].

GIT1 serves as GAP to inactivate Arf6 by hydrolyzing 
GTP to influence methuosis. In that process, hyperac-
tive H-Ras activates the Rac1 GEF, increasing the amount 
of Rac1-GTP. Micropinocytosis enhanced by the acti-
vation of Rac1 and clathrin-independent endocytosis 
(CIE) obtain some features of late endosomes (Rab7 and 
LAMP1). Meanwhile, there is a feedback mechanism in 
which hyperactive Rac1 enables Rac1-GTP to directly 
interact with GIT1, decreasing the activity of Arf6, 
impairing the recycling of CIEs and failing to fuse with 
lysosomes. Finally, these consequences lead to the accu-
mulation of CIE, and late endosomal vesicles merge with 
one another, thus forming larger fluid-filled cytoplasmic 
vacuoles, which ultimately rupture the plasma membrane 
and cause cell death [94, 95]. However, the above result 
contradicts Shliom and colleagues’ finding that Arf6 
(Q67 L) activity promotes vacuole formation in cells that 
express H-Ras (G12V) [96]. The most appropriate expla-
nation for this phenomenon is that they influence the 
vacuoles that arise from different stages of the endocyto-
sis pathway [94].

GAPs regulate tumor immunity
RCD and immunity are closely related
RCD was initially thought to be an immune-tolerogenic 
event, especially apoptosis [97]. However, later evidence 
and the introduction of the concept of immunogenic 
cell death (ICD) have gradually established the role of 
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immune activity in RCD. Actually, ICD is not an inde-
pendent mode of death, and it refers to a type of RCD 
that has the presence of adaptive immunity driven by 
activation of cytotoxic T lymphocytes (CTLs) in response 
to stress-induced cell death [97, 98]. The development of 
ICD is a complex process in which the existence of anti-
gens not covered by central tolerance in dead cells and 
the exposure and release of damage-associated molecu-
lar patterns (DAMPs) are key components, referred to as 
antigenicity and adjuvanticity, respectively [98]. DAMPs 
promote the recruitment and maturation of antigen-
presenting cells (APCs), triggering a CTL-dependent 
immune response [99]. Some conventional chemothera-
peutic agents, oncolytic viruses, targeted anticancer 
agents, specific radiotherapy modalities, and other fac-
tors could be inducers of ICD [100, 101]. Based on this 
finding, in 2013, researchers suggested that combinations 
of ICD inducers with other immunomodulators could 
lead to effective antitumor effects [99], and subsequent 
studies have confirmed that monoclonal antibodies tar-
geting classically inhibited immune checkpoints, such as 
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), 
programmed cell death-1 (PD-1) and its corresponding 
ligand PD-L1, are good collaborators for ICD [102–104]. 
Recently, cancer immunotherapy combined with nano-
technology to induce ICD has also shown new prospects 

[105, 106]. Of course, other RCDs are not the end of the 
cell but could be the beginning of an immune response or 
even ICD [107]. Moreover, these RCDs are also engaged 
in antitumor immunity [108, 109]. For example, T cells 
and ferroptosis mediate each other in tumors. Immuno-
therapy-activated CD8 + T cells enhanced lipid peroxi-
dation in tumor cells, which in turn contributed to the 
antitumor efficacy of immunotherapy with increased fer-
roptosis [110]. This evidence is sufficient to demonstrate 
that RCD is inextricably linked to immune activity and 
immunotherapy.

GAPs contribute to the immune microenvironment
The formation and basal function of multiple immune 
cells are influenced by GAPs  (Fig.  4A). T cells are the 
mainstay of antitumor immunity. Immature double-
positive (DP) thymocytes are partially differentiated into 
CD4 + or CD8 + single-positive (SP) T cells after positive 
selection, whereas the other DP T cells undergo apop-
tosis. The mechanism by which the Ras-MAPK pathway 
regulates this process has been well studied [111, 112]. 
In RASA1-deficient thymus, DP cells have increased 
susceptibility to apoptosis, but the increased CD4 SP to 
DP ratio suggests that RASA1 deletion promotes posi-
tive selection and could be associated with Ras-MAPK 
signaling pathway activation [113]. In addition, given 

Fig. 4  Role of GAPs in immune activity. a GAPs are essential for maintaining normal immune cell activity. b NF1 deficiency participates in the 
formation of the relevant tumor immune microenvironment
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the proapoptotic effect of DAB2IP, the CCR4-NOT 
complex downregulates DAB2IP to participate in the 
positive selection of thymocytes [114]. Interestingly, 
another study showed that NF1 promotes positive selec-
tion of thymocytes in female HY TCR Tg mice, but the 
mechanism is unclear [115]. Another example of T cell 
regulation is that ARHGAP19 coordinates the cytoskel-
etal remodeling required for T lymphocyte division and 
controls chromosome segregation by regulating RhoA 
[116]. ARHGAP45 could regulate RHO to orchestrate 
changes in the cytoskeleton of naive T cells, increase 
their deformation and migration to lymph nodes (LNs), 
and promote thymic seeding of T cell progenitors [117]. 
In addition, Rab35 and its GAP EPI64C (TBC1D10C) 
are required in the formation of immunological syn-
apses (ISs), which are a part of the T cell-APC interac-
tion [118].  Macrophages play a key role downstream of 
the immune response by engulfing dead cells. Previous 
studies have characterized the Rho GTPase members 

Rac1 and Cdc42 as molecular switches that control actin 
cytoskeleton tissue to regulate Fc receptor-mediated 
phagocytosis [119, 120]. Sh3BP1, ArhGAP12 and Arh-
GAP25 cooperatively inactivated Rac and Cdc42 in time 
and space, thus ending the phagocytosis of macrophages 
to large particles such as apoptotic cells [121]. Mac-
rophage polarization, motility and cell spreading prop-
erties are associated with RASA1-mediated regulation 
of p190RhoGAP translocation [122]. Another RhoGAP 
myosin Myo9b deletion in macrophages was shown to 
result in altered cell morphology and impaired migratory 
capacity [123]. The role of the RhoGAP family in neu-
trophils is more extensive, mainly involving neutrophil 
shape changes, adhesion, chemotaxis and phagocytosis, 
as reviewed by Roland Csépányi-Kömi et al. [124].

With the engagement of the tumor microenviron-
ment, tumor cells can escape the surveillance of the 
immune system and thus survive immune attacks 
during the development process. NF1, encoding 

Table 1  The roles of GAPs in RCD

GAPs RCD Effect Target Associated physiology and 
pathology

References

p120RasGAP (RASA1) Apoptosis up/down RAS, N-terminal fragment Hepatocellular carcinoma, capillary mal-
formation-arteriovenous malformation

[16, 28]

RGS3 Apoptosis up MEK/ERK Hepatocellular carcinoma [19]

STARD13 Apoptosis up Bax Breast cancer [20]

DLC1 Apoptosis up NF-кB Angiosarcoma [21]

DAB2IP Apoptosis up STAT3, β-amyloid Prostate cancer, Alzheimer’s disease [23, 30]

RACGAP1 Apoptosis down Hippo signaling pathway Hepatocellular carcinoma [24]

RGS5 Apoptosis down JNK1/2 and p38 signaling pathways Cardiomyocytes [29]

TBC1D17 Apoptosis down Rab12 Optic neuropathy [31]

OATL1 Autophagy down RAB33B Autophagosome maturation [45]

TSC1/2 Autophagy up Rheb-mTORC1-ULK1 signaling pathway Tuberous sclerosis complex [51]

RalGAP Autophagy down/up RalB, mTORC1 Autophagosome formation [47, 53]

DAB2IP Autophagy down Wnt/β-catenin signaling pathway, 
mTOR-S6K pathway

Glioblastoma, prostate cancer [54, 55, 57]

SIPA1L2 Autophagy down TrkB/LC3b Neurotransmitter liberation [58]

TBC1D5 Autophagy down Rab7a Neurodegenerative diseases, glucose 
uptake

[61, 67]

TBC1D15 Autophagy down RAB7 Neurodegenerative diseases [62, 63]

SGSM3/RABGAP5 Autophagy down RAB5 Ehrlichia infection [64]

TBC1D10A Autophagy down Rab35-NDP52 Autophagosome formation [65]

TBC1D20 Autophagy down RAB1B Warburg Micro syndrome 4 [66]

TBC1D2 Ferroptosis down RAB7A Lipid degradation [75]

YopE Pyroptosis up Rho GTPase Yersinia infection [79]

p190A RhoGAP Entosis up/down Rho-ROCK signaling Cell adhesion and cytoskeletal rear-
rangement

[84]

NF1 Mitotic catastrophe up RAS Mitotic arrest [89]

p190RhoGAP Mitotic catastrophe up RhoA Neoplastic multinucleation [90]

RanGAP1 Mitotic catastrophe up Mitotic localization Abnormal spindle formation [91]

GIT1 Methuosis up/down Arf6 Vacuoles formation [94–96]
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neurofibromin, is a good example to illustrate the 
role of GAPs in the tumor immune microenviron-
ment  (Fig.  4B). Neurofibromin is a GTPase-activating 
protein that downregulates RAS activity, and thus, 
mutations in NF1 can activate RAS-related downstream 
signaling pathways. Neurofibromatosis type 1 (NF1) 
is a genetic disorder of the nervous system caused by 
the loss of activity of the neurofibromin protein GAPs 
[125]. Immune cells such as infiltrating inflammatory 
mast cells are a component of NF1, and mutations of 
the NF1 gene in immune cells are also essential for this 
disease [126]. Researchers designed NF1flox/−; Krox20-
Cre mice with NF1−/− Schwann cells and NF1+/− mast 
cells and found that mice with Schwann cell prolifera-
tion as well as massive mast cell infiltration developed 
plexiform neurofibromas compared to control mice. 
This finding demonstrates the fact that the haploinsuf-
ficiency of NF1 mast cells creates an NF1+/− immune 
microenvironment that favors tumors [127]. In addi-
tion, NF1−/− Schwann cells enhance Nf1 haploinsuf-
ficiency mast cell migration by stem cell factor (SCF) 
and degranulation through c-kit-mediated activation 
of the PIK-3 pathway [128–130]. Compared to normal 
people, NF1 patients are prone to developing tumors of 
the central nervous system. In low-grade glioma (LGG), 
researchers have discovered a key neuroimmune axis, 
which suggests that NF1 mutant neurons produce mid-
kine to induce T cells to activate microglia to produce 
CCL5, a factor that promotes the growth of LGG [131]. 
Similar results were found in GBM. A recent study 
showed that tumor models with codeletion of Nf1 and 
Pten and overexpression of EGFRVIII had the ability to 
escape immune clearance and a high degree of immu-
nosuppressive microenvironment, and Nf1 loss was the 
key event [132]. Interestingly, although the incomplete 
mutation of NF1 alleles is a driver of tumors, some 
researchers present a contradiction in that the absence 
of NF1 in T cells could increase T cell activity to 
enhance the physical immune monitoring mechanism 
of the tumor and inhibit malignant migration. Consist-
ent with this finding, the clinical phenomenon of NF1 
patients in which most tumors associated with NF1 are 
nonmalignant remodels our recognition of NF1 gene 
mutations [133]. In addition, studies have shown that 
the Ras protein activator-like 1 protein (Rasal1) nega-
tively regulates the P21Ras-ERK pathway in T cells, 
thereby inhibiting the activation of T cells to reduce the 
antitumor immunity of T cells, while RASAL1 knock-
down was shown to enhance the antitumor activity of 
T cells in B16 melanoma and EL-4 lymphoma [134]. As 
the GAP of G proteins, the RGS family is involved in 
the regulation of immune activity in many ways and has 
the potential for targeted immunotherapy [135]. Recent 

studies have shown that RGS1 inhibits the transport of 
Th1 cells and CTLs to tumors, facilitating the forma-
tion of ’cold tumors’ in breast cancer and impairing 
antitumor immunity [136]. Meanwhile, mouse experi-
ments demonstrated that transfer of tumor-specific 
CTLs with RGS1 knockdown in combination with 
PD-L1 could be a promising immunotherapeutic strat-
egy for breast cancer [136].

Conclusions and perspectives
Research on GAPs in diseases, especially cancer, has 
increased in recent years. Some GAPs could be influen-
tial factors in cancer cell proliferation, migration, drug 
resistance, and malignant transformation and could 
even be new therapeutic targets and prognostic markers 
for cancer. The signaling pathways associated with RCD 
could be tuned by GAPs during this process. The most 
typical example is the inhibition of RAS-related path-
ways by RASGAPs to regulate the apoptotic process in 
cancer cells. In fact, studies on the regulation of tumor 
immunity by GAPs are limited. Here, by summarizing the 
broad role of GAPs in regulating RCD, we speculate that 
it could be possible that GAPs are present in RCD-related 
immune activity or, more precisely, in ICD-induced anti-
tumor immune responses. In addition, GAPs expressed 
in immune cells are essential in maintaining the physi-
ological functions of immune cells and participate in 
immune evasion and antitumor immunity by regulating 
immune cells.

One of the activation hallmarks of oncogenic RAS pro-
teins is the ability to inhibit apoptosis of cancer cells to 
obtain unlimited proliferation. Oncogenic RAS could 
have mutations that resist the hydrolytic inhibition trig-
gered by RASGAPs. Although the search for small mol-
ecule drugs that could act as equivalents to GAPs to 
promote RAS-GTP hydrolysis has long been proposed, 
no optimistic progress has been made. It has been shown 
that semaphorin 4D acts on the GAP-active receptor 
Plexin-B1 to inactivate R-Ras and thereby regulate integ-
rin activation and cell migration [137]. Additional exam-
ples exist for the regulation of specific GAP activities. For 
example, the synthetic protein repulsive guidance mole-
cule A (RGMA) receptor neogenin upregulates p120GAP 
activity, leading to inhibition of Ras and its downstream 
effector Akt [138]. Inhibition of the function of RAS-
GAPs might also exist in cancer. However, the therapeu-
tic modalities for typically associated NF1 disease are still 
very difficult, and the current strategies mostly involve 
inhibition of the RAS/MEK pathway [139]. In summary, 
although the basic functionality of GAPs is well under-
stood, further studies are necessary to better understand 
how GAPs regulate biological processes, to correctly 
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understand pathological development and identify thera-
peutic targets.
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