Skip to main content
. 2021 Oct 19;29(4):2351–2382. doi: 10.1007/s11831-021-09667-7

Table 5.

Comparison with the other state-of-the-art methods for COVID-19 binary and multi-classification

Authors Number of cases (COVID-19) Data Format Methodology Two-class accuracy (%) Three-class accuracy (%) Sensitivity (%)
Narin et al. [20]

Total cases = 100

COVID-19 = 50

X-ray ResNet50 98 96
Khan et al. [18]

Total cases = 221

COVID-19 = 29

X-ray Xception 98.8 94.52 95
Wang et al. [13]

Total cases = 237

COVID-19 = 119

CT scan Modified Inception 82.9 81
Wang et al. [172]

Total cases = 300

COVID-19 = 100

X-ray COVID-Net 96.6 93.3 91
Song et al. [173]

Total cases = 57

COVID-19 = 30

CT scan ResNet50 86 79
Ozturk et al. [8]

Total cases = 1127

COVID-19 = 127

X-ray DarkCOVIDNet 98.08 87.02 90.6
Rahimzadeh and Attar [174]

Total cases = 11,302

COVID-19 = 31

X-ray ResNet50V2 + Xception 99.5 91.4 80.53
Apostolopoulos et al. [10]

Total case = 1427

COVID-19 = 224

X-ray MobileNetV2 96.7 93.5 98.6