Role of covariates in determining probability of leopard occupancy in the west Chure range, structured on Pt obtained from Appendix 2
Model | AIC | ΔAIC | w | Model likelihood | K |
---|---|---|---|---|---|
(IO+T+PS) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) | 614.78 | 0 | 0.6939 | 1 | 26 |
(IO+T+PS+N), θ 0(·) θ 1(·),p(IO+N+L) θ 0 pi(·) | 616.58 | 1.8 | 0.2821 | 0.4066 | 27 |
(IO+T), θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) | 623.99 | 9.21 | 0.0069 | 0.01 | 25 |
(IO+T+L) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) | 624.2 | 9.42 | 0.0062 | 0.009 | 26 |
(IO+T+PD) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) | 624.8 | 10.02 | 0.0046 | 0.0067 | 26 |
(IO+T+R) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) | 625.98 | 11.2 | 0.0026 | 0.0037 | 26 |
(IO+W) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) | 627.07 | 12.29 | 0.0015 | 0.0021 | 25 |
(IO+T+N) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) | 627.52 | 12.74 | 0.0012 | 0.0017 | 26 |
(IO+PS), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 628.11 | 13.33 | 0.0009 | 0.0013 | 25 |
(IO), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 640.82 | 26.04 | 0 | 0 | 24 |
(IO+R), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 641.08 | 26.3 | 0 | 0 | 25 |
(PS), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 641.23 | 26.45 | 0 | 0 | 24 |
(IO+N), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 642.43 | 27.65 | 0 | 0 | 25 |
(IO+PD), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 642.77 | 27.99 | 0 | 0 | 25 |
(IO+L), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 647.88 | 33.1 | 0 | 0 | 25 |
(W), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 648.16 | 33.38 | 0 | 0 | 24 |
(L), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 648.2 | 33.42 | 0 | 0 | 24 |
(T), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 648.76 | 33.98 | 0 | 0 | 24 |
, θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 650.37 | 35.59 | 0 | 0 | 23 |
(N), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 650.67 | 35.89 | 0 | 0 | 24 |
(R), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 650.79 | 36.01 | 0 | 0 | 24 |
(PD), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) | 651.02 | 36.24 | 0 | 0 | 24 |
: model‐averaged leopard occupancy; p = replicate‐level detectability; AIC = Akaike's information criterion, ΔAIC = difference in AIC value between the top model and the focal model; w = AIC weight; Model likelihood is −2 logarithm of the likelihood function evaluated at maximum; θ 0 = Pr (leopard presence in a replicate/grid occupied and which was absent in the previous replicate) and “θ 1”= Pr (leopard presence in a replicate/grid occupied and was present in the previous replicate); k = number of model parameters; Covariates: IO: management regime (grids inside and outside of the protected areas); R = terrain ruggedness averaged across each grid; N = nondifferent vegetative index averaged across each grid; PD: averaged human population density in each grid; PS: prey species (rhesus, barking deer, chital); WB = wild boar; L = livestock presence; T = tiger; In all models, Pt from the top model (Appendix 2) was modeled as p(IO+N+L); + = covariates modeled additively; (·) = parameters are held constant. Model‐specific β‐coefficient estimates for covariates IO, T, PS from the top model determining leopard occupancy in the west Chure = 2.62 (SE 0.75), 2.93 (SE 1.09), and 2.16 (SE 0.70), respectively.