Skip to main content
. 2021 Sep 21;11(20):13641–13660. doi: 10.1002/ece3.8105

Role of covariates in determining probability of leopard occupancy in the west Chure range, structured on Pt obtained from Appendix 2

Model AIC ΔAIC w Model likelihood K
Ψ^(IO+T+PS) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) 614.78 0 0.6939 1 26
Ψ^(IO+T+PS+N), θ 0(·) θ 1(·),p(IO+N+L) θ 0 pi(·) 616.58 1.8 0.2821 0.4066 27
Ψ^(IO+T), θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) 623.99 9.21 0.0069 0.01 25
Ψ^(IO+T+L) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) 624.2 9.42 0.0062 0.009 26
Ψ^(IO+T+PD) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) 624.8 10.02 0.0046 0.0067 26
Ψ^(IO+T+R) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) 625.98 11.2 0.0026 0.0037 26
Ψ^(IO+W) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) 627.07 12.29 0.0015 0.0021 25
Ψ^(IO+T+N) θ 0(·) θ 1(·) p(IO+N+L) θ 0 pi(·) 627.52 12.74 0.0012 0.0017 26
Ψ^(IO+PS), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 628.11 13.33 0.0009 0.0013 25
Ψ^(IO), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 640.82 26.04 0 0 24
Ψ^(IO+R), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 641.08 26.3 0 0 25
Ψ^(PS), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 641.23 26.45 0 0 24
Ψ^(IO+N), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 642.43 27.65 0 0 25
Ψ^(IO+PD), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 642.77 27.99 0 0 25
Ψ^(IO+L), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 647.88 33.1 0 0 25
Ψ^(W), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 648.16 33.38 0 0 24
Ψ^(L), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 648.2 33.42 0 0 24
Ψ^(T), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 648.76 33.98 0 0 24
Ψ^, θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 650.37 35.59 0 0 23
Ψ^(N), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 650.67 35.89 0 0 24
Ψ^(R), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 650.79 36.01 0 0 24
Ψ^(PD), θ 0(·) θ 1(·),p(IO+N+L), θ 0 pi(·) 651.02 36.24 0 0 24

Ψ^: model‐averaged leopard occupancy; p = replicate‐level detectability; AIC = Akaike's information criterion, ΔAIC = difference in AIC value between the top model and the focal model; w = AIC weight; Model likelihood is −2 logarithm of the likelihood function evaluated at maximum; θ 0 = Pr (leopard presence in a replicate/grid occupied and which was absent in the previous replicate) and “θ 1”= Pr (leopard presence in a replicate/grid occupied and was present in the previous replicate); k = number of model parameters; Covariates: IO: management regime (grids inside and outside of the protected areas); R = terrain ruggedness averaged across each grid; N = nondifferent vegetative index averaged across each grid; PD: averaged human population density in each grid; PS: prey species (rhesus, barking deer, chital); WB = wild boar; L = livestock presence; T = tiger; In all models, Pt from the top model (Appendix 2) was modeled as p(IO+N+L); + = covariates modeled additively; (·) = parameters are held constant. Model‐specific β‐coefficient estimates for covariates IO, T, PS from the top model determining leopard occupancy in the west Chure = 2.62 (SE 0.75), 2.93 (SE 1.09), and 2.16 (SE 0.70), respectively.