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Abstract

Many modern entity recognition systems, including the current state-of-the-art de-identification 

systems, are based on bidirectional long short-term memory (biLSTM) units augmented by a 

conditional random field (CRF) sequence optimizer. These systems process the input sentence 

by sentence. This approach prevents the systems from capturing dependencies over sentence 

boundaries and makes accurate sentence boundary detection a prerequisite. Since sentence 

boundary detection can be problematic especially in clinical reports, where dependencies and 

co-references across sentence boundaries are abundant, these systems have clear limitations. In 

this study, we built a new system on the framework of one of the current state-of-the-art de­

identification systems, NeuroNER, to overcome these limitations. This new system incorporates 

context embeddings through forward and backward n -grams without using sentence boundaries. 

Our context-enhanced de-identification (CEDI) system captures dependencies over sentence 

boundaries and bypasses the sentence boundary detection problem altogether. We enhanced this 

system with deep affix features and an attention mechanism to capture the pertinent parts of the 

input. The CEDI system outperforms NeuroNER on the 2006 i2b2 de-identification challenge 

dataset, the 2014 i2b2 shared task de-identification dataset, and the 2016 CEGS N-GRID de­

identification dataset (p < 0.01). All datasets comprise narrative clinical reports in English but 

contain different note types varying from discharge summaries to psychiatric notes. Enhancing 

CEDI with deep affix features and the attention mechanism further increased performance.
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1 Introduction and Related Work

De-identification refers to detecting and redacting personally identifiable information (PII). 

The Safe Harbor method of the Health Insurance Portability and Accountability Act 

(HIPAA) of the United States lists 18 types of PII. As PII in health records links health 

information to the patient, patient’s relatives or patient’s employers, the health record 

becomes protected health information. PII must be removed from health records so that 

health information can be used for scientific purposes without breaching the patient’s 

privacy. This is not necessary if the patient’s consent is given and an approval from 

the institutional review board is granted. However, obtaining consent from all patients 

mentioned in a dataset containing years of data is often impracticable. In such cases, 

de-identification is an essential privacy protection tool, prerequisite for medical research.

Algorithmic text de-identification is an area of natural language processing (NLP) and 

artificial intelligence (AI). More specifically, de-identification is a named entity recognition 

(NER) problem [20,26]. The goal of NER is to identify the textual spans of entities and 

to determine the type of entities mentioned in those spans. Entity recognition systems 

have been used for a wide spectrum of tasks ranging from question answering [27,43] 

to document summarization [5,29]. In the medical domain, well-known entity recognition 

tasks include medication information extraction [40,45] and detection of adverse drug events 

[16,21].

Like many AI and NLP methods, text de-identification can be performed either 

symbolically, using linguistic and domain knowledge for inference, or subsymbolically, 

relying heavily on the data without using domain knowledge explicitly. Symbolic NLP 

systems [11,17,39,42] are knowledge-based systems that draw inferences through domain 

and linguistic knowledge encoded in the algorithm or represented explicitly in rules and 

variables. Many de-identification systems that learn production rules [4,6] or decision trees 

[32] are of this nature.

Most machine learning systems [9,13,23,54] used for text de-identification are data-driven 

systems. These systems use mostly surface structures (i.e., lexical items such as words, 

characters, and their morphological features) to discover patterns in the text without 

explicitly representing patterns in algorithms. Although designing such machine learning 

systems (e.g., deep neural networks) does not require domain specific knowledge, these 

systems require large amounts of human-annotated training data for the specific task 

[36,37,44]. Given a sufficiently large and representative training dataset, the trained model 

may achieve a higher performance than a human expert [35].

In this study, our focus is on recurrent neural networks (RNNs) with long short-term 

memory (LSTM) nodes [14], which were shown to be very successful on clinical text 

de-identification [7,24,55]. RNNs handle data sequentially, predicting the output from the 

input based on the past input sequences.

Lample et al. [18] suggested an NER system based on a bidirectional LSTM (biLSTM) 

using word and character embeddings as features. Their system also employs a conditional 

random field (CRF) model for sequence optimization. As shown in Figure 1, their system 
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concatenates biLSTM outputs over character embeddings with token embeddings and feeds 

the concatenated embeddings into the token-level biLSTM layer sentence by sentence. The 

CRF sequence optimizer maximizes the likelihood of the label sequence of the sentence, 

based on these token-level biLSTM outputs. This is the fundamental model of many modern 

NER systems [12,15,51], including the current state-of-the-art de-identification systems such 

as [7,24,55]. These de-identification systems take health records as input, split each health 

record into sentences, tokens, and characters subsequently, and map each character and 

token to the corresponding embeddings. The embeddings then are processed with biLSTM 

and CRF sequentially. The systems evaluate the likelihood of the token being PII for each 

sentence separately.

All de-identification systems based on biLSTM-CRFs share some common problems: (1) As 

Finkel and Manning pointed out [10], the performance of NLP systems is significantly 

affected by the quality of the lower level tasks such as sentence boundary detection 

which are often performed as part of pre-processing the input. BiLSTM-CRF-based de­

identification systems make a strong assumption on the order of tokens in the input 

sentence. If the first m tokens of the input are not the first m words of the sentence (i.e., 

if the assumption does not hold), the system performance would be degraded. However, 

partitioning text into sentences is an imperfect process, especially for narrative clinical 

reports with informal, highly abbreviated content, containing an abundance of acronyms and 

punctuation errors. (2) Even if the text is partitioned into sentences perfectly, these systems 

cannot capture dependencies outside of sentence boundaries because they treat sentences 

independently [25]. In other words, these de-identification systems can miss PII instances 

due to the lack of context provided in adjacent sentences. (3) Since lengths of sentences are 

heterogeneous and each token input is received via a fixed node depending on the location of 

the token in the sentence, input layer representations of similar but non-identical sentences 

are inconsistent and learning collocational relations between equidistant tokens is harder. (4) 

For de-identification systems that use pre-trained token embeddings, the above problems are 

exacerbated by ambiguous or out-of-vocabulary (OoV) tokens, which are common.

2 Methods and Materials

In this study, we propose a novel approach for de-identification: a context-enhanced de­

identification (CEDI) system, which bypasses the problem of sentence boundary detection 

altogether. CEDI captures context information via a moving window of n-grams rather 

than in discrete sentences for which token input locations at the input layer are absolute. 

Although the moving window of n-grams has been used previously for clinical relation 

extraction [22], this is the first time it is used to overcome limitations such as noisy 

sentence boundary detection, dependencies outside of sentence boundaries, heterogeneous 

lengths of sentences, and OoV tokens in de-identification systems. We built CEDI on the 

framework of NeuroNER, which uses only character and token embeddings as features. 

We add, as an additional set of features, automatically-derived context embeddings to 

NeuroNER to capture dependencies that fall outside of sentence boundaries. These context 

embeddings are automatically generated using forward and backward n-grams. Unlike other 

context embeddings such as Embeddings from Language Model (ELMo) [31] that require 

pre-training outside of the NER system, usually in a different domain, CEDI derives the 
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n-gram context embeddings internally with no prerequisite training, creating consistent input 

layer representations and generating embeddings for ambiguous and OoV tokens as well. 

We also introduce deep affix features [53] and an attention mechanism [2] to CEDI for 

further improvement. These have been used in other NER tasks [33,50,53,56], but this is 

their first use for text de-identification.

2.1 n-gram context embeddings

Figure 2 shows how CEDI produces context embeddings using n-grams. First, for each 

token xt, n preceding tokens (xt−n,…,xt−1) are extracted. Then the randomly initiated token 

embeddings for the n-gram of tokens (Vxt−n,…,Vxt−1) followed by the token embedding Vxt 

are loaded. The loaded token embeddings are read sequentially by the corresponding RNN 

units. The output from the last RNN unit, of which the corresponding token embedding 

was trained for token xt, is the forward context embedding for the token. The same process 

is repeated with the backward n-gram (xt+n,…,xt+1) followed by xt to derive the backward 

context embedding. The final context embedding to be fed into the next layer is produced 

by concatenating the forward and backward context embeddings. In the following layer, 

the context embeddings can be used alone or concatenated with other embeddings such as 

character embeddings, pre-trained token embeddings, and even other context embeddings, 

depending on the task.

CEDI has several advantages over the prevailing approach. First, context embeddings using 

n-grams do not require sentence boundaries; thus, it is not affected by the problem of 

erroneous sentence boundary detection.

Second, it captures the context by receiving the input through a window of 2n + 1 words 

rather than through a varying size window delimited by sentence boundaries. The fixed size 

context window provides consistency in input representation between training and testing.

Third, since the input sequence moves over the input layer, each token is not associated 

with a single input node; rather, it traverses through all nodes, making the system learn the 

relation between the tokens with respect to their relative distances.

Fourth, CEDI can detect dependencies up to n words from either side of the current token 

word; thus, the size of the context window is adjustable according to the need. An optimal 

window size can be learned through cross-validation during parameter tuning or can be 

adjusted a priori according to the nature of the text. For example, the requisite width of the 

context window can be set wider for psychiatric reports than the window width for nursing 

notes since sentences in psychiatric reports are much longer and dependencies between 

tokens often require a wider context for entity recognition.

Fifth, CEDI’s approach allows connections between the current token and the information 

mentioned in the previous or next sentence. For example, co-reference of the subject of the 

sentence (e.g., “It happened…”) cannot be resolved using the prevailing approach but it is 

quite possible with CEDI.

Sixth, pre-trained embeddings suffer from OoV terms (terms that do not exist in the 

pre-trained embeddings) as well as from homonymy (words such as “bat” with identical 
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lexical form but with different meanings); however, CEDI alleviates both problems 

via contextualization. In pre-trained word embedding approaches, embeddings of two 

homonymous words are identical even though they have different meanings. Since CEDI 

does not take the word as a singleton, isolated from everything else, it produces embedding 

representations for each input word based on its surrounding words; thus, homonymous 

words are associated with distinct embeddings.

In case of OoV terms, the prevailing practice is to assign them non-informative random 

token-level embeddings and to use character embeddings in addition to token-level 

embeddings. While original NeuroNER mitigated problems from OoV on i2b2 2014 dataset 

using character embeddings, the results of an earlier study on i2b2 2016 dataset [20] 

indicated that this particular strategy was insufficient for overcoming the OoV problems 

on this new dataset. CEDI associates every OoV word with their corresponding context 

embedding, providing meaning to the OoV word using the information of the neighboring 

words. Thus, the resulting representation of the word is not arbitrary but a function of the 

surrounding words.

Another context embedding model, ELMo, has been suggested by Peters et al. [31], and 

in our previous work [20], we showed how ELMo can improve the de-identification 

performance of NeuroNER. ELMo is based on bidirectional language models. While ELMo 

is trained using a separate system (usually in a different and more general context), CEDI 

derives n-gram context embeddings internally; thus, there would be no context shifting with 

CEDI.

ELMo has several limitations compared to CEDI. To utilize a pre-trained ELMo model, 

the user needs to process the entire dataset and extract ELMo embeddings before starting 

NER training. This extraction process took over 6 hours for us for 2014 i2b2 shared task. 

Because all individual tokens have different context embeddings depending on the sentence, 

the storage and memory requirements for ELMo can also be overwhelming. In the 2014 i2b2 

shared task, the entire extraction process required 30.3 GB of RAM and the extracted ELMo 

embeddings consumed 4.1 GB of storage—almost 500 times as large as the entire 2014 i2b2 

shared task dataset, which was only 8.1 MB. Moreover, the extracted ELMo embeddings 

cannot be applicable to other datasets. In other words, the user needs to repeat this extraction 

process for each dataset separately. In contrast, CEDI derives n-gram context embeddings 

internally, saving the user from ELMo’s prerequisites, a lengthy extraction process, and 

extra storage for embeddings.

2.2 Deep affix features

Proposed by Yadav et al. [53], deep affix features posit that the first few characters (the 

approximate prefix) and the last few characters (the approximate suffix) are semantically 

informative. This notion is particularly relevant to the medical domain. For example, 

new or uncommon drug names can be OoV words, which are difficult for neural network­

based NER systems to capture because they cannot be included in the pre-trained token 

embeddings. Their labels are therefore predicted from random embeddings. However, if the 

drug name ends with “-parin” and shares the same suffix embeddings with existing drug 

names such as dalteparin, enoxaparin, heparin and tinzaparin, the suffix would indicate 
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the nature of the word, and using suffix embeddings, we may be able to predict that the 

word refers to a heparin-like anticoagulant drug. To apply affix features to CEDI, the first 

n-characters (prefixes) and the last n-characters (suffixes) of each token are extracted. We 

excluded low-frequency prefix and suffix candidates from the set, since they would unlikely 

be true affixes. We assigned a randomly initialized embedding to each unique prefix and 

suffix. This embedding is concatenated with the biLSTM output over characters of the token 

and the pre-trained token embeddings for the token, and fed into the next biLSTM layer. 

Yadav et al. showed that deep affix features may improve overall performance of NER 

generally as well as in the medical domain such as SemEval 2013 task [3] and 2010 i2b2 

clinical NER task [46] by utilizing three-character (n = 3) affixes with various thresholds for 

minimum admissible frequency counts (e.g., 10, 20, or 50).

2.3 Attention mechanism

Attention mechanism directs the focus of the entity recognition system to a part of the 

input that is pertinent for the prediction task. The attention model was originally proposed 

by Bahdanau et al. [2] for machine translation and spread to other NLP tasks. It has 

been recently applied to NER tasks as well [33,50,56], but it has never been used for 

de-identification.

Using the attention mechanism, the biLSTM output (generated from the features such 

as character embeddings and token embeddings) is multiplied by the attention weights, 

yielding a context embedding for each token. The weights correspond to the amount 

of attention that the particular input “deserves” for the current prediction. This context 

embedding is concatenated (additive models) [26,34] or multiplied (multiplicative models) 

[47,52] with the hidden state of the corresponding timestamp and produces probability 

vectors over labels dt, yielding the final prediction for the token yt.

Attention mechanisms may be utilized at multiple places in an NER system such as over 

character embeddings, over token embeddings, and over context embeddings. An attention 

mechanism can be applied over character embeddings to find out which characters in 

the token are most critical to represent the token at the character level. If applied over 

token embeddings, it increases the weights of the informative tokens of the sentence for 

more accurate label prediction. CEDI uses the attention mechanism over concatenation of 

character, token, and context embeddings.

2.4 Datasets and experiments

We test the de-identification performance of CEDI using datasets of 2006 i2b2 de­

identification challenge (2006 shared task, henceforth) [44], 2014 i2b2/UTHealth shared 

task (2014 shared task, henceforth) [37], and 2016 CEGS N-GRID shared task (2016 

shared task, henceforth) [36]. The 2006 shared task dataset contains 889 medical discharge 

summaries. The 2014 shared task dataset consists of 1,304 diabetic patient records. The 

2016 shared task dataset consists of 1,000 psychiatric intake records. Table 1 summarizes 

the statistics of each dataset. As shown, 2014 dataset is 39% bigger than the 2006 dataset, 

which is the smallest. The 2016 dataset is twice as big as the 2014 dataset. The average 
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sentence lengths of the 2006 and 2016 datasets are 54% and 42% longer than that of the 

2014 dataset, respectively.

The 2006 dataset contains 8 categories of PII, whereas the 2014 and 2016 datasets contain 

the same 28 types of PII in 7 categories as defined by the organizers of the i2b2 shared 

tasks (i2b2-PII, henceforth). The i2b2 PII categories are more extensive than the 18 types of 

HIPAA PII for better privacy protection. Originally, 2006 shared task provides 75% of the 

entire dataset as a training set. 2014 and 2016 shared task provide 60% of the datasets as 

training sets. The remaining 25% and 40% were used as test sets.

We split the original training set into training and validation sets using 2:1 ratio, respectively. 

We trained CEDI on the training set while checking its performance and tuning its 

parameters on the validation set. After reaching to a state where more training would not 

improve the performance of the system further, we stopped training, applied the trained 

system to the test set, and evaluated the output of the system on the test set.

2.5 System structure

We tested the effectiveness of CEDI by integrating each component into the state-of-the­

art de-identification system, NeuroNER, one by one. To exclude potential factors that 

may inadvertently affect the system performance, we used the original NeuroNER code, 

maintaining all its parameters.

Originally, NeuroNER uses character embeddings and pre-trained token embeddings as 

features. Token embeddings can be trained on general corpora such as Google News and 

Wikipedia as well as domain specific corpora such as PubMed. While domain specific 

resources contain useful knowledge closely related to the relevant task, general resources 

may contain more generic semantics of English [48]. Therefore, the training resource should 

be carefully selected. NeuroNER achieved its highest de-identification performance using 

GloVe comprising general token embeddings from English version of Wikipedia 2014 

and English Gigaword Fifth Edition [30]. Therefore, CEDI incorporates both character 

embeddings and GloVe, as well as its newly added n-gram based context embeddings.

Then we investigated the use of prefix and suffix features on the training data using 

5-fold cross-validation. We found that prefix features increased the overall de-identification 

performance, but suffixes did not. Therefore, we only included the prefix features in our 

final system.

We also examined the benefits of an attention mechanism on the de-identification task. We 

tested it over characters, n-grams, and concatenated embeddings (consisting of character 

embeddings, token embeddings, deep prefix features, and context embeddings). We did not 

use attention over the components of the concatenated embeddings because the concatenated 

embeddings represent tokens better than their individual components. We found that only 

the attention over the concatenated embeddings improved the de-identification performance; 

therefore, we only used the attention mechanism applied to the concatenated embeddings.
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2.6 Training and hyperparameters

We tuned hyperparameters on the training set using 5-fold cross-validation. Our selection 

for the final hyperparameters was as following: n-gram size = 10; character embeddings 

dimension = 25; prefix embeddings dimension = 25; prefix frequency threshold = 20; token 

embeddings dimension = 100; hidden layer dimension for LSTM over characters = 25; 

hidden layer dimension for LSTM over prefixes = 25; hidden layer dimension for LSTM 

over n-grams = 256; hidden layer dimension for LSTM over concatenation of {character, 

token, prefix and context} embeddings = 100; attention layer dimension = 50; dropout = 0.5; 

optimizer = SGD; learning rate = 0.02; maximum number of epochs = 100; early stopping = 

15.

2.7 Evaluation metrics

We use the official evaluation scripts from the shared tasks. The primary metrics of the tasks 

are micro-averaged precision (P), recall (R) and F1-score (F1). The organizers of the shared 

tasks applied the metrics in two different ways, entity-based and token-based. The entity­

based evaluation considers a true positive, only when the system successfully de-identifies 

an entire entity. In contrast, the token-based evaluation gives partial credit when a system 

de-identifies at least one token in an entity. It is debatable which evaluation method is 

more informative for de-identification purposes; however, we select entity-based evaluation, 

because it is stricter and commonly used for general NER tasks. Due to non-deterministic 

characteristic of neural network training, the performance from our suggested system can 

be different each time. We therefore repeat each experiment five times and report results 

that reflect the arithmetic mean of five runs per experiment. The statistical significance 

of the F1-score differences from the baseline model is calculated using the approximate 

randomization test [28] with 9,999 shuffles.

3 Results

3.1 Performance

The results of CEDI experiments are summarized in Table 2. We use the original NeuroNER 

as our baseline and test the effect of adding each of the new components. As previously 

mentioned, NeuroNER uses character embeddings and token embeddings as features. The 

F1-scores of NeuroNER are 96.0, 91.7, and 88.1 for the 2006, 2014, and 2016 datasets, 

respectively. CEDI accomplishes F1-scores of 96.4 (+0.4), 92.2 (+0.7), and 89.5 (+1.4) on 

the 2006, 2014, and 2016 datasets, respectively. Adding deep prefix features on to CEDI 

(CEDI + DP) further increases F1-scores to 92.8 (+0.4) and 89.7 (+0.2) for the 2014 and 

2016 datasets. Adding attention mechanism to this (CEDI + DP + Att) further increases the 

performance to 96.5 (+0.1) and 92.8 (+0.1) for the 2006 and 2016 datasets. All F1-score 

differences from the baseline are statistically significant at α level of 0.01.

3.2 Computational efficiency

One of the main challenges of using neural network de-identification systems is that the 

computational efficiency is measured not only in run time cost but also in energy cost 

and impact to the environment (e.g., Green Algorithms using carbon dioxide equivalent 
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(CO2e) measures [19]). Computational efficiencies of the original NeuroNER, CEDI, and 

NeuroNER + ELMo on i2b2 2014 training set are shown in Table 3. Training CEDI on the 

i2b2 2014 training set with 790 records on a GPU with 2,304 CUDA cores took 15 hours 

13 minutes on average, compared to 8 hours 2 minutes for the baseline and 15 hours 35 

minutes for NeuroNER + ELMo. Inference time per record was 0.2, 0.5, and 0.8 seconds for 

NeuroNER, CEDI, and NeuroNER + ELMo, respectively.

4 Discussion

4.1 Error analysis

The addition of context embeddings improves the de-identification performance over the 

baseline. This is particularly true, where sentence boundary detection is incorrect, or the 

sentence boundaries in the original documents are unclear. For example, in these datasets, 

IDNUM and USERNAME tokens are often recorded in a different line from their PII. 

In those cases, systems typically recognize IDNUM and USERNAME as single token 

sentences, for which character embeddings and random token embeddings do not provide 

enough information for the correct prediction, but context embeddings do. Another example 

is tabulated forms, which are common in electronic health records, but on which sentence 

boundary detectors perform poorly. They generally separate headings from contents and 

put them into multiple sentences resulting in many single-word sentences and losing all 

context information. This is particularly problematic with numeric data, where sentences 

may contain only text such as ‘##/##’. In these cases, de-identification systems without 

context embeddings are prone to misclassifying the numeric tokens as DATEs. Because 

CEDI takes into account adjacent tokens in the previous and following sentences, it is able to 

find clues that lead to better predictions.

PII such as personal names and addresses are difficult to be recognized by symbolic AI 

systems that are not trained on the data. RNNs in general and CEDI in particular recognize 

such entities using the context around them. CEDI uses n-grams, where n specifies the 

width of the context that can be adjusted according to the problem domain and the task. 

Performance comparison of CEDI against the baseline on such PII types is shown in Table 4. 

CEDI improved the baseline performance on all PII types except STREETs. We suspect this 

was because of the small number of instances of this entity type, which was inadequate for 

training CEDI.

The results show that the deep prefix feature, DP, increases precision but not recall. This 

benefit manifests itself more frequently on capitalized words than all-lowercase words. 

Since prefix features filter out false positive predictions, high-frequency prefixes are less 

common in proper nouns (named entities) and this feature helps distinguish capitalized 

words that are not named entities.

The performance due to the attention mechanism depends on the length of the input 

sentence. Attention mechanism performs particularly well on longer sentences, in which 

the other embedding systems do not perform as well. Its highest performance improvement 

was on HOSPITALs, which appear in relatively long and complete sentences.
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4.2 Comparison with ELMo

We compared CEDI’s n-gram context embeddings to ELMo. The results are summarized 

in Table 5. CEDI generates an F1-score of 96.4 (+0.4), 92.4 (+0.7), and 89.6 (+1.5) on 

the 2006, 2014, and 2016 datasets, respectively. Whereas NeuroNER + ELMo generates 

an F1-score of 96.3 (+0.3), 92.8 (+1.1), and 89.0 (+0.9) on the 2006, 2014, and 2016 

datasets. While ELMo achieves a slightly higher performance gain (+0.4) on the 2014 

dataset based on F1-scores, CEDI performs better (+0.1 and +0.6 on the 2006 and 2016 

dataset, respectively), using less effort, time, energy, and computational resources than 

ELMo.

We also experimented with integrating ELMo into CEDI (CEDI + ELMo). This achieved the 

highest F1-score at 96.7 (+0.7), 93.3 (+1.6), and 90.5 (+2.4) on the 2006, 2014, and 2016 

datasets, respectively. This implies that n-gram context embeddings generate complementary 

knowledge to ELMo embeddings and that understanding both general context and task 

specific context is helpful to increase the de-identification performance of the NER system.

4.3 n-gram context embeddings on other tasks

The problems from erroneous sentence boundary detection and co-reference across sentence 

boundaries are not limited to de-identification, but pertinent for all entity recognition tasks 

in the medical domain. The n-gram context embeddings which alleviate the problems 

may improve the system performance on other NER tasks. Therefore, we examined the 

usefulness of n-gram context embeddings on additional medical entity recognition tasks. 

We selected two datasets from previous shared tasks in the medical domain, the ShaRe/

CLEF 2013 eHealth [38] Task 1 dataset (ShaRe/CLEF dataset, henceforth) and the fifth 

BioCreative challenge evaluation workshop [49] Track 3 CDR dataset (BC5CDR dataset, 

henceforth). The ShaRe/CLEF dataset contains disorder mentions from 299 de-identified 

clinical notes and BC5CDR contains disease mentions from 1,500 PubMed titles and 

abstracts. We set the training parameters identical to the ones we used for de-identification 

but increased the size of the n-grams to 20 for the BC5CDR dataset because biomedical 

literature requires larger context than clinical notes. As shown in Table 6, CEDI significantly 

improves entity recognition performance (p < 0.01) on both datasets. This implies n-gram 

context embeddings can be widely adapted as a feature for NER in the medical domain.

4.4 Implication of performance gain

As shown in Section 3, the performance of the baseline neural network de-identification is 

close to perfect. Only a small room for improvement (4.0%, 8.3%, 11.9% in F1-measure 

for 2006, 2014, and 2016 datasets, respectively) remained. Although the absolute numbers 

are small, the remaining gaps include patient names and locations such as street addresses, 

and are important for both clinical utility of the records and for the privacy of the patients. 

CEDI closed the performance gap by 10% (10%, 8%, and 13% for 2006, 2014, and 2016 

datasets, respectively)—a bigger gain than ELMo alone. Training CEDI took similar time to 

training ELMo, but required less memory and storage. In inference, CEDI is more efficient 

than ELMo with 37% less execution time and 59% less environmental impact.
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5 Conclusions

We proposed a novel approach, a context-enhanced de-identification (CEDI) system, to 

mitigate the problems of modern NER systems that are based on biLSTM with CRF 

sequence optimizers (biLSTM-CRF). The performance of biLSTM-CRF systems depend 

on the accuracy of sentence boundary detection. They are structurally incapable of capturing 

dependencies beyond sentence boundaries. CEDI does not require sentence boundary 

detection and, using n-gram context embeddings, it can capture dependencies across 

sentence boundaries. CEDI also addresses the problems of OoV and ambiguous terms by 

introducing internally derived n-gram context embeddings. We demonstrated the benefits 

of CEDI using 2006 i2b2 de-identification challenge, 2014 i2b2/UTHealth shared task, and 

2016 CEGS N-GRID shared task datasets. CEDI increased de-identification performance of 

NeuroNER on all three de-identification datasets. The performance gains from using n-gram 

context embeddings were even higher than that from utilizing ELMo on 2006 and 2016 

datasets with less computing resources. Using prefix features and attention mechanisms 

further increased the de-identification performance of CEDI. Results of experiments with 

additional medical entity recognition datasets indicated that n-gram context embeddings can 

be widely adapted as a feature for many entity recognition tasks in the medical domain. In 

this study, our focus was improving NeuroNER’s performance with a new set of features 

of CEDI. Further studies are needed to test CEDI performance against recently introduced 

methods such as [1,8] which do not require sentence boundary detections, either. We plan to 

study and compare n-gram context embeddings with other contextualized embeddings such 

as [1,8] in future work.

ACKNOWLEDGMENTS

This study was supported in part by the National Library of Medicine of the National Institutes of Health under 
Award Number R15LM013209, by the Intramural Research Program of the National Institutes of Health, National 
Library of Medicine, and by an appointment to the Science Education Programs at the National Institutes of Health, 
administered by ORAU through the U.S. Department of Energy Oak Ridge Institute for Science and Education. 
The content is solely the responsibility of the authors and does not necessarily represent the official views of the 
National Institutes of Health.

REFERENCES

[1]. Akbik Alan, Blythe Duncan, and Vollgraf Roland. 2018. Contextual String Embeddings for 
Sequence Labeling. Proc. 27th Int. Conf. Comput. Linguist. (2018), 1638–1649. Retrieved from 
https://github.com/zalandoresearch/flair

[2]. Bahdanau Dzmitry, Cho Kyunghyun, and Bengio Yoshua. 2015. Neural Machine 
Translation by Jointly Learning to Align and Translate. ICLR (2015), 1–15. DOI:10.1146/
annurev.neuro.26.041002.131047

[3]. Bedmar Isabel Segura, Martinez Paloma, and Zazo Maria Herrero. 2013. 2013 SemEval-2013 Task 
9: Extraction of Drug-Drug Interactions from Biomedical Texts. Assoc. Compu- tational Linguist 
2, (2013), 341–350.

[4]. Buchanan Bruce G. and Shortliffe Edward H.. 1994. Rule-Based Expert 
Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. 
DOI:10.1007/978-1-4614-3858-8_100840

[5]. Cheng Jianpeng and Lapata Mirella. 2016. Neural summarization by extracting sentences and 
words. 54th Annu. Meet. Assoc. Comput. Linguist. ACL 2016 - Long Pap. 1, (2016), 484–494. 
DOI:10.18653/v1/p16-1046

Lee et al. Page 11

ACM Trans Comput Healthc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/zalandoresearch/flair


[6]. Clearwater SH and Provost FJ. 1990. RL4 : A Tool for Knowledge-Based Induction. In 
Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, 24–30.

[7]. Dernoncourt Franck, Lee Ji Young, Uzuner Ozlem, and Szolovits Peter. 2017. De-identification 
of patient notes with recurrent neural networks. J. Am. Med. Informatics Assoc 24, 3 (2017), 
596–606. DOI:10.1093/jamia/ocw156

[8]. Devlin Jacob, Chang Ming-Wei, Lee Kenton, and Toutanova Kristina. 2018. BERT: Pre-training 
of Deep Bidirectional Transformers for Language Understanding. Mlm (2018). Retrieved from 
http://arxiv.org/abs/1810.04805

[9]. Ferrández Oscar, South Brett R., Shen Shuying, Friedlin F. Jeffrey, Samore Matthew H., and 
Meystre Stéphane M.. 2013. BoB, a best-of-breed automated text de-identification system for 
VHA clinical documents. J. Am. Med. Informatics Assoc 20, 1 (2013), 77–83. DOI:10.1136/
amiajnl-2012-001020

[10]. Finkel Jenny Rose and Manning Christopher D. 2009. Joint Parsing and Named Entity 
Recognition. 6 (2009), 326–334.

[11]. Friedlin F. Jeff and McDonald Clement J.. 2008. A Software Tool for Removing Patient 
Identifying Information from Clinical Documents. J. Am. Med. Informatics Assoc 15, 5 (2008), 
601–610. DOI:10.1197/jamia.M2702

[12]. Greenberg Nathan, Bansal Trapit, Verga Patrick, and McCallum Andrew. 2020. Marginal 
likelihood training of BILSTM-CRF for biomedical named entity recognition from disjoint label 
sets. Proc. 2018 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018 (2020), 2824–2829. 
DOI:10.18653/v1/d18-1306

[13]. He Bin, Guan Yi, Cheng Jianyi, Cen Keting, and Hua Wenlan. 2015. CRFs based de­
identification of medical records. J. Biomed. Inform 58, (2015), S39–S46. DOI:10.1016/
j.jbi.2015.08.012 [PubMed: 26315662] 

[14]. Hochreiter Sepp and Schmidhuber Jürgen. 1997. Long Short-Term Memory. Neural Comput. 9, 8 
(1997), 1735–1780. DOI:10.1162/neco.1997.9.8.1735 [PubMed: 9377276] 

[15]. Jagannatha Abhyuday N. and Yu Hong. 2016. Structured prediction models for RNN based 
sequence labeling in clinical text. EMNLP 2016 - Conf. Empir. Methods Nat. Lang. Process. 
Proc. (2016), 856–865. DOI:10.18653/v1/d16-1082

[16]. Jagannatha Abhyuday and Yu Hong. 2016. Bidirectional Recurrent Neural Networks for Medical 
Event Detection in Electronic Health Records. (2016). Retrieved from http://arxiv.org/abs/
1606.07953

[17]. Kayaalp Mehmet, Browne Allen C, Dodd Zeyno A, Sagan Pamela, and McDonald Clement 
J. 2015. An Easy-to-Use Clinical Text De-identification Tool for Clinical Scientists: NLM 
Scrubber. In AMIA 2015 Annual Symposium, 1522. DOI:10.13140/RG.2.2.13587.37921

[18]. Lample Guillaume, Ballesteros Miguel, Subramanian Sandeep, Kawakami Kazuya, and Dyer 
Chris. 2016. Neural Architectures for Named Entity Recognition. (2016). DOI:10.18653/v1/
N16-1030

[19]. Lannelongue Loïc, Grealey Jason, and Inouye Michael. 2020. Green Algorithms: Quantifying the 
carbon emissions of computation. arXiv 2100707, (2020), 1–10. DOI:10.1002/advs.202100707

[20]. Lee Kahyun, Filannino Michele, and Uzuner Özlem. 2019. An empirical test of GRUs and 
deep contextualized word representations on de-identification. Stud. Health Technol. Inform 264, 
(2019), 218–222. DOI:10.3233/SHTI190215 [PubMed: 31437917] 

[21]. Lee Kathy, Qadir Ashequl, Hasan Sadid A, Datla Vivek, Prakash Aaditya, Liu Joey, and Farri 
Oladimeji. 2017. Adverse Drug Event Detection in Tweets with Semi-Supervised Convolutional 
Neural Networks. In In Proceedings of the 26th International World Wide Web Conference, 
Perth, Australia.

[22]. Leeuwenberg Artuur and Moens Marie Francine. 2017. Structured learning for temporal relation 
extraction from clinical records. 15th Conf. Eur. Chapter Assoc. Comput. Linguist. EACL 2017 - 
Proc. Conf. 1, 1 (2017), 1150–1158. DOI:10.18653/v1/e17-1108

[23]. Liu Zengjian, Chen Yangxin, Tang Buzhou, Wang Xiaolong, Chen Qingcai, Li Haodi, Wang 
Jingfeng, Deng Qiwen, and Zhu Suisong. 2015. Automatic de-identification of electronic medical 
records using token-level and character-level conditional random fields. J. Biomed. Inform 58, 
(2015), S47–S52. DOI:10.1016/j.jbi.2015.06.009 [PubMed: 26122526] 

Lee et al. Page 12

ACM Trans Comput Healthc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1606.07953
http://arxiv.org/abs/1606.07953


[24]. Liu Zengjian, Tang Buzhou, Wang Xiaolong, and Chen Qingcai. 2017. De-identification of 
clinical notes via recurrent neural network and conditional random field. J. Biomed. Inform 75, 
(2017), S34–S42. DOI:10.1016/j.jbi.2017.05.023

[25]. Luo Ling, Yang Zhihao, Yang Pei, Zhang Yin, Wang Lei, Lin Hongfei, and Wang Jian. 
2018. An attention-based BiLSTM-CRF approach to document-level chemical named entity 
recognition. Bioinformatics 34, 8 (2018), 1381–1388. DOI:10.1093/bioinformatics/btx761 
[PubMed: 29186323] 

[26]. Luong Minh-Thang, Pham Hieu, and Manning Christopher D.. 2015. Effective Approaches to 
Attention-based Neural Machine Translation. 9 (August 2015), 1412–1421. Retrieved from http://
arxiv.org/abs/1508.04025

[27]. Mendes Ana Cristina, Coheur Luísa, and Lobo Paula Vaz. 2010. Named entity recognition in 
questions: Towards a golden collection. Proc. 7th Int. Conf. Lang. Resour. Eval. Lr. 2010 (2010), 
574–580.

[28]. Noreen Eric W.. 1989. Computer-intensive Methods for Testing Hypotheses: An Introduction. 
John Wiley & Sons, Inc, New York.

[29]. Paulus Romain, Xiong Caiming, and Socher Richard. 2018. A deep reinforced model for 
abstractive summarization. 6th Int. Conf. Learn. Represent. ICLR 2018 - Conf. Track Proc. i 
(2018), 1–12.

[30]. Pennington Jeffrey, Socher Richard, and Manning Christopher. 2014. Glove: Global Vectors for 
Word Representation. Proc. 2014 Conf. Empir. Methods Nat. Lang. Process. (2014), 1532–1543. 
DOI:10.3115/v1/D14-1162

[31]. Peters Matthew E., Neumann Mark, Iyyer Mohit, Gardner Matt, Clark Christopher, Lee Kenton, 
and Zettlemoyer Luke. 2018. Deep contextualized word representations. (2018). Retrieved from 
http://arxiv.org/abs/1802.05365

[32]. Quinlan JR. 1986. Induction of decision trees. Mach. Learn 1, 1 (1986), 81–106. DOI:10.1007/
bf00116251

[33]. Rei Marek, Crichton Gamal K.O., and Pyysalo Sampo. 2016. Attending to characters in neural 
sequence labeling models. COLING 2016 - 26th Int. Conf. Comput. Linguist. Proc. COLING 
2016 Tech. Pap. (2016), 309–318.

[34]. Rush Alexander M., Chopra Sumit, and Weston Jason. 2015. A Neural Attention Model for 
Abstractive Sentence Summarization. (2015). DOI:10.18653/v1/D15-1044

[35]. Silver David, Huang Aja, Maddison Chris J., Guez Arthur, Sifre Laurent, Van Den Driessche 
George, Schrittwieser Julian, Antonoglou Ioannis, Panneershelvam Veda, Lanctot Marc, 
Dieleman Sander, Grewe Dominik, Nham John, Kalchbrenner Nal, Sutskever Ilya, Lillicrap 
Timothy, Leach Madeleine, Kavukcuoglu Koray, Graepel Thore, and Hassabis Demis. 2016. 
Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587 (2016), 
484–489. DOI:10.1038/nature16961 [PubMed: 26819042] 

[36]. Stubbs Amber, Filannino Michele, and Uzuner Özlem. 2017. De-identification of psychiatric 
intake records: Overview of 2016 CEGS N-GRID shared tasks Track 1. J. Biomed. Inform 75, 
(2017), S4–S18. DOI:10.1016/j.jbi.2017.06.011

[37]. Stubbs Amber, Kotfila Christopher, and Uzuner Özlem. 2015. Automated systems for the 
de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared 
task Track 1. J. Biomed. Inform 58, (2015), S11–S19. DOI:10.1016/j.jbi.2015.06.007 [PubMed: 
26225918] 

[38]. Suominen Hanna, Salanterä Sanna, Velupillai Sumithra, Chapman Wendy W., Savova Guergana, 
Elhadad Noemie, Pradhan Sameer, South Brett R., Mowery Danielle L., Jones Gareth J.F., 
Leveling Johannes, Kelly Liadh, Goeuriot Lorraine, Martinez David, and Zuccon Guido. 2013. 
Overview of the ShARe/CLEF eHealth evaluation lab 2013. Inf. Access Eval. Multilinguality, 
Multimodality, Vis (2013), 212–231. DOI:10.1007/978-3-642-40802-1_24

[39]. Sweeney L. 1996. Replacing personally-identifying information in 
medical records, the Scrub system. AMIA Annu Symp Proc 
(1996), 333–7. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2233179&tool=pmcentrez&rendertype=abstract

Lee et al. Page 13

ACM Trans Comput Healthc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1802.05365
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2233179&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2233179&tool=pmcentrez&rendertype=abstract


[40]. Tao Carson, Michele Filannino, and Uzuner Özlem. 2018. Extracting ADRs from Drug Labels 
using Bi-LSTM and CRFs. AMIA 2018 Annu. Symp (2018).

[41]. Temme Elisabeth H.M., Toxopeus Ido B., Kramer Gerard F.H., Brosens Marinka C.C., Drijvers 
José M.M., Tyszler Marcelo, and Ocké Marga C.. 2015. Greenhouse gas emission of diets in the 
Netherlands and associations with food, energy and macronutrient intakes. Public Health Nutr. 
18, 13 (2015), 2433–2445. DOI:10.1017/S1368980014002821 [PubMed: 25543460] 

[42]. Thomas Sean M, Mamlin Burke, Schadow Gunther, and McDonald Clement. 2002. A successful 
technique for removing names in pathology reports using an augmented search and replace 
method. AMIA Annu Symp (2002), 777–81. DOI:https://doi.org/D020002380 [pii]

[43]. Toral Antonio, Llopis Fernando, Munoz Rafael, and Noguera Elisa. 2005. Reducing Question 
Answering Input Data Using Named Entity Recognition. In Proceedings 8th International 
Conference on Text, Speech & Dialogue.

[44]. Uzuner Ozlem, Luo Yuan, and Szolovits Peter. 2007. Evaluating the State of the Art 
in Automatic De-identification. J. Am. Med. Informatics Assoc 14, 5 (2007), 550–563. 
DOI:10.1197/jamia.M2444.Introduction

[45]. Uzuner Özlem, Solti Imre, and Cadag Eithon. 2010. Extracting medication information 
from clinical text. J. Am. Med. Informatics Assoc 17, 5 (2010), 514–518. DOI:10.1136/
jamia.2010.003947

[46]. Uzuner Özlem, South Brett R., Shen Shuying, and DuVall Scott L.. 2011. 2010 i2b2/VA 
challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Informatics Assoc 
18, 5 (2011), 552–556. DOI:10.1136/amiajnl-2011-000203

[47]. Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob, Jones Llion, Gomez Aidan N., 
Kaiser Lukasz, and Polosukhin Illia. 2017. Attention Is All You Need. 31st Conf. Neural Inf. 
Process. Syst. NIPS (6 2017), 1082–1086. DOI:10.1145/2964284.2984064

[48]. Wang Yanshan, Liu Sijia, Afzal Naveed, Rastegar-Mojarad Majid, Wang Liwei, Shen Feichen, 
Kingsbury Paul, and Liu Hongfang. 2018. A comparison of word embeddings for the 
biomedical natural language processing. J. Biomed. Inform 87, 7 (2018), 12–20. DOI:10.1016/
j.jbi.2018.09.008 [PubMed: 30217670] 

[49]. Wei Chih-hsuan, Peng Yifan, Leaman Robert, Davis Allan Peter, Mattingly Carolyn J, Li Jiao, 
Wiegers Thomas C, and Lu Zhiyong. 2015. Overview of the BioCreative V Chemical Disease 
Relation (CDR) Task. Proc. Fifth BioCreative Chall. Eval. Work (2015), 154–166.

[50]. Xu Guohai, Wang Chengyu, and He Xiaofeng. 2018. Improving Clinical Named 
Entity Recognition with Global Neural Attention. In APWeb-WAIM. 264–279. 
DOI:10.1007/978-3-319-96893-3_20

[51]. Xu Kai, Zhou Zhanfan, Hao Tianyong, and Liu Wenyin. 2017. A Bidirectional LSTM and 
Conditional Random Fields Approach to Medical Named Entity Recognition. Proc. Int. Conf. 
Adv. Intell. Syst. Informatics (2017). DOI:10.1007/978-3-319-64861-3

[52]. Xu Kelvin, Ba Jimmy, Kiros Ryan, Cho Kyunghyun, Courville Aaron, Salakhutdinov Ruslan, 
Zemel Richard, and Bengio Yoshua. 2015. Show, Attend and Tell: Neural Image Caption 
Generation with Visual Attention. (2015). Retrieved from http://arxiv.org/abs/1502.03044

[53]. Yadav Vikas, Sharp Rebecca, and Bethard Steven. 2018. Deep Affix Features Improve Neural 
Named Entity Recognizers. Proc. Seventh Jt. Conf. Lex. Comput. Semant. (2018), 167–172. 
DOI:10.18653/v1/S18-2021

[54]. Yang Hui and Garibaldi Jonathan M.. 2015. Automatic detection of protected health information 
from clinic narratives. J. Biomed. Inform 58, (2015), S30–S38. DOI:10.1016/j.jbi.2015.06.015 
[PubMed: 26231070] 

[55]. Yang Xi, Lyu Tianchen, Li Qian, Lee Chih Yin, Bian Jiang, Hogan William R., and Wu 
Yonghui. 2019. A study of deep learning methods for de-identification of clinical notes in 
cross-institute settings. BMC Med. Inform. Decis. Mak 19, Suppl 5 (2019), 1–9. DOI:10.1186/
s12911-019-0935-4 [PubMed: 30616584] 

[56]. Zukov-Gregoric Andrej, Bachrach Yoram, Minkovsky Pasha, Coope Sam, and Maksak Bogdan. 
2017. Neural Named Entity Recognition Using a Self-Attention Mechanism. In 2017 IEEE 
29th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 652–656. 
DOI:10.1109/ICTAI.2017.00104

Lee et al. Page 14

ACM Trans Comput Healthc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/D020002380
http://arxiv.org/abs/1502.03044


CCS CONCEPTS

• Computing methodologies~Artificial intelligence~Natural language 

processing~Information extraction • Applied computing~Life and medical 

sciences~Health informatics

Lee et al. Page 15

ACM Trans Comput Healthc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
The architecture of biLSTM-CRF-based NER systems at token xt. Token xt consists of 

l characters. VC and VT are the mappings from character-to-character embeddings and 

from token-to-token embeddings, respectively. BiLSTM output over character embeddings is 

concatenated with pre-trained token embeddings et. The concatenated embedding is fed into 

another biLSTM layer to produce dt. The probability vector at is produced using dt and the 

predicted label yt is adjusted with CRF sequence optimizer.
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Figure 2: 
A structure of our proposed system at token xt. The n-gram context embeddings, deep prefix 

feature and attention mechanism are integrated with conventional character embeddings 

and token embeddings. Our context embeddings with n-grams are shown in the bottom­

right shaded area. Unlike the conventional approach that loads only one pre-trained word 

embedding per token, our approach loads 2n + 1 embeddings per token and processes 

via RNN units to derive n-gram context embeddings. The feature embedding et is the 

concatenation of character-, token-, and context-embeddings along with deep prefix features 

of token xt. The output of the attention mechanism is merged with the biLSTM outputs over 

the concatenated embedding and then merged into vector dt, which is used to calculate at, 

the probability vector over labels.
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Table 1:

Overview of the de-identification datasets

2006 Dataset 2014 Dataset 2016 Dataset

Records 889 1,304 1,000

Tokens 580,800 805,118 1,862,452

Tokens per record 653 617 1,862

Tokens per sentence 11.25 7.3 10.4

Sentences 51,583 110,434 179,593

Sentences per record 58 85 180

i2b2-PII 19,669 28,872 34,364

i2b2-PII per record 22 22 34
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Table 2:

Results on the test sets per feature set

Feature Sets
2006 Dataset 2014 Dataset 2016 Dataset

P (%) R (%) F 1 P (%) R (%) F 1 P (%) R (%) F 1

NeuroNER (baseline) 97.0 95.1 96.0 92.4 91.0 91.7 89.2 87.0 88.1

CEDI 97.7 95.1 96.4 93.4 91.5 92.4 91.1 88.0 89.6

CEDI + DP 97.2 95.6 96.4 94.5 91.1 92.8 91.4 88.0 89.7

CEDI + Att 97.7 95.3 96.5 93.3 91.7 92.5 91.1 88.1 89.6

CEDI + DP + Att 97.5 95.5 96.5 94.2 91.5 92.8 91.2 88.2 89.8
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Table 3:

Computational efficiencies per feature set

Feature Sets

Time cost
Environmental Impact [kg

CO2e]1

Training
[hour] Inference [min] Training Inference

NeuroNER (baseline) 8.03 1.88 3.14 0.013

CEDI 15.22 4.53 5.95 0.026

NeuroNER + ELMo 15.58 7.70 6.16 0.064

1To put into perspective, the average greenhouse gas emissions required for the food consumed by Dutch women and men were 
measured 3.7 and 4.8 kg CO2, respectively [41]; thus, the amount of energy consumed by these systems are negligible compared to the 

carbon footprints of the human annotators of the training data.
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Table 4:

Performance comparison with the baseline per difficult entity type

Entity type
NeuroNER CEDI

P (%) R (%) F 1 P (%) R (%) F 1

Patient 86.5 83.8 85.2 87.6 83.2 85.3

Doctor 93.6 93.2 93.4 94.8 95.5 95.2

Hospital 87.3 76.2 81.4 87.3 76.8 81.7

State 88.3 89.4 88.8 89.4 91.5 90.4

City 83.8 87.3 85.5 83.0 89.0 85.9

Street 77.8 58.3 66.7 69.0 58.8 63.5
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Table 5:

Comparison of n-gram context embeddings vs ELMo

Feature Sets
2006 Dataset 2014 Dataset 2016 Dataset

P (%) R (%) F 1 P (%) R (%) F 1 P (%) R (%) F 1

NeuroNER (baseline) 97.0 95.1 96.0 92.4 91.0 91.7 89.2 87.0 88.1

NeuroNER + ELMo 96.9 95.7 96.3 94.3 91.4 92.8 90.9 87.2 89.0

CEDI 97.7 95.1 96.4 93.4 91.5 92.4 91.1 88.0 89.6

CEDI + ELMo 97.4 96.1 96.7 94.7 91.8 93.3 92.2 89.0 90.5
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Table 6:

Performance gains from n-gram context embeddings on other medical entity recognition tasks

Feature Sets
ShaRe/CLEF BC5CDR

P (%) R (%) F 1 P (%) R (%) F 1

NeuroNER (baseline) 78.1 70.3 74.0 84.4 80.6 82.4

CEDI 78.9 70.7 74.5 83.8 82.0 82.9
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