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Abstract

This study presents a framework for plasticity and elastoplastic damage mechanics by treating

materials as reactive solids whose internal composition evolves in response to applied loading.

Using the framework of constrained reactive mixtures, plastic deformation is accounted for by

allowing loaded bonds within the material to break and reform in a stressed state. Bonds which

break and reform represent a new generation with a new reference configuration, which is time-

invariant and provided by constitutive assumption. The constitutive relation for the reference

configuration of each generation may depend on the selection of a suitable yield measure. The

choice of this measure and the resulting plastic flow conditions are constrained by the Clausius–

Duhem inequality. We show that this framework remains consistent with classical plasticity

approaches and principles. Verification of this reactive plasticity framework, which is implemented

in the open source FEBio finite element software (febio.org), is performed against standard 2D

and 3D benchmark problems. Damage is incorporated into this reactive framework by allowing

loaded bonds to break permanently according to a suitable damage measure, where broken bonds

can no longer store free energy. Validation is also demonstrated against experimental data for

problems involving plasticity and plastic damage. This study demonstrates that it is possible to

formulate simple elastoplasticity and elastoplastic damage models within a consistent framework

which uses measures of material mass composition as theoretically observable state variables. This

theoretical frame can be expanded in scope to account for more complex behaviors.
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1. Introduction

In a reactive framework, a solid may be defined as a material whose bonds (e.g., chemical

bonds, such as metallic bonds) may store strain energy. Any dissipation of stored energy

occurs as a result of bond breakage, which represents a reaction that transforms intact bonds

into either permanently broken bonds, or bonds reformed in a new reference configuration.

When bonds break permanently, they are no longer able to store free energy upon loading

and this reactive framework describes damage mechanics (Nims et al., 2016). In that case, it

is typical to assume that not all bonds in an elemental region of the continuum break

simultaneously; the fraction of bonds that remain intact may continue to store free energy,

whereas the fraction of broken bonds represents the measure of damage (Nims et al., 2016).

When bonds break and reform, the material response is no longer elastic and the reference

configuration of the bonds’ reformed state determines alternative frameworks of reactive

mechanics. For example, when loaded bonds break and reform into a stress-free state, the

resulting material response is consistent with viscoelasticity, where the rate response is

governed by the kinetics of bonds breaking and reforming (Ateshian, 2015).

This study is motivated by our interest in the mechanics of biological tissues, including

growth mechanics, damage mechanics and fatigue failure. Modeling material responses

using a reactive framework that depends on evolving composition is desirable in

biomechanics, since many experimental methods exist to track their composition, including

various imaging techniques and biochemical assays. In an effort to develop a reactive theory

for fatigue failure of biological tissues, we find it necessary to validate this reactive mixture

framework against the classic literature on metallic fatigue. To account for the significant

plastic deformation which virtually always accompanies metallic fatigue, our first aim was

to develop a compatible reactive mixture theory for plastic (permanent) deformation and

damage. Thus, the purpose of this work is to present our finding that a reactive solid with

bonds that break and reform can reproduce behaviors consistent with standard

elastoplasticity and damage, thereby offering an alternative framework for these classical

topics.

In this study we describe the mechanism by which loaded bonds break and reform into a

stressed state. By restricting our analysis to isothermal processes, we demonstrate that the

resulting response reproduces the classical framework of plasticity, when all bonds within an

elemental region break simultaneously and reform into a stressed state. Then, elastoplastic

damage occurs when a fraction of intact or reformed bonds breaks permanently in response

to loading. The simplest constitutive assumption for plasticity is that all bonds within an

elemental region break at the same yield threshold, which produces an elastic–perfectly

plastic response; a more elaborate formulation would allow different bond types to break at

different thresholds, or the same bond type to break over a range of thresholds described by

a probability density function, or combinations thereof. In this paper we show that the
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phenomenon commonly described as plastic hardening may be modeled using multiple bond

families within an elemental region, which exhibit distinct yielding thresholds. We also

assume that the time constant for bond-breaking-and-reforming reactions is much shorter

than the characteristic time of loading, which is effectively represented as an instantaneous

bond reformation process.

In a reactive framework, bonds that break and reform are modeled as different mixture

constituents and their evolving mass concentrations are governed by the axiom of mass

balance, which is a first-order differential equation in the time variable. We can formulate

constitutive relations to describe the mass supply to each constituent in the mass balance

equations, which govern the bond kinetics. Since they are measures of composition, bond

concentrations represent observable variables of state. In a reactive framework that allows

new solid constituents to form as products of a reaction, the reference configuration of each

solid product is postulated by constitutive assumption, based on the nature of bond reactions.

To describe bond breaking and reforming reactions we use the framework of constrained

reactive mixtures (Humphrey and Rajagopal, 2002; Nims and Ateshian, 2017), which

represents a specialization of the general theory of reactive mixtures originally formulated

by Truesdell and Toupin (1960) and further elaborated by Kelly (1964) and Eringen and

Ingram (1965). A constrained mixture represents a mixture of constituents that all share the

same velocity but not necessarily the same reference configuration (Humphrey and

Rajagopal, 2002). The specialization of mixture theory to constrained reactive mixtures was

presented in our previous study of multi-generational growth mechanics (Ateshian and

Ricken, 2010) and used in our presentation of reactive viscoelasticity (Ateshian, 2015) and

reactive damage mechanics (Nims et al., 2016). A review of this framework may also be

found in Nims and Ateshian (2017).

The basic concept of explicitly modeling plastic deformation as arising from some manner

of internal configuration change has been reported previously in the biomechanics and

plasticity literature. Rajagopal and coworkers (Rajagopal and Srinivasa, 1998a,b) have

developed a consistent theoretical framework for a “multiconfigurational approach” to any

manner of inelastic behavior, and applied this concept to diverse behaviors including

viscoelasticity (Rajagopal and Srinivasa, 2004), polymer crystallization (Rao and Rajagopal,

2000), plasticity of polymeric networks (Rajagopal and Wineman, 1992; Muliana et al.,

2016), load reversal in metals (Mollica et al., 2001), and anisotropic fluids (Rajagopal and

Srinivasa, 2001). The basic concept in this work is the existence of any number of natural

configurations for a material, with accompanying families of elastic response functions, each

with their own natural configuration. Changes in the material’s microstructure lead to

changes in the natural configuration and hence material response. Similarities to our

approach may be found in many of these works. In particular, the study on plasticity of

polymeric networks by Rajagopal and Wineman (1992) provides a physical explanation of

network junctions breaking and reforming as a different network. Despite the conceptual

similarities, the multiconfigurational approach relies upon altering the natural configuration

of the material, whereas we present a reaction kinetics-based approach that creates new

materials as products of a reaction.
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Alternatively, the recent papers by Montáns and coworkers (Zhang and Montans, 2019;

Nguyen et al., 2020) assemble nonlinear kinematic hardening behavior by superposing the

response of N elastic–perfectly plastic “Prandtl devices”, remarkably similar to Section 4 of

this work where a reactive mixture of multiple elastic–perfectly plastic bond families is used

for the same purpose. In the biomechanics literature, a recent study on permanent

deformation of crosslinked collagen appealed to crosslinks forming and dissociating,

governed by reaction kinetics and a stretch-based criterion (Ban et al., 2018). Deformation

was captured by relative deformation gradients evaluated from the deformation at the time a

new crosslink formed. Safa et al. applied constrained reactive mixtures to inelasticity of

fibrous soft tissues (Safa et al., 2019b) and used the model to evaluate plasticity and damage

in tendon (Safa et al., 2019a). However, these authors did not attempt to treat metallic

plasticity, and several elements of their presentation differ significantly from the present

work.

In the following presentation, we frequently use terminology most familiar to researchers

within the field of plasticity, invoking terms such as plastic strain and plastic deformation

tensor to apply physical meaning to equations. It is important to understand, as we address

further below, that our usage of these terms is based on analogy with classical theories and

does not share a one-to-one correspondence. In particular, our framework does not employ

plastic deformation or plastic strain as a state variable. Instead, a tensorial constitutive model

relates the reference configuration of a newly-formed bond to the reference configuration of

the undeformed material. Though this is conceptually similar to the plastic deformation

gradient in standard theories, no evolution equation is postulated for this function of state in

our framework. Additionally, though a plastic strain-like quantity may be extracted from this

function of state for purposes of comparison to experimental and numerical results, this

measure is not an observable variable in our framework. This point is emphasized here and

later in our presentation, as it is well-understood today that plastic strain is ill-defined,

physically ambiguous and non-observable, and does not represent a valid state variable

(Naghdi, 1990; Rubin, 2001; Volokh, 2013).

This paper is structured as follows: In Section 2 we briefly review salient features of our

constrained reactive mixture theory. Section 3 develops a formulation for reactive plasticity

with a single bond family, producing elastic–perfectly plastic behavior. Section 4 extends the

reactive plasticity framework to multiple coexisting bond families, allowing different

families to yield at different thresholds. Results from this section also demonstrate that this

model with multiple bond families produces kinematic hardening-like behavior consistent

with the well-known Bauschinger effect (Skelton et al., 1997). Section 5 synthesizes our

earlier work on reactive damage mechanics (Nims et al., 2016) with reactive plasticity to

develop a thermodynamically consistent framework for elastoplastic damage mechanics. A

finite element implementation is used in Section 6 to present results of verification and

validation studies, with closure provided in the discussion, Section 7.
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2. Elements of a constrained reactive mixture theory

2.1. Mixture kinematics

Consider a mixture of multiple constituents α. The motion of each constituent is given by

χα (Xα, t), where Xα denotes a material point in the reference configuration of that

constituent. At the current time t, various constituents α which occupy an elemental region

with a spatial position x may have originated from distinct referential positions Xα. We often

label a convenient constituent as the master constituent s (e.g., the oldest constituent in a

reactive mixture with evolving composition) and call the reference configuration Xs the

master reference configuration. All the referential mass densities and mass density supplies

(see below) are evaluated relative to the master reference configuration Xs. The kinematics

of each constituent α may be related to the kinematics of the master constituent s through

x = χs Xs, t = χα Xα, t . (2.1)

By definition, a mixture is constrained when the material time derivative of this relation in

the material frame produces the same velocity v for all constituents. However, as detailed

previously (Ateshian and Ricken, 2010; Nims and Ateshian, 2017), constituents may have

distinct deformation gradients Fα = ∂χα/∂Xα. When a reaction converts a reactant α = a into

a product α = b, these constituents may have distinct reference configurations. The

deformation gradient of the master constituent Fs, which also serves as the total deformation

gradient, may be related to the relative deformation gradient Fα of constituent α by applying

the chain rule to Eq. (2.1), producing

Fs Xs, t = ∂χs Xs, t
∂Xα ⋅ ∂Xα Xs

∂Xs = Fα Xs, t ⋅ Fαs Xs . (2.2)

In this expression, Fαs (Xs) is the deformation gradient of α relative to s, which must be

postulated by constitutive assumption. The relationship between Xα and Xs is time-invariant;

consequently, Fαs is a time-invariant spatial mapping. It follows that only one deformation

gradient represents an independent state variable in a constrained mixture framework,

whereas all others are related to it via Eq. (2.2); any of the Fα’s may be selected, based on

convenience. In Eq. (2.2) the spatio-temporal arguments have been written explicitly for

clarity. These dependencies are implied in the forthcoming sections and henceforth those

arguments may be selectively suppressed. Taking the determinant of Eq. (2.2) produces a

relation between the volume ratios Jα = det Fα and Js = det Fs,

Js = JαJαs, (2.3)

where Jαs = det Fαs.

2.2. Mixture composition

Each constituent α has an apparent mass density ρα which may evolve due to deformation,

or due to reactive processes which alter the mixture composition. Following Bowen (1969)
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and Ateshian (2007), we define the referential apparent mass density ρr
α of each constituent

as

ρr
α = Jsρα . (2.4)

Eq. (2.4) expresses the mass of constituent α per referential volume of the master constituent

s; thus ρr
α may only evolve if the mass content changes via reactions, making it a suitable

state variable for tracking composition in a reactive framework. The axiom of mass balance

for each constituent α may be written as

ρ̇r
α = ρr

α, (2.5)

where the dot operator represents the material time derivative and ρr
α is the referential mass

supply density for constituent α, representing the rate at which mass (per referential volume)

is added to α due to reactions with all other mixture constituents (Ateshian and Ricken,

2010; Nims and Ateshian, 2017). A constitutive relation must be provided for ρr
α for various

types of reactions. The mixture referential mass density ρr is given by

ρr = ∑
α

ρr
α . (2.6)

This summation is carried out over all constituents. Since a constrained mixture of solid

constituents represents a closed system, ρr remains constant over time. Taking the material

time derivative of Eq. (2.6) and using Eq. (2.5) shows that the referential mass density

supplies must satisfy

∑
α

ρr
α = 0. (2.7)

2.3. Reaction kinetics

The referential mass densities are not constant, as any number of reactions between various

mixture constituents may occur at any given time. These reactions may be triggered by

changes in any of the state variables, such as those occurring in response to loading

(typically, composition and strain). A forward reaction between a single reactant α = a and

product α = b may be represented as

ℰa ℰb, (2.8)

where ℰα is the chemical or molecular species associated with α. For example, in metallic

bonding where an electron cloud bonds neighboring metal ions, ℰα may refer to the metal

species bonded by the metallic bond. We may interchangeably refer to constituent α as the

species ℰα (whose referential mass density is ρr
α ) or the bonds α that store the specific free

energy ψα of that molecular species. In our simplified treatment, the stoichiometric
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coefficient associated with each ℰα in Eq. (2.8) is unity (more general reactions are

described in Nims and Ateshian (2017)). The stoichiometry of the reaction in Eq. (2.8)

imposes constraints on ρr
α. For each reaction we define a referential molar production rate ζ r

(units of moles per referential volume, per time), such that

ρr
a = − Maζ r

ρr
b = Mbζ r,

(2.9)

where Mα is the molar mass of ℰα. These relations, which must satisfy the constraint of Eq.

(2.7) (thus Ma = Mb), show that a constitutive relation is needed only for ζ r, from which

relations for all ρr
α follow. This framework accommodates multiple simultaneous reactions,

as ρr
α from each reaction may be summed to produce the total mass supply for each

constituent.

2.4. Bond energy

The referential free energy density of the mixture is obtained as

Ψ r = ∑
α

ρr
αψα, (2.10)

where ψα is the specific free energy of constituent α (e.g., the specific free energy stored in

the deformable bonds associated with ℰα ). An important function of state which arises later

in our treatment is the chemical potential of constituent α, given by

μα =
∂Ψ r

∂ρr
α . (2.11)

2.5. Clausius–Duhem inequality

The axiom of entropy inequality for a constrained reactive mixture takes the form described

by Truesdell and Toupin (1960) and named after Clausius and Duhem,

ρη̇ + divq
θ − ρ r

θ ⩾ 0, (2.12)

where η is the mixture specific entropy, q is the heat flux, r is the specific radiative heat
supply (positive for heat entering the continuum) and all constituents share the same

temperature θ (Coleman and Noll, 1963; Ateshian and Ricken, 2010). Using the energy

balance in Eq. (2.20) to eliminate r, we may multiply all terms by Js to rewrite this inequality

as

− Ψ̇ r + Hrθ̇ + JsT:D − Js

θ q ⋅ gradθ ≥ 0, (2.13)
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where

Ψ r = Er − θHr (2.14)

emerges naturally. In Eq. (2.13), Hr is the mixture referential entropy density, Er is the

mixture referential internal energy density, and D is the rate of deformation tensor (the

symmetric part of grad v).

For the reactive elastoplasticity and damage framework presented in this study, the state

variables are chosen to include Fs, ρr
α  to account for deformation and evolving composition

due to reactions. In particular, in our treatment we exclude the absolute temperature θ and its

gradient grad θ from the list of state variables, because we want to examine an isothermal

framework for elastoplasticity and damage, instead of a temperature-varying framework for

thermo-elastoplasticity and damage. With these state variables, we apply the chain rule to

Ψ̇ r = Ψ̇ r Fs, ρr
α  to reduce the Clausius–Duhem inequality for the mixture in Eq. (2.13) to the

residual dissipation statement

∑
α

ρr
αμα ≤ 0. (2.15)

The Clausius–Duhem inequality also introduces the following constraints on our functions

of state:

T = 1
Js

∂Ψ r

∂Fs ⋅ Fs T, (2.16)

where T is the mixture Cauchy stress, and

Hr = 0, q = 0 . (2.17)

In other words, in an isothermal process, the entropy is zero and there can be no heat

conduction.

In general, energy stored in trapped dislocations (the stored energy of cold work) cannot be

removed by a purely mechanical process and must be fluxed out as thermal energy during

heating (e.g., annealing) (Bever et al., 1973). Therefore, the isothermal framework presented

here does not and cannot account for this specific phenomenon. Consequently, all the

mechanical work done on the material during a purely inelastic process is dissipated

(Section 2.6).

In the list of state variables Fs, ρr
α , the only deformation measure is the total deformation

gradient Fs, which is observable from a defined reference state; this represents what we may

call the St. Venant approach familiar from elasticity. Given constitutive models for the

functions of state Fαs, we may evaluate the relative elastic deformation gradients Fα via Fα

= Fs ⋅ (Fαs)−1. We may then alternatively list our state variables in the form Fα, ρr
α . This

alternative is consistent with arguments that suggest only elastic strain may be observed
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without knowing a material’s history and therefore it represents the only fundamental state

variable for deformation (Eckart, 1948; Rubin, 2001; Volokh, 2013; Rajagopal and

Srinivasa, 2015, 2016).

For a plasticity and damage framework, the Clausius–Duhem inequality in Eq. (2.15)

implies that the sole dissipative process in reactive plasticity and damage results from the

bond-breaking (-and-reforming) reactions. These reactions may proceed forward if and only

if the residual dissipation statement is satisfied. The stress in this constrained reactive

mixture, Eq. (2.16), is provided by the familiar hyperelastic relation (Ateshian and Ricken,

2010), with the understanding that Ψr in Eqs. (2.10)–(2.17) may vary with evolving ρr
α, as

per the mass balance equation in Eq. (2.5). Alternatively, by making use of Eq. (2.2), the

mixture stress tensor may be written as

T = ∑
α

Tα, (2.18)

where Tα is given by

Tα = ρα∂ψα

∂Fα ⋅ Fα T . (2.19)

2.6. Energy balance

The axiom of energy balance for a constrained mixture has the same form as that of a pure

substance,

Ėr = Js(T:D − divq) + ρrr . (2.20)

In general, the internal energy is related to the free energy and entropy via Er = Ψr + θHr.

Given the constraints of Eq. (2.17) imposed by the entropy inequality for our choice of state

variables, and using the chain rule of differentiation when evaluating Ėr = Ėr Fs, ρr
α , it can

be shown that the energy balance reduces to

0 = ρrr − ∑
α

ρr
αμα . (2.21)

This relation informs us that isothermal conditions can be maintained during plasticity if the

referential reactive power density ∑α ρr
αμα produced by plastic deformation and damage

radiates out of the continuum such that ρrr = ∑α ρr
αμα. Of course, this phenomenon of

radiation should be viewed as the hypothetical process needed to maintain an artificially-

imposed isothermal plasticity and damage framework. A more elaborate framework of

thermo-elastoplasticity and damage would explicitly account for variations in the

temperature and its gradient, and the heat flux q.
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3. Reactive elastic-perfect plasticity

This section describes a reactive framework in which all loaded bonds in an elemental region

break and reform simultaneously into a stressed state with a new reference configuration,

resulting in elastic–perfectly plastic behavior. The theory outlined here is similar to our

presentation of multigenerational reactive viscoelasticity (Ateshian, 2015; Nims and

Ateshian, 2017), although bonds now reform in a stressed, rather than stress-free, state. The

aim is to show that constrained reactive mixtures can undergo permanent deformation, and

under suitable assumptions reproduce classical elastic–perfectly plastic behavior. A notable

feature of this work is that this is accomplished without recourse to plastic potentials, plastic

relaxation stress tensors, or internal variable theory (Coleman and Gurtin, 1967; Simo, 1988,

1992).

Earlier work by Safa et al. (2019b) represented the first development of plastic behavior in a

constrained reactive mixture framework; these authors introduced the concept of a “sliding

bond” and allowed for constitutively-defined sliding rules. Though conceptually similar to

the present work, Safa and co-workers were primarily interested in plasticity of biological

tissues and hence did not seek to model classical plasticity (i.e., metallic plasticity), thus our

treatment differs significantly from theirs. This development of a framework for reactive

perfect plasticity anticipates the forthcoming Section 4 where we develop a reactive theory

valid for elastoplasticity with so-called hardening, followed in Section 5 by reactive

elastoplasticity coupled with damage mechanics.

3.1. Kinematics and kinetics of the yielding reaction

We first consider elastic–perfectly plastic behavior as the simplest case within which the

new framework may be developed. In perfect plasticity, all bonds within an elemental region

break and reform simultaneously. All bonds are initially intact prior to loading, with an

initial referential mass density ρr. Consider a loaded bond in an elemental region which

breaks and reforms into a new bond with a different reference configuration. Each time that

a bond breaks and reforms, we may consider that the material associated with that reformed

bond represents a constituent α as a new generation. Thus, bonds that break and reform at

time t = u are denoted by α = u and called u–generation bonds. Similarly, bonds which break

and reform at time t = υ are called υ–generation bonds and denoted by α = υ. In what

follows, mixture constituents{s, u, υ} represent consecutive bond generations, with s
representing intact (unyielded) bonds.

The reference configuration of species ℰα bonded by α–generation bonds is Xα. The earliest

generation s (intact bonds) corresponds to t → −∞ and its reference configuration is the

master reference configuration Xs. The deformation gradient of the α–generation is related

to the master deformation gradient via Eq. (2.2). In that relation, Fαs represents the change

in the reference configuration of the α–generation relative to the reference configuration of

the s–generation; therefore, it defines the plastic deformation. Unlike the Kroner–Lee

decomposition in classical plasticity where Fs is decomposed into elastic and plastic parts

(Kroner, 1960; Lee, 1969), Fαs is not a hidden state variable in this formulation; it is a

function of state postulated by constitutive assumption.
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In the plastic regime, bonds may break and reform continuously as the deformation changes.

When the u–generation breaks and reforms into the υ–generation, it is defined as a yielding

reaction, ℰu ℰv. The mass density supplies for each generation satisfy the constraint of

Eq. (2.7). In perfect plasticity, we assume that all bonds in an elemental region break and

reform simultaneously, thus the apparent densities in consecutive generations satisfy

ρr
s = (1 − H(t − u))ρr

ρr
u = (H(t − u) − H(t − v))ρr

ρr
v = H(t − v)ρr,

(3.1)

where H (⋅) is the Heaviside unit step function and ρr = ∑α ρr
α according to Eq. (2.6).

According to the axiom of mass balance, Eq. (2.5), it follows that the referential mass

supplies are

ρr
s = − δ(t − u)ρr

ρr
u = (δ(t − u) − δ(t − v))ρr

ρr
v = δ(t − v)ρr

(3.2)

where δ (⋅) is the Dirac delta function. It is apparent from Eqs. (3.1)–(3.2) that only one

bond generation is extant at any given time. Consequently, each time the yielding reaction

takes place the entire current mass of bonded species in an elemental volume breaks and

reforms into a new generation.

3.2. Bond energy

By adopting the constitutive assumption that all bonds of a generation break simultaneously

to reform into a new generation, it implies that the referential density ρr
α of generation α

remains constant and equal to ρr over the lifetime of that generation; in particular, the

lifetime of u–generation bonds is u ≤ t < υ. We now adopt the simplifying constitutive

assumption that

ψα = ψ Fα . (3.3)

In other words, ψα is not a function of any of the evolving referential mass densities ρr
α, and

ψα has the same functional form ψ for all generations α. The first of these assumptions is

sensible since ρr
α = ρr remains constant over the lifetime of generation α; as will become

clearer below, the second assumption implies that the elastic response of the elastic–

perfectly plastic material described here remains the same regardless of the magnitude of

plastic flow. The mixture free energy density and stress are given by Eqs. (2.10) and (2.18)–

(2.19), respectively.

Substituting Eq. (3.3) into Eq. (2.11) shows that the chemical potential of generation α is

also equal to its specific free energy, μα = ψ (Fα), in this constitutive framework. In what
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follows, we may use μα, ψα, or ψ (Fα) interchangeably, depending upon which form offers

more clarity. Using Eqs. (2.6) and (2.11), we may rewrite the heat supply as

ρrr = ∑
α

ρr
αψ Fα . (3.4)

This equation is used below to further examine and quantify heat dissipation due to plastic

deformation and damage.

3.3. Yield criterion

Consider that bonds of the α–generation yield based on a scalar yield measure Φα (Uα)

(e.g., the von Mises stress), where Uα is the right stretch tensor from the polar

decomposition Fα = R ⋅ Uα, and R is the rotation tensor, assumed to also be the rotation

tensor of Fs. Thus, according to Eq. (2.2), Us = Uα ⋅Fαs; from the invariance of Us and Uα to

orthogonal transformations, it follows that Fαs is also an invariant tensor. For a classical

elastic–perfectly plastic response, we need to adopt the same functional form for the yield

measure Φα over all generations α, i.e., Φα (Uα) = Φ (Uα). This assumption allows us to

provide a method for determining Fαs for all generations based on conventional approaches

(see Section 3.4.1).

Let the yield threshold for the α–generation be given by Φm
α , which represents the threshold

value at which yielding begins.1 In our treatment, we make the simplifying assumption that

the yield threshold is a constant that remains the same for all generations α, Φm
α = Φm. For

α–generation bonds, the yield criterion may thus be defined as

φ Uα = Φ Uα − Φm ≤ 0, (3.5)

where φ (Uα) represents the yield surface of α–generation bonds whose tensorial normal is

Nα = ∂φ
∂Uα = ∂Φ Uα

∂Uα . (3.6)

This expression produces a symmetric tensorial normal Nα and ensures that rigid body

rotations do not affect the tensorial normal. A frame-invariant normal is required when using

Nα to formulate a constitutive relation for the function of state Fαs, as described in Section

3.4. When yield thresholds are formulated in stress space, the dependence on the

deformation takes the form Φ = Φ (Tα (Uα)).

Unlike classical plasticity theory, in the current mixture-based framework it is not physically

meaningful to seek a material time derivative of φ, since Fαs is a time-invariant mapping

postulated constitutively (its material time derivative is strictly equal to zero). Furthermore,

φ is a function of the stretch tensor Uα of whichever generation α is currently extant. Under

1Allowing the yield threshold to depend on the deformation, e.g., Φm
a = Φm

α Uα , would produce isotropic hardening.
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the assumptions of the present theory, an incremental form of Eq. (3.5) may be used to

formulate the plastic consistency condition. Using Eq. (3.5), it follows that

dφ = ∂φ
∂Uα :dUα = Nα:dUα . (3.7)

The yield criterion of Eq. (3.5) presents the following alternatives: φ (Uα) < 0 if the state of

deformation of the α–generation at the current time t ≥ α is below its yield threshold, or φ
(Uα) = 0 at time t = α + dt and the deformation is receding from (dφ < 0), tangent to (dφ =

0), or advancing past (dφ > 0) the yield surface. A persistent state of tangency to the yield

surface (the plastic consistency condition) implies that φ = 0 and dφ = 0. Thus, dφ > 0 only

happens for the breaking u–generation at time υ = u + dt, where it signifies the current

deformation state is not permissible, triggering bond breaking and reformation. To complete

this argument, the increment dUα which appears in Eq. (3.7) must be given by

dUu =

Uu(u + dt) − Uu(u) dφ < 0 u − generation does not break
Uu(v) − Uu(u) dφ > 0 u − generation must break
Uv(v) − Uu(u) dφ = 0 u − generation broke and reformed into v − generation,

(3.8)

for the u–generation. Upon breaking of the u–generation to form the υ–generation, the

plastic consistency condition reduces from Eqs. (3.7)–(3.8) to

Nu(u): Uv(v) − Uu(u) = 0. (3.9)

3.4. Normality condition and associated flow rule

3.4.1. Constitutive assumption for Fαs—We now provide a constitutive relation for

the collection of mappings Fαs that is consistent with classical plasticity frameworks and

validated against experimental evidence. On both theoretical (Simo, 1988; Khan and Huang,

1995; Xiao et al., 2006; Aretz, 2006; Bruhns, 2014) and exhaustive experimental (Hecker,

1976; Brown et al., 2003) grounds, it is known that plastic deformation in metals generally

obeys the normality condition and an associated flow rule, which together constrain the

increment in plastic deformation to lie normal to the yield surface in tensorial space. An

associated flow rule signifies that the scalar potential whose derivative indicates the direction

of plastic deformation is the yield criterion, and the normality condition represents the

assumption of co-directionality of the plastic deformation increment and the yield surface

normal. As pointed out by Lubliner (1986), symmetry considerations restrict such flow rules

to a six-, rather than nine-, dimensional space (see e.g., Simo (1988), Khan and Huang

(1995) and Xiao et al. (2006) for a review of the standard approach). Other investigators

have argued that the plastic spin (and hence any plastic rotation) is indeterminate and thus

may be neglected, producing irrotational plastic flow (Boyce et al., 1989; Dafalias, 1998).

These conditions are consistent with our constitutive assumption that the rotation R should
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be the same for Fs and Fα whereas the yield surface normal Nα should be evaluated using

the right stretch tensor of Fα according to Eq. (3.6).

To recover classical plasticity frameworks, the constitutive model adopted for Fαs in our

treatment takes the recursive form

Fvs −1 = Fus −1 ⋅ I − λNv
(3.10)

where

Nv = Nv

Nv:Nv (3.11)

is the unit tensor along Nυ and λ is a non-dimensional scalar which may be determined

analytically by using Eq. (3.7) and enforcing the plastic consistency condition dφ = 0. For

the earliest yielded generation u, the preceding s–generation is in the elastic regime;

therefore, Fus = I at the start of the recursive relation in Eq. (3.10). Eq. (3.10) satisfies frame

indifference since Fαs and I − λNv are invariant to orthogonal transformations.

To solve for λ, substitute Eq. (3.10) into the plastic consistency condition of Eq. (3.9) to

produce

λ = Nu(u): Uu(v) − Uu(u)
Nu(u): Uu(v) ⋅ Nv(v)

(3.12)

where

Uu(v) = Us(v) ⋅ Fus −1
(3.13)

is often called the elastic predictor. It represents the elastic stretch tensor at t = υ if no

further plastic yielding were to take place between t = u and t = υ. It has been used as an

initial guess in predictor–corrector type algorithms (Simo, 1992). The expression for λ in

Eq. (3.12) is an implicit relation, since Nυ depends on λ through Uυ. As this expression was

derived based on an infinitesimal step size, we may further assume Nυ ≈ Nu and solve for λ
directly. The solution of Eq. (3.12) remains valid for finite total deformation, provided every

increment is infinitesimal. Since this is a fairly restrictive condition, a general numerical

scheme is described in Section 3.4.2 below, which remains valid for finite step sizes,

facilitating an efficient computational implementation of this finite deformation reactive

plasticity framework.

The formulation in Eq. (3.10) implies the existence of a specific position vector Xυ for the

newly formed bond, via the mapping Fυs = ∂Xυ/∂Xs according to Eq. (2.2). However, the

evaluation of the function of state Fυs from Eq. (3.10) never requires an explicit evaluation

of Xυ. Furthermore, since Fυs is a non-observable function of state that may be

inhomogeneous across a domain, there is no value in attempting to back-calculate Xυ from

Fυs since it does not represent an observable measure. This clarification is consistent with
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the concept first described by Eckart (1948) and expanded upon by others (Rubin, 2001;

Rajagopal and Srinivasa, 2004; Sadik and Yavari, 2016, 2017; Goodbrake et al., 2021),

namely that plastically deformed materials do not necessarily admit a globally stress-free

state upon unloading.

3.4.2. Numerical algorithm—To handle finite step sizes in a numerical solution, we

may use Newton’s method to iteratively solve for λ within each time step. Our starting point

is the constitutive relation in Eq. (3.10), which may be pre-multiplied by Us (υ) to read

Uv = Uu ⋅ I − λNv
(3.14)

All the terms in this expression and for the remainder of this section are evaluated at time υ.

During plastic flow, the condition φ (Uυ) = 0 must be enforced. A Taylor series expansion

about the current iteration for λ yields

φ + ∂φ
∂Uv : ∂Uv

∂λ Δλ = 0, (3.15)

where Δλ represents an increment in the solution λ. Recognizing that ∂Uv/ ∂λ = − Uu ⋅ Nv

from Eq. (3.14), the problem to solve becomes

φ Uv − Nv: Uu ⋅ Nv Δλ = 0, (3.16)

which leads to

Δλ = Nv:Nv φ Uv

Nv: Uu ⋅ Nv . (3.17)

The algorithm is initialized with a guess of λ0 = 0, which corresponds to Uυ (υ) = Uu (υ),

i.e., the elastic deformation is given by the elastic predictor and no further plastic

deformation has occurred at this time step. λ is then updated at iteration n as λn ← λn−1 +

Δλ until convergence is achieved.

As discussed further in Section 5.2, depending on the choice of the yield function Φ, the

plastic deformation may need to be isochoric. To enforce such isochoric plastic deformation,

we modify this derivation by letting det Fυs = Jυs = 1. Then, the mapping (Fυs)−1 must be

adjusted such that Eq. (3.10) becomes

Fvs −1 = ξ Fus −1 ⋅ I − λNv , (3.18)

where

ξ = det Fus −1 ⋅ I − λNv −1/3
. (3.19)

Consequently, in our numerical algorithm, the starting point is now given by
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Uv = ξUu ⋅ I − λNv . (3.20)

In the Taylor series expansion, we now have

∂Uv

∂λ = − ξUu ⋅ Nv

+ ξ
3 I − λNv −1

:Nv Uu ⋅ I − λNv
(3.21)

Inserting Eq. (3.21) into Eq. (3.15) allows the Newton update to be identified as

Δλ = φ Uv

Nv: ξUu ⋅ Nv − ξ
3nvUu ⋅ I − λNv , (3.22)

where we defined

nv ≡ I − λNv −1
:Nv (3.23)

Application of the update formula λn ← λn−1 + Δλ then proceeds as before.

3.4.3. Calculation of tensorial normal Nα—The tensorial normal Nα contains

information about both the yield criterion and the elastic stress–strain relationship of the

material, and is defined through Eq. (3.6). Here we derive an analytical expression for the

normal tensor, given any yield measure Φ which is expressed in terms of the Cauchy stress.

The definition of Eq. (3.6) may be expanded with the chain rule as

Nα = ∂Φ
∂Tα : ∂Tα

∂Fα : ∂Fα

∂Uα (3.24)

By pulling back to the material frame, it can be shown that

∂Tα

∂Fα = Cα + I ⊘ Tα + Tα ⦸ I − Tα ⊗ I ⋅ Fα −T, (3.25)

where Cα is the spatial elasticity tensor for bond generation α and the tensor dyadic products

⨂,⊘,⦸, and ⊙ are defined in Eq. (A.1). Substituting Eq. (3.25) into Eq. (3.24) and grouping

suitable terms provides the normal as

Nα = 1
2RT ⋅ Mα ⋅ R ⋅ Uα −1 + 1

2 Uα −1 ⋅ RT ⋅ Mα T ⋅ R, (3.26)

where

Mα = ∂Φ
∂Tα :Cα + 2 ∂Φ

∂Tα ⋅ Tα − ∂Φ
∂Tα :Tα I . (3.27)
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Thus the tensorial normal may be calculated analytically as long as the derivative ∂Φ/∂Tα is

provided. Details of the derivations leading to Eqs. (3.25)–(3.27) are provided in the

Appendix.

For example, in the case where the yield measure is taken as the von Mises (effective) stress,

Φ = σY, differentiation shows that

∂Φ
∂Tα = 3

2σY
devTα . (3.28)

Alternatively, if the yield measure is taken as the specific free energy, Φ = ψ, we may

evaluate the normal directly as

Nα = ∂ψ

∂Uα = Jα

ρr
RT ⋅ Tα ⋅ R ⋅ Uα −1,

where we have made use of Eq. (2.19).

3.4.4. Relationship to classical infinitesimal plasticity—Classical models of

infinitesimal plasticity typically present the increment in the plastic strain as a function of

the increment in the total strain, and the deviatoric stress, e.g., Δεp = f (Δε, devσ) (Khan and

Huang, 1995). Here, the finite deformation constitutive relation of Section 3.4.1 is reduced

to the infinitesimal regime to examine the relationship between reactive and classical

plasticity.

Under infinitesimal strains and rotations, Fα ≈ I + εα + ω where εα is the infinitesimal

strain tensor and ω is the antisymmetric tensor such that R ≈ I+ω is the infinitesimal

rotation tensor; similarly, Uα ≈ I+εα. Under these assumptions, Eqs. (3.10) and (3.12)

reduce to

Δεp = Nu: Δε
Nu:NuNu, (3.30)

where Δεp and Δε are increments in the plastic and total strain, respectively, defined by

Δεp = εvs − εus

Δε = εs(v) − εs(u) .
(3.31)

Under the same assumptions, it can be shown that Eq. (3.27) reduces to Mα = ∂Φ/ ∂Tα :Cα

while Eq. (3.26) now produces Nα = Mα. When the yield measure is taken to be the von

Mises stress, Φ = σY, and the material is linear isotropic elastic, Tα = λ (tr εα)I+2Gεα

where λ and G are the Lamé constants, we find from Eq. (3.28) that Nu = (3G/σY) dev Tu.

Inserting this result into Eq. (3.30) and recalling that σY = 3
2devTu:devTu produces
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Δεp = 3(devσ : Δε)
2σY

2 devσ, (3.32)

where σ ≡ Tu. Eq. (3.32) is identical to the classical Prandtl–Reuss constitutive relation for

infinitesimal plasticity (Khan and Huang, 1995), demonstrating that our alternative reactive

mixture framework does reduce to a familiar form in the limit of infinitesimal strains and

rotations when the von Mises stress is adopted as the yield criterion.

3.5. Thermodynamics

3.5.1. Clausius–Duhem inequality—For bond reactions producing plastic behavior

the residual dissipation constraint of Eq. (2.15) is equivalent to

−δ(t − u) ψ Fs(t) − ψ Fu(t) − δ(t − v) ψ Fu(t) − ψ Fv(t) ≤ 0, (3.33)

where we have made use of Eqs. (3.2)–(3.3). Therefore, at t = υ, when u–generation bonds

break and reform into υ–generation bonds, we must have

ψ Fu(v) ≥ ψ Fv(v) . (3.34)

where Fu (υ) = R⋅Uu (υ) is related to the elastic predictor of Eq. (3.13). In other words, to

satisfy the entropy inequality, the specific free energy of the breaking bond must be greater

than that of the reforming bond at the time of the reaction. By definition, when plastic

deformation is impending, Fu (υ) lies outside the yield surface whereas Fυ (υ) lies on the

yield surface, causing u–generation bonds to break and reform into υ–generation bonds.

Therefore, the yield criterion must be defined such that it satisfies this thermodynamic

constraint. Using Eq. (2.2), we can also see that Fu (υ) = Fυ (υ)⋅Fυu, where Fυu = Fυs⋅(Fus)
−1 is the plastic deformation increment from u to υ. Thus, the thermodynamic constraint in

Eq. (3.34) is entirely dependent on the constitutive model for the plastic deformation Fαs,

which itself depends on the yield function φ, as illustrated in Section 3.3.

For example, for an isotropic linear elastic solid undergoing infinitesimal strains, its specific

free energy is

ψ εα = K
2ρr

trεα 2 + G
ρr

devεα : devεα , (3.35)

where K > 0 is the bulk modulus and G > 0 is the shear modulus. The yield surface for the

von Mises criterion is defined by φ = 0, where

φ εα = G 6 devεα : devεα − σY . (3.36)

From the definition of yielding (Section 3.3), we must have φ (εu (υ)) > 0 while φ (ευ (υ)) =

0 with an associated flow rule. Combining these relations produces
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ρr
G ψ εu(v) − K

2G trεu(v) 2 >
ρr
G ψ εv(v) − K

2G trεv(v) 2 . (3.37)

Plastic deformation is isochoric in this case (tr εus = tr ευs = 0) due to the dual constitutive

assumptions of an associated flow rule and the von Mises yield criterion, as can be verified

by the fact that tr Δεp = 0 in Eq. (3.32) (Section 3.4.4). Consequently, since εs (υ) = εu (υ) +

εus = ευ (υ) + ευs, it follows that tr εu (υ) = tr ευ (υ) = tr εs (υ). Substituting this result into

Eq. (3.37) shows that the Clausius–Duhem inequality constraint in Eq. (3.34) is

automatically satisfied by our choice of the von Mises yield criterion with an associated flow

rule.

3.5.2. Energy dissipation—Any free energy dissipated in the bond reaction will be

converted to heat according to Eq. (3.4). When we substitute the mass supply densities of

Eq. (3.2) into this relation, we find that the specific heat supply resulting from u–generation

bonds breaking and reforming at time t = υ is

r(t) = δ(t − v) ψ Fv(v) − ψ Fu(v) . (3.38)

Thus, over the duration u < t ≤ υ, the specific heat that has been released is ψ (Fυ (υ)) − ψ
(Fu (υ)). According to the Clausius–Duhem constraint in Eq. (3.34), this quantity is

negative, consistent with the fact that heat is leaving the continuum (exothermic reaction) to

maintain it at constant temperature.

3.6. Discussion

The theory of reactive plasticity outlined in this section falls under the category of

incremental theories of plasticity, in that the plastic deformation is path-dependent (in

contrast to a deformation theory) (Khan and Huang, 1995). Under the reactive framework,

the material response is dependent upon the composition of the bonds which comprise the

material, and the bond compositions evolve during the course of loading. Classical theories

of plasticity recognize that in terms of observable state variables, such as the deformation

gradient F, the response of functions of state such as T = T(F) cannot be defined uniquely,

leading to the introduction of hidden (internal) state variables which are non-observable. By

postulating evolution equations for a suitable set of internal variables, following the

procedure outlined by Coleman and Gurtin (1967), unique plastic behavior could be

described.

In contrast, in the reactive mixture framework the mathematics produce a material response

that depends only on observable state variables Fs, ρr
α . This dependence emerges because

the mixture is described in terms of referential bond mass densities ρr
α, whose evolution is

governed by mass balance. No state variables representing plastic strain-like quantities are

involved. Our reactive mixture framework proposes that the mapping Fαs (Xs) that relates

the reference configuration of generation α to the master reference configuration s is a

function of state, for which a constitutive relation must be provided, such as that presented in

Eq. (3.10). Like other functions of state, e.g., stress or heat flux, the constitutive model for
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the mapping Fαs (Xs) may be validated by measuring observable variables (e.g., surface

traction for the stress, temperature gradient for the heat flux) and comparing those

measurements to predictions that employ those constitutive models. In particular, the

constitutive model for Fαs (Xs) may be validated by performing measurements of the

deformation gradient Fs (Xs, t), as illustrated in several examples in Section 6 below,

particularly in Section 6.5. Plastic strains reported in our presentation are non-observable

functions of state rather than state variables.

As seen in Eqs. (2.16)–(2.19), our reactive formulation of plasticity recovers expressions for

the stress, Eqs. (2.18)–(2.19), which are of the same form as for hyperelasticity. In contrast

to theories labeled “hyper-elasto-plastic” (e.g., Wallin et al. (2003)), which propose

hyperelastic (rather than hypo-elastic) behavior only prior to yield, the reactive theory

described in this section achieves plastic deformation through familiar hyperelastic relations,

by allowing bonds to break and reform with different reference configurations, such that the

stress is always derived from the same strain energy potential by differentiating it with

respect to elastic deformation. Our theory is not unique in this regard (Zhang and Montans,

2019; Nguyen et al., 2020), and this type of formulation does not imply improved

performance, but in our view it offers a simpler set of equations and allows the numerical

implementation to be achieved using a standard hyperelastic framework. Limitations to the

present theory are addressed more thoroughly in Section 4, following development of a

general theory of reactive elastoplasticity which includes hardening.

4. Reactive plasticity with kinematic “hardening”

The framework presented in Section 3 has only considered perfect plasticity, i.e., all the

bonds yield when a single yield criterion is met. However, a wealth of experimental results

show a more progressive yielding, rather than a sudden onset, and an increase in the stress

with increasing plastic deformation, a phenomenon alternately termed strain hardening or

work hardening (Khan and Huang, 1995). The simplest form of hardening is known as

isotropic hardening, where the boundaries of the yield surface expand uniformly. For a

reversal of load, isotropic hardening predicts yielding occurs when the change in load is

twice the highest value reached before unloading. Classical plasticity allows the yield

threshold to evolve as a function of the accumulated plastic strain for isotropic hardening

(Khan and Huang, 1995); more modern theories shift the yield surface based upon

constitutively-prescribed evolution equations for internal hardening variables (Henann and

Anand, 2009). In our framework, this method would correspond to having distinct Φm
α  for

each generation α, where Φm
α = Φm

α Uα . However, as noted previously, we hold Φm
α  constant

across generations α.

Isotropic hardening cannot predict the Bauschinger effect demonstrated by real materials,

where loading to yield in one direction changes the yield threshold in the reverse direction

(Khan and Huang, 1995; Skelton et al., 1997). The hardening behavior that accounts for this

effect is known as kinematic hardening; for a load reversal, it predicts yielding occurs when

the change in load achieves twice the monotonic yield strength. The reactive framework can

be extended to allow for kinematic hardening by introducing multiple families of bonds.
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Each bond family β may have its own yield function Φβ and associated threshold Φmβ, and

follows the elastic–perfectly plastic behavior for multiple generations outlined in Section 3.

As will become evident below, the superposition of multiple bond families β in parallel

naturally develops behavior consistent with kinematic hardening, as different bond families

yield at different thresholds. This reactive framework is conceptually similar to a Masing-

type model (Skelton et al., 1997) and recent studies considering superposition of elastic–

perfectly plastic Prandtl devices (Zhang and Montans, 2019; Nguyen et al., 2020), with our

bond families behaving like Masing elements or Prandtl devices, respectively, though details

of the presentation differ significantly.

4.1. Notation

We consider multiple bond families β = 0, …, nf −1, which may yield or get damaged under

different criteria or thresholds, where each bond family may evolve over multiple

generations α. We assume that there are no reactions between bonds of different families β.

This framework requires us to update our notation to include a subscript β for suitable

variables introduced in the presentation above. In particular, the reference configuration of

generation α in bond family β is now denoted by Xβ
α and the corresponding deformation

gradient is Fβ
α. We assume that the specific free energy function of bond family β is ψ β Fβ

α ,

which takes the same form for all generations α of that family, as before. The master

reference configuration of all bond families remains Xs and the associated (total)

deformation gradient is still Fs. Therefore, each bond family β requires a constitutive

relation for the function of state Fβ
αs in the updated form of Eq. (2.2), such as that given in

Eq. (3.10), where each term should now include a subscript β.

The referential mass density of bond family β is ρrβ, such that the mixture referential mass

density is given by ρr = ∑β ρrβ. The referential mass density of generation α in bond family

β is ρrβ
α , which satisfies ∑α ρrβ

α = ρrβ, as per Eq. (2.6). For convenience, we define

wβ ≡
ρrβ
ρr

, ∑
β

wβ = 1, (4.1)

which represents the mass fraction of each bond family β within the constrained solid

mixture, and

wβ
α =

ρrβ
α

ρrβ
, ∑

α
wβ

α = 1, (4.2)

which represents the mass fraction of each generation α within the bond family β. From

these definitions, it follows that bond family mass fractions wβ are time-invariant, whereas

generation mass fractions wβ
α evolve with bond-breaking-and-reforming reactions.

The mixture stress T is given by Eq. (2.16), where Ψr is now
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Ψ r = ∑
β

∑
α

ρrβ
α ψ β Fβ

α = ρr∑
β

wβ∑
α

wβ
αψ β Fβ

α . (4.3)

It follows from Eq.(2.16) that the mixture stress may be expressed as the weighted sum of

stresses Tβ in each bond family,

T = ∑
β

wβTβ, Tβ = ∑
α

wβ
αTβ

α, (4.4)

where the stress in generation α of bond family β is

Tβ
α = ρ

∂ψ β

∂Fβ
α ⋅ Fβ

α T . (4.5)

Here, Tβ
α is the stress calculated under the assumption that the entire mixture consists of

bonds only from family β in generation α. Similarly, Tβ is the stress under the assumption

that the entire mixture consists of bonds only from family β, accounting for contributions

from all its generations α.

4.2. Theoretical formulation

4.2.1. Mixture composition and yielded bond fraction—To simplify the following

presentation, we introduce the concept of yielded bonds, denoted by y, to represent bonds of

the current extant generation in a plasticity formulation. The yielded bond fraction for each

family β is given by

wβ
y = ∑

α ≠ s
wβ

α = 1 − wβ
s

(4.6)

where the summation runs over all possible yielded generations α ≠ s. In particular, at time t

= u, Eq. (4.6) reduces to the statement wβ
y = wβ

u. We then define the relative deformation

gradient of yielded bonds as Fβ
y , which equals Fβ

α for the extant generation α in family β.

With these notational changes, we may write Eq. (2.8) in the equivalent form

ℰs ℰu ℰv …
ℰy

.
(4.7)

We may also define the total fraction ws of intact bonds in the mixture as ws = ∑β wβwβ
s , and

the total fraction of yielded bonds as wy = ∑β wβwβ
y = 1 − ws, such that ws + wy = 1.

Let each bond family β exhibit an elastic–perfectly plastic response, following the model of

Section 3. Once the yield threshold Φmβ is reached, all the intact bonds of that family yield

at once, such that wβ
s = 0 and wβ

y = 1, as shown for the mixture stress response in Fig. 1a–c.

Now consider that there are three bond families, β = 0, 1, 2 which are weighted evenly, wβ =

1/3∀β; also consider that ψβ = ψ, implying that each bond family exhibits the same elastic
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response. The stress response for this illustrative example is shown in Fig. 1d–f. Though

each bond family is elastic–perfectly plastic, their superposition develops “hardening”-like

behavior. At the onset of yielding, when family β = 0 yields, its bond mass fractions are

w0
s = 0 and w0

y = 1, implying that this entire family has yielded. However, since the family

has a mass fraction w0 = 1/3 in the solid mixture, two-thirds of the bonds in the mixture

remain intact at this juncture, 1 − w0
s = 2/3. As subsequent families β yield, their bonds

transition from intact to yielded generations in the same manner. Though the stress response

in Fig. 1d is classically described as a “hardening” behavior, our reactive mixture framework

proposes a different interpretation, namely that there are multiple elastic–perfectly plastic

bond families in the material, each with a different threshold of yielding (Skelton et al.,

1997; Zhang and Montans, 2019; Nguyen et al., 2020).

For each bond family β, the family mass fraction wβ, the functional forms of the specific

strain energy ψβ and yield function Φβ, and the associated yield threshold Φmβ must be

provided by constitutive assumption. The total number nf of bond families must also be

provided. The simplest approach, adopted in all the illustrations in this paper, is to assume

that ψβ and Φβ have the same respective functional forms ψ and Φ for all bond families β,

where ρrψ represents the strain energy density Ψr of the elastic response. Then, parameters

nf and {wβ, Φmβ}, β ∈ [0, nf – 1] suffice to define an elastoplastic material which exhibits

classical kinematic hardening behavior, for given functional forms ψ and Φ. The selection of

the mass fraction and yield threshold for each family is a constitutive choice which should

be guided by experimental data. The examples in Section 4.3 provide simple constitutive

models for these various parameters which have the ability to match a variety of

experimental data.

4.2.2. Reaction kinetics and thermodynamics—Reaction kinetics take the same

form for each bond family β as for the single bond family in Section 3.1; in particular, in the

expressions for Eqs. (3.1)–(3.2), substitute ρrβ
α  for ρr

α and ρrβ
α  for ρr

α. As per Section 3.5.1,

the Clausius–Duhem inequality places a constraint on the functional forms of the mappings

Fβ
αs, subject to constitutively provided yield measures Φβ. Assuming that all bond families β

share the same functional form Φ simplifies the effort to satisfy the inequality constraint for

the entire mixture. It is further assumed that all bond families adopt the same constitutive

model for plastic flow, i.e., the functional forms of the constitutive mappings Fβ
αs are

identical.

The heat supply generated by bonds breaking and reforming in a mixture of multiple bond

families β can be obtained from the general expression of Eq. (3.4) as

ρrr = ∑
β

∑
α

ρrβ
α ψ β Fβ

α . (4.8)

Similarly, the specific heat supply resulting from u–generation bonds breaking and

reforming at time t = υ is evaluated as per Eq. (3.38),
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r(t) = δ(t − v)∑
β

wβ ψ β Fβ
v(v) − ψ β Fβ

u(v) , (4.9)

where each bond family is weighted by its mixture mass fraction wβ. It is implicit in this

expression that only those bond families that are yielding at time υ contribute to this

expression. It follows that heat dissipation increases as more bond families start yielding.

4.3. Constitutive modeling of yield response

Here, we provide basic constitutive relations for the parameters {wβ, Φmβ}, β ∈ [0, nf – 1]

which define an elastoplastic material. We also demonstrate how these various parameters

affect the uniaxial stress–strain response of a material. The example in Fig. 1d shows how

superposition of multiple elastic–perfectly plastic bond families may create a hardening-like

curve. In particular, we present a constitutive modeling framework that requires at most six

scalar parameters, regardless of the value of nf.

Since each family behaves elastically until it yields, a family’s yield threshold Φmβ is

generally not the value recorded on a stress–strain curve when the slope changes (Fig. 2).

That value may be called the apparent yield threshold 𝒴β, which can be related to the true

yield threshold Φmβ by assuming a linear elastic stress–strain relationship prior to yielding.

For simplicity, we assume that 𝒴β values are evenly distributed between an initial yield

threshold 𝒴0 and a final yield threshold 𝒴max, parameters which may be identified from a

stress–strain curve (Fig. 3a–b). Beyond 𝒴max, the material either behaves as if it is perfectly

plastic (a scenario which may be valid around the ultimate strength, for example), or it

transitions to a linear hardening regime. The constitutive model thus specifies

𝒴β = 𝒴0 + β
𝒴max − 𝒴0

n f − 1 , β = 0, …, n f − 1

Φmβ = Φm, β − 1 +
𝒴β − 𝒴β − 1
1 − ∑b = 0

β − 1 wb
, Φm0 = 𝒴0

(4.10)

The relationships between 𝒴β and Φmβ embodied in Eq. (4.10) are illustrated graphically in

Fig. 2. Through this relationship, only the values of 𝒴0 and 𝒴max must be specified, along

with nf.

The family mass fractions wβ govern the influence of each family on the overall material

response. The simplest model for wβ involves specifying the mass fraction of the first

yielding family w0, which controls the slope of the initial post-yield response (Fig. 3a), and

then evenly weighting the rest of the bond families, wβ = (1 − w0) / (nf – 1). However, in

cases where the material transitions to a linear hardening regime, we can recover this

behavior by adding one more bond family, β = nf, that never yields, thus remaining elastic.

The associated mass fraction wβ for β = nf is called the elastic mass fraction and denoted we;

a non-zero value for this parameter may be specified whenever we wish to include linear

hardening behavior (Fig. 3b). Given initial and elastic mass fractions w0 and we, the simplest
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constitutive assumption for the remaining wβ’s assumes the remaining mass is evenly

divided, such that

wβ =
1 − we − w0

n f − 1 , β ∈ 1, n f − 1 . (4.11)

The effect of the mass fraction parameters w0 and we is explored parametrically in Fig. 3c

and d, respectively. In general, most ductile materials have w0 very close to unity, which

provides hardening behavior over a finite strain range. As w0 → 1 the stress–strain behavior

approaches perfect plasticity. In contrast, when we = 0, the material response becomes

perfectly plastic once the final yield threshold 𝒴max has been exceeded. As we increases, a

region of linear hardening is seen on a plot of the true stress against strain. For most ductile

materials, we is usually 0 or on the order of 0.001 (see the fits in Section 6).

It is also possible to refine the constitutive relations of Eqs. (4.10)–(4.11) by introducing a

bias factor r, which allows a geometric progression for the apparent yield thresholds and

family mass fractions, instead of uniform spacing. The bias factor r has the effect of

modifying the shape of the hardening region between 𝒴0 and 𝒴max (Fig. 3b). The modified

constitutive relations for wβ and Φmβ take the form

c = 1 − r

1 − r
n f − 1 Φm0 = 𝒴0

𝒴1 = 𝒴0 + c 𝒴max − 𝒴0 , Φm1 = 𝒴0 +
𝒴1 − 𝒴0

1 − w0

𝒴β = 𝒴β − 1 + r 𝒴β − 1 − 𝒴β − 2 , Φmβ = Φm, β − 1 +
𝒴β − 𝒴β − 1
1 − ∑b = 0

β − 1 wb

(4.12)

The mass fractions wβ are similarly biased, where w0 and we are specified and

w1 = c 1 − we − w0
wβ = wβ − 1r (4.13)

The full set of parameters is then given by {nf, 𝒴0, 𝒴max, w0, we, r}. Setting r = 1 recovers

the uniform distribution presented in Eqs. (4.10)–(4.11). Fig. 3a–b graphically describes the

influence of each parameter on simplified stress–strain curves, showing how these

parameters may be extracted from experimental data.

4.4. Discussion

We may consider some primary distinctions between reactive and classical formulations.

The reactive constrained mixture framework for plasticity described above is fully

hyperelastic in the sense that free energies and stresses are calculated from standard

hyperelastic relationships as functions of elastic deformation only. It is only the breaking

and reforming of bonds in a new reference configuration which produces plastic behavior

through hyperelastic relations. A second distinction between reactive and classical
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frameworks arises in the definition of kinematic hardening. Classically, hardening is an

expansion or shift of the material’s yield surface in response to the evolution of internal

hardening variables, and thus directly corresponds to increasing resistance to plastic flow.

Strictly speaking, it is the material’s response to plastic flow which is hardening, i.e., the

concept of “hardening” is relative to perfect plasticity. In the reactive framework, so-called

“hardening” behavior emerges due to progressively yielding bond families. Since a material

described by reactive plasticity is hyperelastic, the term “hardening” does not accurately

describe the material’s response. However, relative to the post-yield behavior of an elastic–

perfectly plastic material, the response of a reactive elastoplastic material composed of

multiple bond families may be considered “harder”, and it is in this sense that we say

reactive plasticity recovers kinematic hardening behavior.

In this presentation, we have not attempted to model any cyclic plasticity effects, thus cyclic

hardening and softening are behaviors which the present model does not capture (Chaboche,

1989). Developing kinematic hardening through the superposition of multiple non-

interacting bond families also introduces a certain coarseness to the model (depending on the

choice of nf), although it would be possible in theory to extend the concept of multiple bond

families to a continuous spectrum by following the method developed by Skelton et al.

(1997). Furthermore, we have not made an effort to model isotropic hardening, though this is

a relatively straightforward extension of the mixture framework which may be accomplished

by allowing Φmβ
α  to evolve with the deformation, i.e., each reformed α–generation would

have Φmβ
α  greater than the preceding generation, for family β.

It is also interesting to note striking similarities between this work and the cyclic

hyperelasto-plasticity framework of Zhang and Montans (2019). Both theories are fully

hyperelastic and only employ elastic state variables in flow equations, stresses, and free

energy density. The present use of multiple bond families is also substantially similar in

concept, if not practice, to those authors’ parallel assembly of so-called Prandtl devices. As

also reported in their work, we have no need for explicit descriptions of backstress.

Although our formulation is developed within the constrained reactive mixture framework

and bears little operational resemblance to Zhang and Montans (2019), their success in

applying a similar type of model to cyclic elastoplasticity with hardening suggests possible

further expansion of the present framework.

A validation of our model’s description of plastic deformation is deferred to Section 6.

5. Reactive elastoplastic damage mechanics

Plastic deformation is often coupled with damage (Chow and Wang, 1987; Ju, 1989; Bonora,

1997), as the finite deformation and plastic flow of a loaded material typically induces some

amount of failure. Within the constrained reactive mixture framework adopted in this study,

damage is produced by bonds breaking permanently (Nims et al., 2016), which reduces the

generation mass fractions wβ
α. In this section, we assume that both intact and yielded bonds

may become damaged. Damage to intact bonds may represent some initial damage value for

a material with defects, or damage due to intermolecular failure of bonds that never yielded;

Zimmerman et al. Page 26

J Mech Phys Solids. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we refer to this as elastic damage. Damage to yielded bonds represents plastic damage. The

mechanism of damage and the failure measure may be different for these two types of

bonds, particularly since a stress- or energy-based failure measure may not be appropriate

for plastic damage. Recalling the discussion in Section 4.2.1, intact bonds belong to the s–

generation which is present at t = −∞. Once yielding occurs, all successive generations of

that family are labeled as yielded bonds y. This distinction is necessary so we can then

distinguish between damage to intact bonds (elastic damage) and damage to yielded bonds

(plastic damage), since intact bonds which get damaged never have the ability to yield. It is

important to note that the nature of the plastic deformation described in the preceding

section remains unchanged. Damage modifies the material behavior by reducing the fraction

of bonds in various generations, which scales the response accordingly.

In a reactive constrained mixture framework, the insertion of damage into the reactive

plasticity formulation is straightforward. Our framework for reactive damage was presented

in an earlier study (Nims et al., 2016), though it may be viewed as a simpler version of the

concepts presented here for reactive plasticity, since bonds break permanently in a damage

reaction, thus requiring no function of state Fβ
αs to describe a reformed configuration.

Furthermore, the specific free energy of broken bonds is zero. The scalar elastic damage

criterion Ξβ
e Fs  for bond family β is the analog to the yield criterion Φβ for plasticity. As

shown by Nims et al. (2016), the main contrast with reactive plasticity is that not all bonds in

the family β break simultaneously at a single elastic damage threshold Ξmβ
e . Instead, the

fraction of broken bonds varies as a function of Ξβ
e Fs , denoted by Fβ

e Ξβ
e , such that

0 ≤ Fβ
e Ξβ

e ≤ 1. Here, Fβ
e Ξβ

e  is a function of state; it must be a monotonically increasing

function of its argument to satisfy the Clausius–Duhem inequality (Nims et al., 2016). We

may view Fβ
e  as a cumulative distribution function (CDF), whose corresponding probability

distribution function (PDF) represents the probability of damage at a particular value of Ξβ
e .

The mass fraction of broken bonds wb is in fact equal to the damage variable D as defined in

classical damage mechanics; however, it must be noted that wb is a mass fraction governed

by the axiom of mass balance, and therefore does not carry the same meaning in our theory

as damage variables do in classical works.

5.1. Theoretical formulation

We first briefly sketch the structure of our elastoplastic damage theory for a single bond

family β. Since each bond family in reactive plasticity yields all at once, we can easily split

an elastoplastic damage theory into two parts to represent elastic and plastic damage

regimes. Assume that the first yielding reaction for bond family β occurs at time t = uβ. Prior

to this initial yielding, the damage behavior described by Nims et al. (2016) applies, and the

material composition is generally a mixture of intact (α = s) and broken (α = b) bonds

satisfying the reaction ℰs ℰb. The corresponding bond mass fractions satisfy 1 = wβ
s + wβ

b

and wβ
y = 0, where wβ

b = Fβ
e Ξβ

e  is the elastic damage in bond family β. At t = uβ, the
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remaining intact bonds wβ
s = 1 − wβ

b all yield, following the reaction in Eq. (4.7). The family

mass balance is then given as 1 = wβ
y + wβ

b, since wβ
s = 0 after yielding.

For time t > uβ, yielded bonds may continue to yield, but they may also sustain damage

according to the reaction ℰy ℰb, which reduces their mass fraction wβ
y . Following the

classical literature, damage to yielded bonds may occur based on a measure of plastic strain

(Section 5.1.4; Chow and Wang, 1987; Simo and Ju, 1989; Bonora, 1997), which is distinct

from the measure of elastic damage. Therefore, we denote the plastic damage measure as

Ξβ
p Fβ

ys  and its cumulative distribution function by Fβ
p Ξβ

p . Only the remaining undamaged

fraction 1 − Fβ
p Ξβ

p  of yielded bonds may break and reform as the next yielded generation.

As mentioned above, the modern understanding is that plastic strain is ill-defined and not a

suitable state variable. It must be recognized that, just as Fβ
ys is a constitutively-prescribed

function of state and does not carry the meaning of a plastic deformation gradient, the plastic

damage measure Ξβ
p derived from Fβ

ys is also function of state. When we provide a precise

form of Ξβ
p in Section 5.1.4, it is with the understanding that this quantity is called a plastic

strain for convenience only.

When plastic deformation occurs simultaneously with damage, the mass fraction of each

successive yielded generation will have decreased. The following treatment now considers

the superposition of multiple plastic bond families, as described in Section 4.

5.1.1. Damage to intact bonds—We now adopt the simplifying assumption that the

elastic damage measure is the same for all bond families β, Ξβ
e ≡ Ξe. Furthermore, the

associated CDF has the same functional form for all β, Fβ
e ≡ Fe. At any given time t, there is

a maximum value of Ξe that has been achieved over the past deformation history. This

maximum value may be distinct for each bond family β, since intact bond families may yield

at different values of Fs; it is thus denoted by Ξmβ
e ,

Ξmβ
e = max

−∞ < τ ≤ t < uβ
Ξe Fs(τ) .

(5.1)

Any damage sustained by intact bonds reduces their mass fraction, such that

wβ
s = 1 − Fe Ξmβ

e

wβ
y = 0 , t < uβ,

wβ
b = Fe Ξmβ

e

(5.2)

and hence the mass balance of Eq. (4.2) is satisfied. Since all remaining intact bonds yield at

t = uβ and thus no intact bonds are left to sustain damage, Fe Ξmβ
e  remains constant when t ≥

uβ.
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5.1.2. Damage to yielded bonds—At time t = uβ, the yield threshold Φmβ for family

β is reached and all remaining intact bonds in family β yield such that

wβ
s = 0

wβ
y = 1 − Fe Ξmβ

e , t = uβ .

wβ
b = Fe Ξmβ

e

(5.3)

Once they have formed, yielded bonds may sustain plastic damage. Here also we adopt the

simplifying assumption that the plastic damage measure has the same functional form for all

bond families β, Ξβ
p ≡ Ξp. The maximum value of Ξp experienced by family β up until the

current time t is denoted Ξmβ
e ,

Ξmβ
p = max

uβ ≤ τ < t
Ξp Fβ

y(τ) .
(5.4)

For t > uβ, yielded bonds may continue to yield, breaking and reforming into successive

generations. However, in contrast to Section 3, the mass fraction wβ
y  of yielded bonds in

family β no longer remains constant over successive yield generations, due to the plastic

damage reaction. Each time a yielded bond breaks and reforms into a new generation, wβ
y  is

given by the undamaged fraction of yielded bonds,

wβ
s = 0

wβ
y = 1 − Fp Ξmβ

p 1 − Fe Ξmβ
e , t > uβ .

wβ
b = Fe Ξmβ

e + Fp Ξmβ
p 1 − Fe Ξmβ

e

(5.5)

Eqs. (5.2), (5.3), and (5.5) govern the temporal behavior of the bond species mass fractions.

5.1.3. Free energy density, stress, and damage—Recognizing that damaged

(broken) bonds do not store free energy, the referential mixture free energy density in Eq.

(4.3) may be rewritten as

Ψ r = ρr∑
β

wβ wβ
s ψ β Fs + wβ

yψ β Fβ
y , (5.6)

where the bond mass fractions wβ
s  and wβ

y  are given in Eqs. (5.2)–(5.5) prior to, during, and

after yielding of each bond family β. Similarly, the mixture stress may be evaluated from Eq.

(4.4) as

T = ∑
β

wβ wβ
s Tβ

s Fs + wβ
yTβ

y Fβ
y , (5.7)

where the stresses Tβ
α are given by the standard hyperelasticity relation of Eq. (4.5). These

expressions may be simplified further when assuming that the functional form of ψβ
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remains the same for all bond families β. Finally, the reactive mixture equivalent of the

damage variable D may be evaluated for elastoplastic damage as the fraction of all bonds

that are broken,

D = wb = ∑
β

wβwβ
b . (5.8)

5.1.4. Damage measures—For elastic damage, we propose to use the von Mises stress,

which is the same functional measure proposed for plastic yielding; this implies that the

functions Ξe and Φ have the same form. For plastic damage, experimental results show that

during plastic flow damage is coupled with measures of plastic strain (Lemaitre and

Desmorat, 2005), necessitating a strain-based plastic damage measure Ξp. For yielded bonds

in a bond family β, we can use the constitutively-determined mapping Fβ
ys to define plastic

right Cauchy–Green and Lagrange strain tensors through

Cβ
ys = Fβ

ys T ⋅ Fβ
ys

Eβ
ys = 1

2 Cβ
ys − I .

(5.9)

One possible constitutive relation for Ξp, which remains valid for general deformations, is to

set it equal to the effective plastic strain eβ
p for the various bond families β,

eβ
p = 2

3devEβ
ys:devEβ

ys . (5.10)

In a numerical implementation, the effective plastic strain e0
p of the first bond family to yield

may be reported as the effective plastic strain in the entire material, for consistency with

plastic strain measures in classical models of plasticity.

Quantities in this section do not represent plastic strains or plastic strain tensors, though we

adopt the terminology due to similarities. Recall that the non-observable function of state

Fβ
ys = Fβ

ys Fs, ρrβ
α  is a time-invariant mapping providing the reference configuration of a

yielded bond y with respect to the reference configuration of the master constituent s, for

family β. The quantities Cβ
ys and Eβ

ys then also represent non-observable functions of state

calculated as strain tensors. Consequently, eβ
p is a measure of the relative motion of the

reference configuration of bond family β, expressed as a scalar “strain”. Physically, this

amounts to the modeling assumption that once the breaking-and-reforming process takes a

bond family out of a local neighborhood centered about its original position, the bond begins

to degrade with further breaking-and-reforming processes. That each of these quantities

exists for every bond family β emphasizes the lack of any true or unique plastic strain

measure in this framework.
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5.1.5. Cumulative damage distribution functions—The final set of constitutive

relations required to fully define an elastoplastic damage material are the two CDFs, Fe Ξmβ
e

and Fp Ξmβ
p . As shown by Nims et al. (2016), the only requirement imposed by the

Clausius–Duhem inequality is that these be monotonically increasing functions. Whereas

these CDFs may be characterized directly from experimental data, we illustrate our

elastoplastic damage framework using a Weibull distribution of the form

F(Ξ) = 1 − exp − Ξ
κ

γ
, (5.11)

where κ (same units as Ξ) is the value of Ξ at which the fraction 1 − e−1 of bonds have

failed and the exponent γ (unitless) controls the slope of the response, such that F (Ξ)

approaches a step function with a jump at Ξ = κ as γ → ∞. Therefore, each damage

function has two free parameters κ and γ. Based on experimental evidence, we let Ξe be

given by the von Mises (effective) stress, while Ξp is taken to be the effective plastic strain

(Section 5.1.4). Fig. 4 shows the effect of the Weibull parameter γp on the stress–strain and

damage–strain responses, with κp fixed. The damage response as a function of plastic strain

is identically the prescribed CDF (Fig. 4b). The shape of the CDF changes from logarithmic-

like to exponential as γp increases, demonstrating the ability of this formulation to recover a

broad variety of experimentally measured damage–strain behaviors (Bonora, 1997).

5.2. Thermodynamics

The heat supply density generated by plastic yielding reactions ℰs ℰy , and damage

reactions ( ℰs ℰb and ℰy ℰb ), may be evaluated from Eq. (4.8), recalling that the

specific free energy of broken bonds is zero,

ρrr = ∑
β

ρrβ
s ψ β Fs + ρrβ

y ψ β Fβ
y . (5.12)

Here, ρrβ
s  and ρrβ

y  are obtained by summing the respective mass density supplies from each

reaction. The yielding reaction supplies were given in Eq. (3.2) for a single bond family. To

evaluate the mass density supplies ρrβ
α  for damage reactions, recognize that the mass balance

Eq. (2.5) may be rewritten as ρrβ
α = ρrβẇβ

α. Thus, the contribution to the heat supply density

from damage mechanics may be obtained by evaluating the material time derivatives of

generation mass fractions wβ
α in Eqs. (5.2)–(5.5), for α = s and α = y. Since those relations

involve the CDFs, we need to evaluate Ḟe Ξm
e  and Ḟp Ξmβ

p , which are non-zero on the

damage surface when the damage is increasing. In turn, these expressions require the

evaluation of Ξ̇e and Ξ̇p,

Ξ̇e Fs = ∂Ξe

∂Fs : Ḟs, (5.13)

and

Zimmerman et al. Page 31

J Mech Phys Solids. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ξ̇p Fβ
ys = ∂Ξp

∂Fβ
ys :

Fβ
vs − Fβ

us

vβ − uβ
, (5.14)

using an incremental form for consecutive yielding generations u and υ. Combining these

relations, we find that

ρrβ
s = − δ t − uβ ρrβ −

ρrβḞe Ξmβ
e t < uβ

0 t ≥ uβ

ρrβ
y = δ t − uβ − δ t − vβ ρrβ

−

0 t < uβ

ρrβḞe Ξmβ
e t = uβ

ρrβḞp Ξmβ
p 1 − Fe Ξmβ

e + ρrβḞe Ξmβ
e 1 − Fp Ξmβ

p uβ < t < vβ .

(5.15)

5.3. Discussion

This section has presented a constrained reactive mixture theory for elastoplastic damage

mechanics, using reaction kinetics to describe bonds which break and reform. Bonds which

break permanently lead to damage, and both intact and yielded bonds may break. Yielded

bonds break based on a measure which is derived from the constitutive model for Fαs and

bears some resemblance to a classical scalar plastic strain. Since Fαs is not an observable

kinematic variable but rather a function of state, this damage criterion is not kinematically

based, despite its name. The constitutive freedom in the present model allows for a wide

variety of damage behaviors to be modeled, using only simple scalar variables. Accordingly,

our reactive framework does not need to develop tensorial damage potentials (such as Chow

and Wang, 1987) or postulate damage evolution laws within an internal state variable

framework (such as Simo and Ju, 1989), as the evolution of damage in our mixture model is

given by the mass fraction of broken bonds, based on reaction kinetics governed by mass

balance.

6. Verification and validation

6.1. Finite element implementation

The theoretical models discussed in Sections 3–5 were implemented in the custom, open

source finite element code FEBio (www.febio.org; Maas et al., 2012) as material models

“reactive plasticity” and “reactive plastic damage”. All finite element analyses below were

performed using three-dimensional models and isoparametric eight-node hexahedral

elements, unless otherwise specified. Due to its origins as a nonlinear finite deformation

code designed for the biomechanics and biophysics communities (Maas et al., 2017), FEBio

is built around a mixture theory framework (Ateshian and Humphrey, 2012; Ateshian et al.,

2013, 2014), which greatly facilitated the implementation of the proposed models. Details of

the numerical implementation can be found in the source code (github.com/febiosoftware/

FEBio). Here, we mention that a secant method was employed to numerically calculate the
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consistent tangent matrix (Simo and Taylor, 1985). In contrast to the complexity involved

with evaluating an analytical consistent tangent, the proposed secant method only requires

seven stress evaluations (Miehe, 1996).

6.2. Constitutive models

6.2.1. Elasticity—The present theory treats materials which exhibit plasticity and plastic

deformation as reactive solids. Due to the use of a purely hyperelastic framework, the theory

places no further constraints upon the constitutive model for the underlying elastic solid

beyond those familiar from hyperelasticity. However, for the purposes of verification and

validation, a constitutive model must be selected. For the remainder of this presentation, all

materials are modeled as isotropic compressible neo-Hookean solids, with a referential

strain energy density function given by

ρrψ(F) = G
2 I1 − 3 − GlnJ + λ

2(lnJ)2, (6.1)

with material constants G and λ. Here, J = det F, I1 = tr C, and C = FT ⋅F is the right

Cauchy–Green tensor (Bonet and Wood, 1997). Young’s modulus E and Poisson’s ratio ν
are related to G and λ via the standard relations E = 2G (1 + ν) and λ = 2Gν/(1 − 2ν). This

finite deformation neo-Hookean model reduces to Hooke’s law for isotropic linear elasticity

under infinitesimal strains. Unless specified otherwise, material properties E and ν for the

models presented below were obtained from online reference tables (MatWeb;

www.matweb.com).

6.2.2. Plasticity—For verification and validation problems, the plastic yield measure Φ
was set to the von Mises (effective) stress σY, as it is an experimentally-supported choice for

isotropic, ductile materials (Khan and Huang, 1995). The distribution of bond families, the

superposition of which is responsible for developing kinematic hardening, was governed by

the constitutive relations outlined in Section 4.3. The parameters nf, 𝒴0, 𝒴max, w0, we, and r

were obtained by fitting experimental data, under the assumption that each bond family

represents an elastic–perfectly plastic material.

6.2.3. Damage—For simplicity, we assumed that intact bonds of all families share the

same function Fe Ξmβ
e . We further assumed that all yielded bonds (every generation α ≠ s

for every family β) sustain plastic damage in the same manner according to Fe Ξmβ
p . In what

follows, we adopted Weibull distributions for both CDFs, as given in Eq. (5.11).

6.3. Fundamental benchmarks

The fundamental 2D and 3D plasticity benchmarks proposed by Becker (2001) were

selected to verify the constitutive modeling behind reactive plasticity as well as the FEBio

finite element implementation. Each benchmark is a single-element analysis with an elastic–

perfectly plastic material (one bond family, β = 0). Following Becker, we used E = 250 GPa

and ν = 0.25. The yield measure for perfect plasticity was set to 𝒴0 = 5 MPa. For a perfectly
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plastic material with these specifications, nf = r = w0 = 1, we = 0, and 𝒴max does not play a

role.

The 2D benchmark problem consisted of a 1mm×1mm square domain in the xy−plane

(vertices ABCD counterclockwise starting from origin), subjected to prescribed

displacements along x and y, and then returned to its original geometry. Fixed displacements

were prescribed as ux = 0 for line AD and uy = 0 for line AB. Lines BC and CD had

respective prescribed displacement histories ux and uy as given in Table 1. Since FEBio

models only 3D geometries, a unit cube was used, fixing uz = 0 on the positive and negative

z−faces. The problem was solved in 8 steps, using a single isoparametric quadratic (20-

node) hexahedral brick element. This fundamental 2D plasticity benchmark has an analytical

solution available for the case of perfect plasticity with a von Mises yield criterion (Krieg

and Krieg, 1977), which was used as the reference solution.

The geometry of the fundamental 3D plasticity benchmark consisted of a 1mm×1mm×1mm

cube with counter-clockwise vertices ABCD on the positive z−face and EFGH on the

negative z−face. Fixed displacements ux = 0, uy = 0, and uz = 0 were respectively prescribed

on faces AEHD, ABFE, and ABCD. Faces BCGF, CDHG and EFGH had respective

prescribed displacement histories ux, uy, and uz as given in Table 2. The problem was solved

in 12 steps. For this 3D benchmark an analytical solution was not available, thus the problem

was also simulated in the commercial finite element code ABAQUS (www.simulia.com)

whose results were used as the reference solution. For both analyses, a single isoparametric

quadratic (20-node) hexahedral brick element was employed.

Results for the fundamental benchmarks are summarized in Fig. 5. For both benchmarks, the

normal stresses were equal to the principal stresses, Txx = T1, Tyy = T2, Tzz = T3. Exact

agreement was found between the normal stresses and von Mises stresses calculated by

FEBio’s implementation of reactive plasticity and the reference solutions. In addition, using

a special projection (Becker, 2001), the stress paths may be followed on the yield surface by

plotting them in the reduced x − y plane, where x = T1 − T3 and y = T2 − T3. The reference

stress paths agreed identically with those calculated by FEBio, establishing that reactive

plasticity exactly obeys the normality condition. More fundamentally, both benchmarks had

their displacement histories completely specified for all nodes. As a result, no equation

solving was necessary during the analyses; therefore, only the constitutive models for

plasticity within the finite element codes were tested.

6.4. Multi-element multi-material benchmark

A multi-element, multi-material benchmark (Roberts et al., 1992) was used to examine the

predictive ability of the constitutive modeling framework, and results were compared to an

experimental study on composite panels (Atkins and Weinstein, 1970). The geometry of the

multi-element panels is shown in Fig. 6a. In this benchmark, tensile tests were performed on

four three-panel composites (Fig. 6b) which varied from entirely annealed mild steel to

entirely annealed copper. The responses of the single material steel and copper panels were

fitted to a reactive plasticity model to extract the material properties of these metals. The

tensile responses of the multi-material panels (2/3 steel + 1/3 copper, 1/3 steel + 2/3 copper)
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were then predicted using the fitted material properties of steel and copper for the

appropriate panels. Three isoparametric quadratic (20-node) hexahedral brick elements were

used in FEBio to represent each composite. Material properties for annealed mild steel and

annealed copper (E, ν, 𝒴0 ) were obtained from online reference tables, and 𝒴0 was slightly

adjusted, as needed, to better fit the experimental data of Atkins and Weinstein (1970).

Reactive plasticity models were successfully fitted to steel and copper panels (Fig. 7, blue

and orange curves, respectively). For annealed mild steel, the elastic properties were E = 205

GPa and ν = 0.29. Curve-fitting identified plasticity parameters nf = 15, 𝒴0 = 220 MPa,

𝒴max = 490 MPa, w0 = 0.973, we = 0, and r = 1.2 For annealed copper, material properties E

= 120 GPa and ν = 0.34 were prescribed. By fitting the solid copper panel, plasticity

parameters nf = 15, 𝒴0 = 60 MPa, 𝒴max = 288 MPa, w0 = 0.988, we = 0, and r = 1 were

obtained. (Online reference tables report 𝒴0 = 69 MPa for copper.) The predicted responses

of the multi-material panels were then observed to be in very close agreement with

experimental results (Fig. 7, green and gray curves). This benchmark served to show that

reactive plasticity can fit a variety of different material responses with simple scalar

parameters. The successful prediction of experimental responses not used for extracting

material properties served as a validation of the reactive plasticity framework.

6.5. Volume change during plastic flow

The assumption of incompressible plastic flow has been thoroughly investigated

experimentally (Bridgman, 1947, 1952). In a study by Spitzig et al. (1976), the authors

measured the change in volume of unaged maraging steel during a tensile load-unload-

reload cycle. In our validation analysis, the elastic properties of unaged maraging steel were

taken to be E = 165 GPa and ν = 0.33. Then, the experimental stress–strain response

provided by Spitzig et al. (1976) was successfully fitted to the reactive plasticity model, with

nf = 22, 𝒴0 = 398 MPa, 𝒴max = 1010 MPa, w0 = 0, we = 0, and r = 0.9 (Fig. 8a). The

volume change experiment was then predicted, using those material properties. Here, we

note that Spitzig et al. provided a curve of true stress vs. true strain for material

characterization, and the true strain during the volume change experiment was close to the

proportional limit. For these two reasons, we were able to simulate the experimental tests

using a single-element model, as the true stress accounts for necking and, in the volume

change experiment, any geometric effects due to necking were very unlikely to have

occurred under such small strains.

The predicted volume change during the load-unload-reload cycle was in close agreement

with the experimental results (Fig. 8b). This finding served to further validate the

implementation of the normality condition and the theoretical basis of the decomposition Fs

= Fα ⋅ Fαs. Here again, a successful fit of the model to experimental data served as a

necessary condition for model validation, whereas the ability to predict independent

2In a strict sense, a suitable value of nf was pre-selected, then adjusted until a satisfactorily smooth fitted response was observed.
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experimental measurements using those fitted properties served as a sufficient condition for

validation.

6.6. Forging a ball bearing

Another validation of the reactive plasticity model considered forging a ball bearing by

compressing a cylindrical billet between two dies with hemispherical sockets, as studied by

Shih and Yang (1991). To validate our theory and implementation, we first fitted the reactive

plasticity model to their material characterization study, then used these properties to predict

the ball forming experiment. The material used in the experimental part of Shih and Yang

(1991) was annealed aluminum 1100; its elastic material properties are E = 68 GPa and ν =

0.33. These authors performed material characterization using compression of cylindrical

specimens between two flat, polished dies (Fig. 9a). The cylindrical specimens had a radius

Rb = 5.08 mm and a height H = 13.843 mm. Due to symmetry considerations, a 3 degree

wedge model was utilized, with frictionless contact between the cylindrical specimen and

the rigid die. The reactive plasticity model, using the von Mises stress as the yield measure,

was successfully fitted to experimental results (Fig. 9b), producing nf = 18, 𝒴0 = 63 MPa,

𝒴max = 112 MPa, w0 = 0.994, and we = 0, with a bias r = 0.6. These material properties

were then used to predict the results of the bearing forging experiment.

In bearing forging, the hemispherical socket of the die had a radius R = 7.938 mm, and the

die was modeled as a rigid body. The cylindrical workpiece had a radius Rb = 12.4 mm and a

height H = 18.171 mm. Due to symmetry, a 3 degree wedge model of one quarter of the

geometry was employed. The geometry and initial mesh are shown in Fig. 10. The mesh was

biased towards the initial contact point, and a butterfly mesh was used in this corner due to

the extreme deformations during forging. The analysis began with the die socket in grazing

contact with the corner of the annealed aluminum workpiece. The final die displacement was

set to uy = d, where d = −4.0005 mm in the symmetric model. As per Shih and Yang (1991),

frictionless contact was assumed between the die surface and the workpiece, using our

recently developed contact algorithm (Zimmerman and Ateshian, 2018). Though the contact

analysis was computationally challenging, due to the die initially contacting the billet at a

corner node, snapshots of the deformed mesh at several time points during the analysis show

a clean response and good contact enforcement (Fig. 10). The small rib formed at the

midsection of the bearing at the final displacement (Fig. 10, right) was also observed in

pictures of forged bearings provided by Shih and Yang (1991). Quantitatively, the predicted

reaction force on the die compared favorably to these authors’ experimental results (Fig. 11).

The small deviation in the predicted slope of the response around the vertical displacement

of 7.5 mm may have occurred because friction was neglected in the model.

6.7. Upsetting of a cylindrical billet

The latter half of the study by Shih and Yang (1991) also considered the classic example of

upsetting a cylindrical billet, using the same annealed aluminum 1100 material considered in

the previous section (Section 6.6). In this example, the billet was mounted in a cylindrical

socket, producing large deformations and rotations since isochoric plastic flow produces

barreling. The radius of the billet was Rb = 6.096 mm and the height was H = 18.288 mm.
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Both ends of the billet were firmly seated in a socket h = 1.27 mm deep in the corresponding

die (Fig. 12, left). The top surface of the die was displaced uy = d. Due to symmetry, a 3

degree wedge model of one quarter of the geometry was considered for the finite element

model; the applied displacement was d = −3.81 mm on this symmetric model. Tied contact

was applied between the billet and the die socket, representing the experimental boundary

conditions, and the die was modeled as a rigid body. Material properties for the annealed

aluminum 1100 were taken from Section 6.6.

The final deformed mesh presents significant lateral bulging and large rotations (Fig. 12a). A

contour plot of the effective plastic strain at the end of the analysis (Fig. 12b) agrees with

that reported by Shih and Yang (1991). The predicted axial upsetting force is also in close

agreement with the experimental results (Fig. 13). These two examples (upsetting of a billet,

and forging of a ball bearing in Section 6.6) were both analyzed using material properties

obtained by fitting results from a third mechanical test. Thus, the agreement between results

predicted by reactive plasticity and those directly measured from experiments validates the

ability of reactive plasticity to accurately simulate material behavior in a variety of finite

deformation and finite rotation tests. This type of validation argues in favor of reactive

plasticity effectively capturing the underlying physics of plastic deformation.

6.8. Simultaneous fitting of stress–strain and damage–strain data

As a necessary condition for validating the reactive constrained mixture framework for

elastoplastic damage (Section 5), our model should be able to couple experimental stress–

strain data with experimental measurements of material damage in a consistent way. In this

example we used experimental data for Al2024-T3 to demonstrate this process. By

measuring the damaged modulus of a tensile specimen of Al2024-T3, Chow and Wang

(1987) obtained a curve of the damage as a function of strain. A plot of the engineering

stress versus engineering strain for Al2024-T3 was obtained from a recent study on material

characterization methods (Pourhassan et al., 2017). The elastic properties of Al2024-T3

were taken to be E = 73 GPa and ν = 0.3. Using a single-element model, successful fits to

both sets of experimental data were obtained with the reactive elastoplastic damage model.

The plasticity parameters were identified as nf = 15, 𝒴0 = 330 MPa, 𝒴max = 489 MPa, w0 =

0.97, we = 0, and r = 1 (Fig. 14a). To account for plastic damage, the yielded bonds were

allowed to sustain failure according to a Weibull distribution, with the plastic damage

measure taken to be the effective plastic strain eβ
p. The Weibull parameters κp = 7.95 and γp

= 0.65 were obtained from the damage–strain curve (Fig. 14b).

The ability to simultaneously fit different data sets from two separate studies on the same

material lends credence to the proposed coupling between plastic deformation and damage.

However, it is important to point out that a simple single-element model was used in this

analysis, which corresponds to simply numerically solving the governing equations without

taking any geometric effects into account, such as necking. Therefore the purpose of this

example was to illustrate the way in which plasticity and damage parameters interact in a

coupled formulation, rather than to explicitly replicate the underlying experiments. A full

direct validation of coupled effects is often difficult to perform due to incomplete details in

the data sets found in the literature.
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6.9. Uniaxial tension of a cylindrical bar

Uniaxial tension of a cylindrical bar is a classic experiment demonstrating plastic

deformation and complex necking behavior, and has been frequently used as a finite element

validation problem (such as Simo and Hughes (2006)). In this example, we used reactive

plasticity to replicate the experimental study of Norris Jr et al. (1978) and demonstrate the

ability of the present model to capture geometric and mechanical effects of necking

instability. We then extended this validation by incorporating elastoplastic damage, to model

the physics of coupled plasticity and damage during necking and subsequent failure of a

tensile specimen.

The material considered by these authors was A-533 Grade B class 1 nuclear pressure vessel

steel, with elastic properties E = 206.9 GPa and ν = 0.29. An experimentally-derived flow

curve was provided specifically for sample 2499R of that study, which was also the only

sample tested at room temperature (Norris Jr et al., 1978); the analysis in this section

specifically attempted to predict data from that sample. Its yield threshold was reported to be

𝒴0 = 458 MPa. As the effective plastic strain increased, there was necessarily some

uncertainty in the experimental flow curve provided by these authors, as it was based upon

an attempt to correct for necking behavior (Norris Jr et al., 1978). The material properties for

reactive plasticity (without damage) were successfully fitted to that flow curve (yellow curve

in Fig. 15a), producing plasticity parameters nf = 10, 𝒴max = 730 MPa, w0 = 0.985, we =

0.00072, and r = 1, with 𝒴0 given above.

However, as is evident from Fig. 15a, it remained unclear from the reported range of

experimental data how long the material would continue hardening before becoming

damaged, since necking is a prelude to failure of tensile specimens. In our second analysis of

this data set, we adopted the same plasticity parameters but allowed yielded bonds to also

get damaged; the resulting fit (blue curve in Fig. 15a) produced Weibull damage parameters

κp = 3.3 and γp = 3; damage to intact bonds was not considered in this analysis. The

resulting damage curves as a function of plastic strain are shown in Fig. 15b.

The description of the uniaxial tension problem by Norris Jr et al. (1978) does not provide

dimensions of the entire specimen, only the reduced section modeled in their computational

study; as a consequence, we had to adopt the same dimensions. The tensile specimen is a bar

with radius a0 = 6.415 mm. The total length of their model was H = 53.34 mm, with a gage

length of 2L0 = 50.8 mm. An axial elongation uy = 13.3335 mm was prescribed. Due to

symmetry considerations, a 3 degree wedge model of one quarter of the bar was considered

in our analysis (Fig. 16a); consequently, the prescribed displacement in the finite element

model was halved. A fine biased mesh containing 4800 elements was utilized to capture the

necking and post-yield behavior. Simulations were performed using reactive plasticity and

reactive plasticity with damage, to contrast plasticity and damage against a standard

elastoplastic analysis.

Contour plots of the effective plastic strain and effective stress in the bar for both material

models are presented in Fig. 16b–c. The effective stress in the bar modeled without any

damage compares very favorably to the results of Simo and Hughes (2006), where this
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problem was used as a finite element validation. In our elastoplastic damage model, it was

clear that the damage was highly localized to the region of most significant necking (Fig.

17). When comparing the two material models in the present study, there was more plastic

deformation in the damaged bar, and the stresses were significantly lower. Although not

strongly evident visually in Fig. 16, greater necking occurred in the bar modeled with

damage (yellow and blue curves in Fig. 18a).

Over the duration of the experiment, Norris et al. measured the current bar radius a at the

necking region, the change in length 2ΔL of the gage region, and the reaction force F. Plots

of the normalized radius a/a0 and normalized force F/Fmax as a function of the engineering

gage strain ΔL/L0 are shown in Fig. 18. Reactive plasticity was able to provide a close

prediction of the experimental data up until ΔL/L0 ≈ 0.22, at which point the increasing

hardening due to the contribution of we (the minute fraction of unyielded elastic bonds) led

the model to diverge. However, the addition of damage allowed the model to provide a much

improved prediction of the necking and force responses. In addition, the sharp drop in the

force response predicted by the plastic damage model at the end of the analysis heralded

impending fracture (also evident in the damage contour plot in Fig. 17). This example served

as a successful validation of the reactive elastoplastic damage model, due to the wealth of

experimental data available from the study of Norris Jr et al. (1978).

7. Discussion

This study presented a framework for plasticity and elastoplastic damage mechanics by

treating such materials as reactive solids whose internal composition evolves in response to

applied loading. Using the framework of constrained reactive mixtures, plastic deformation

was accounted for by allowing loaded bonds (e.g., metallic bonds) within the material to

break and reform in a stressed state with a new reference configuration, as presented in

Section 3. This concept was adopted from the literature on biological tissues and fibrous

networks where it has proven successful (Ban et al., 2018; Safa et al., 2019b). The concept

of plastic behavior occurring due to configurational changes in materials is not a novel

theory within the broader mechanics literature (Rajagopal and Wineman, 1992; Rajagopal

and Srinivasa, 1998a,b), where these philosophically similar approaches have increasingly

been applied to a broad spectrum of inelastic material responses (Rao and Rajagopal, 2000;

Mollica et al., 2001; Muliana et al., 2016; Rajagopal and Srinivasa, 2016; Zhang and

Montans, 2019). Though our work was biologically motivated and operationally distinct

from these prior works, it falls within this established school of thought and offers an

alternative method for modeling plasticity and damage. Rather than considering multiple

natural configurations of a material, as in the multiconfigurational approach of Rajagopal

and coworkers, within the present work bonds which break and reform represent a new

generation and hence a new material with a new reference configuration. This new reference

configuration is time-invariant and provided by constitutive assumption, a significant

departure from the classical Kroner–Lee approach (Kroner, 1960; Lee, 1969). There is

freedom in postulating the new reference configuration; however, when modeling plasticity,

the constitutive relation for the reference configuration of each generation may depend on

the selection of a suitable yield measure Φ, as described in Sections 3.3–3.4. The choice of
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Φ and the resulting plastic flow conditions are constrained by the Clausius–Duhem

inequality, as illustrated in Section 3.5.1.

Importantly, the reactive framework proposed in this study can be formulated to remain

consistent with classical plasticity approaches and principles. For example, in Section 3.4 we

demonstrated how our framework could adopt the constitutive assumption of normality,

though it should be emphasized that the theory is not restricted to this assumption. The mass

content of the chemical species whose bonds are breaking and reforming may be tracked

using scalar state variables which are in principle observable, a departure from the classical

internal state variable framework (Coleman and Gurtin, 1967). The ability to formulate a

framework for dissipative material responses using observable state variables should not be

surprising, given that the prior damage mechanics literature has proposed a number of

methods for characterizing damage from experiments, despite the fact that internal state

variable theory implies that such measures are not observable. This apparent contradiction

suggests that the internal state variable framework is not a unique method for modeling such

dissipative processes. In reactive mixtures, mass composition measures are theoretically

observable, even if experimental methods available today are not yet able to detect some of

the state variables appearing in this framework. A theoretical model structured in this

manner has all evolution equations provided by fundamental balance axioms, notably the

axiom of mass balance which includes a function of state for the mass density supply, and

thereby obviates the need to provide alternative evolution equations for internal variables. In

this study, we have demonstrated that this reactive constrained mixture framework can

recover elastoplastic and damage behaviors using only scalar state variables representing the

referential mass densities ρr
α. A consequence of this approach is that complex elastoplastic

behavior was obtained without the use of explicit backstress tensors or plastic potentials, a

feature also seen in the similar recent studies by Montáns and coworkers (Zhang and

Montans, 2019; Nguyen et al., 2020).

Kinematic hardening-like behavior was shown to emerge through a simple superposition of

multiple bond families which is akin to a Masing-type model (Skelton et al., 1997; Zhang

and Montans, 2019; Nguyen et al., 2020), as described in Section 4; though it was not

demonstrated in this study, further incorporating isotropic hardening would be a

straightforward extension of the presented model. A coupled theory of elastoplastic damage

was then developed in Section 5 by synthesizing our previous work on reactive damage

mechanics (Nims et al., 2016) with the constrained reactive mixture model of elastoplasticity

developed in Section 4. In reactive damage mechanics, damage emerges due to bonds which

break permanently and do not reform. Consequently, the theory discussed in Section 5

involved no further state variables beyond accounting for the mass content of broken bonds

via ρr
b; furthermore, a putative evolution equation for the damage variable D was not

postulated but rather emerged by satisfying the fundamental axiom of mass balance. This

had the benefit of resulting in a conceptually cleaner and simpler framework, especially with

regard to heat dissipation and enforcement of the Clausius–Duhem inequality. The seamless

incorporation of damage into the elastoplastic model shows the agility of the mixture

framework. When the material response is governed by reaction kinetics, developing more

coupled behaviors is relatively straightforward, as one only needs to sum the mass supply

Zimmerman et al. Page 40

J Mech Phys Solids. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terms governing each response. This framework can easily be extended to account for more

complex behaviors, such as thermoelasticity, thermo-elastoplasticity and damage, and

elastoplastic damage with fatigue. We may address these more elaborate frameworks in

future studies. In an upcoming study, we will demonstrate how this reactive framework may

be applied to the modeling of fatigue failure, by incorporating an energy-based, loading-

history-dependent reaction that transforms intact and yielded bonds into fatigued bonds.

Despite the alternative approach of the present theory, it was shown in Section 3.4.4 that

reactive plasticity reduces identically to the classical Prandtl–Reuss theory of infinitesimal

plasticity, given appropriate and relevant assumptions. The ability to recover a thoroughly-

understood classical framework in the limit of infinitesimal strains and rotations emphasizes

that although the mathematics and conceptual formulation may differ, the underlying

physical description of plastic behavior embodied in our reactive model is the same. We

reported similar recovery of classical frameworks in our previous reactive viscoelasticity

(Ateshian, 2015; Nims and Ateshian, 2017) and damage (Nims et al., 2016) studies.

The elastoplasticity and elastoplastic damage theories developed in this study were

implemented into the free, open-source finite element software FEBio and thoroughly

verified and validated in Section 6. Verification was completed against two fundamental

benchmarks which included both analytical and standard computational (ABAQUS)

solutions (Section 6.3). Due to the alternative approach of this study, a thorough validation

effort against experimental data was then undertaken. Validation was performed using a

fundamental two-pronged approach: (1) The necessary condition to validate a theoretical

model is that it fits experimental data; (2) the sufficient condition is the ability to predict

experimental results which were not used to inform the model, under specific testing

conditions. A simple multi-material model was first used to demonstrate the predictive

ability of constitutive models (Sections Section 6.4), before considering more complex 3D

geometries. In Sections 6.6–6.7 we predicted the reaction forces required for finite

deformation forming problems and produced agreement with experimental results.

In Section 6.8 we demonstrated that independent measurements of the plastic and damage

responses of a material may be fitted simultaneously within our framework, though we could

not find additional experimental responses in the literature for that material, preventing us

from reporting an additional prediction. Finally, in Section 6.9 we reported the canonical

example of uniaxial tension, both with and without damage, and recovered experimentally-

observed behavior. In this thorough series of validation problems, confidence in both the

fitting and predictive abilities of the reactive theory has been established. Here, we must

point out that our current FEBio implementation of a local damage mechanics model

exhibits mesh dependence, as is well recognized in the finite element literature (Borst et al.,

1993; Samal et al., 2008). Future work may remove this limitation by implementing a

nonlocal formulation to introduce a characteristic length scale into the numerical

implementation (Pijaudier-Cabot and Bažant, 1987; Bažant and Jirásek, 2002).

This study demonstrated that it is possible to formulate simple elastoplasticity and

elastoplastic damage models within a consistent framework which uses measures of material

mass composition as theoretically observable state variables, representing an addition to the
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established biomechanics (Ban et al., 2018; Safa et al., 2019b) and plasticity (Rajagopal and

Wineman, 1992; Rajagopal and Srinivasa, 1998a,b) literature that introduced the concept of

modeling plasticity through configurational change. The present work has been specialized

to plasticity and damage in metals, but the underlying formulation offers a valid method to

describe plasticity and damage in any material, given the ability to define necessary

constructs for the material such as a yield threshold and criterion. Through an approach

centered upon reaction kinetics, this theoretical frame can be expanded in scope to account

for more complex behaviors. The present formulation represents an extension of previous

seminal work applying constrained reactive mixtures (Humphrey and Rajagopal, 2002) to

growth and remodeling mechanics, which we utilized for similar applications (Ateshian and

Ricken, 2010; Nims and Ateshian, 2017), then extended to viscoelasticity (Ateshian, 2015;

Nims and Ateshian, 2017), and damage mechanics (Nims et al., 2016). Our immediate

future work will be directed towards further extending these concepts to model fatigue

mechanics.
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Appendix.: Derivation of the tensorial normal Nα

The derivation that follows makes extensive use of the tensorial products ⨂, ⊘, ⦸ and ⨀,

defined using Cartesian components such that

A ⊗ B i jkl = Ai jBkl A ⦸ B i jkl = AilB jk

A ⊘ B i jkl = AikB jl A ⊙ B i jkl = 1
2 AikB jl + AilB jk .

(A.1)

The first term on the right hand side of Eq. (3.24) is determined by the specific functional

form of Φ. The last term is found by using the polar decomposition Fα = R ⋅ Uα and

assuming R is independent of Uα, producing

∂Fα

∂Uα = R ⊙ I . (A.2)

The remaining stiffness-like term ∂Tα/∂Fα may be evaluated by first pulling the Cauchy

stress back to the material frame through the standard relation Tα = (Jα)−1Fα ⋅Sα ⋅(Fα)T,

where Sα is the second Piola–Kirchhoff stress, then carrying out the differentiation,

producing the unwieldy expression
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∂Tα

∂Fα = Jα −1 −Fα ⋅ Sα ⋅ Fα T ⊗ Fα −T + I ⊘ Fα ⋅ Sα + Fα ⋅ Sα ⦸ I

+Fα ⊘ Fα:Cα: 1
2 Fα T ⊘ Fα T + Fα T ⦸ Fα T ⋅ Fα −T .

(A.3)

Here, ℂα is the material elasticity tensor for bond generation α, and we have needed the

following useful derivatives:

∂ Jα −1

∂Fα = − Jα −1 Fα −T ∂Sα

∂Eα = ℂα

∂Fα

∂Fα = I ⊘ I ∂Eα

∂Cα = 1
2I ⊙ I

∂Sα

∂Fα = ∂Sα

∂Eα : ∂Eα

∂Cα : ∂Cα

∂Fα
∂Cα

∂Fα = Fα T ⊘ I + I ⦸ Fα T,

(A.4)

where Eα = 1
2 Cα − I  is the Green–Lagrange strain tensor and Cα = (Fα)T ⋅ Fα is the right

Cauchy–Green tensor. Eq. (A.3) can now be manipulated to only include the Cauchy stress

and spatial elasticity tensor, where we recognize Cα = Jα −1 Fα ⊘ Fα :ℂα: Fα T ⊘ Fα T
.

By factoring out a post-multiplied (Fα)−T term, the compact form of Eq. (3.25) is obtained.

Making use of Eq. (3.25) and performing the first contraction in Eq. (3.24) is straightforward

and directly yields

∂Φ
∂Tα : ∂Tα

∂Fα = Mα ⋅ Fα −T, (A.5)

where Mα emerges naturally and is given by Eq. (3.27). Finally, the tensorial normal Nα

may be evaluated by inserting Eqs. (A.2) and (A.5) into Eq. (3.24),

Nα = Mα ⋅ Fα −T :R ⊙ I

= 1
2RT ⋅ Mα ⋅ Fα −T + 1

2 Fα −1 ⋅ Mα T ⋅ R

= 1
2RT ⋅ Mα ⋅ R ⋅ Uα −1 + 1

2 Uα −1 ⋅ RT ⋅ Mα T ⋅ R .
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Fig. 1.
The phenomenon described as “kinematic hardening” in classical plasticity may be

represented by the superposition of multiple elastic–perfectly plastic bond families with

different yield thresholds. The elastic–perfectly plastic stress response of a single bond

family β = 0 in the reactive framework is presented in (a), with the initial linear response

contributed by the intact bonds s; upon yielding at the threshold Φm0, the perfectly plastic

response consists of multiple generations of breaking and reforming bonds α = u, υ, …. The

evolution of mass fractions w0
s  of intact and w0

y of yielded bonds is presented in (b) and (c),

respectively. The stress response obtained from the superposition of three bond families β =

0,1,2 is shown in (d), where each family occupies the same mass fraction in the mixture,

w0 = w1 = w2 = 1
3 , reproducing the classical kinematic hardening behavior. Green dashed

lines help indicate changes in slope due to yielding of each bond family. The corresponding

mixture mass fractions of (e) intact bonds ws, and (f) yielded bonds wy = 1−ws further

illustrates the occurrence of each yielding reaction.
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Fig. 2.
Schematic stress–strain curve illustrating derivation of constitutive models for Φmβ. E is

Young’s modulus of the elastic solid, 𝜀β are the unknown yield strains for each bond family,

𝒴β are the effective yield thresholds for the global material, Φmβ are the true yield

thresholds for each family, and wβ are the family mass fractions.
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Fig. 3.
Modeling uniaxial stress–strain curves using the constitutive model for scalar bond family

parameters given in Section 4.3. Identification of parameters on idealized stress–strain

curves showing (a) a plateau in the stress, or (b) exhibiting a region of linear hardening. The

yielding behavior is fully described by the set of parameters {nf, 𝒴0, 𝒴max, w0, we, r}.

Parametric variations of (c) w0 and (d) we illustrate their influence on the stress–strain

response; other parameters are held fixed. In (c–d) nf = 10, 𝒴0 = 600 MPa, 𝒴max = 1000

MPa, and r = 1. In (c), we = 0 and in (d) w0 = 0.75. For all cases, E = 200 GPa and ν = 0 . 33.

Zimmerman et al. Page 49

J Mech Phys Solids. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4.
Parametric study of the effect of the damage parameter γp for a Weibull distribution, with no

intact damage taking place. (a) As γp increases, the onset of noticeable damage shifts to

higher strains and becomes more rapid. (b) Plot of the damage variable D = ∑β wβFp Ξmβ
p .

The response becomes more nonlinear as γp deviates from unity. Other plasticity and

damage parameters are nf = 20, 𝒴0 = 600 MPa, 𝒴max = 1000 MPa, w0 = 0.75, we = 0, r = 1,

and κp = 0.03.
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Fig. 5.
Results for the fundamental 2D and 3D plasticity benchmarks examined in Section 6.3.

Comparison of normal stresses and von Mises stress between the reference solution and

FEBio, for (a) 2D and (c) 3D benchmarks. Stress paths plotted in the reduced plane, along

with the von Mises yield surface, are shown for the reference and FEBio solutions, for (b)

2D, and (d) 3D benchmarks, demonstrating no violation of normality. The reference solution

for the 2D benchmark was analytical (Krieg and Krieg, 1977), while the 3D reference

solution was obtained with ABAQUS.
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Fig. 6.
(a) Geometry and (b) multi-material composite panels for the multi-element multi-material

benchmark of Section 6.4.
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Fig. 7.
Comparison between experimental and computational results for the multi-element multi-

material benchmark of Section 6.4.

Zimmerman et al. Page 53

J Mech Phys Solids. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8.
Predicting volume change during plastic deformation (Section 6.5). (a) Material properties

for unaged maraging steel were obtained by curve-fitting the experimental results, and (b)

the resulting volume change during a separate load-unload-reload cycle was predicted using

these material properties.
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Fig. 9.
(a) Geometry and mesh for frictionless compression of a cylindrical billet, used for material

characterization in Section 6.6. (b) Finite element fit to the experimental flow curve of Shih

and Yang (1991), used to extract reactive plasticity parameters.
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Fig. 10.
Initial geometry and mesh (left) for the example of forging a ball bearing in Section 6.6.

Deformed mesh at the halfway point (center) and upon completion of forging (right). The

butterfly mesh in the corner was employed to avoid element distortion due to large

deformation at this location. In the right-most figure, the ridge around the bearing

midsection is to be expected and can be seen in photographs of actual bearings forged by

this process (Shih and Yang, 1991).
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Fig. 11.
Die force–displacement curve predicted by FEBio with reactive plasticity compared to

experimental measurements (Shih and Yang, 1991), for the bearing forging example in

Section 6.6.
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Fig. 12.
(a) Initial (left) and final deformed geometry and mesh (middle) for the example of upsetting

a cylindrical billet considered in Section 6.7. The deformed mesh shows very large rotations.

(b) Contour plot of effective plastic strain e0
p at the final configuration, which compares

favorably to the computational results of Shih and Yang (1991).
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Fig. 13.
Die force–displacement curve predicted by FEBio with reactive plasticity, compared to

experimental results recorded by Shih and Yang (1991) for the upsetting of a cylindrical

billet presented in Section 6.7.
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Fig. 14.
Simultaneous fitting of (a) experimental stress–strain, and (b) damage–strain results for

Al2024-T3 (Section 6.8).
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Fig. 15.
(a) Flow curve adopted by Norris Jr et al. (1978) to model uniaxial tension of a cylindrical

bar (Section 6.9), compared to reactive plasticity fits with and without damage. (b) Damage

curves as a function of effective plastic strain e0
p for the reactive plasticity models presented

in (a). To produce their curve, Norris et al. had to use correction factors to extrapolate

experimental data beyond the onset of necking.
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Fig. 16.
(a) Initial geometry and mesh for the example of uniaxial tension of a circular bar

considered in Section 6.9. Contour plots show (b) the effective plastic strain e0
p and (c) the

effective stress at the end of the analysis for plastic (“intact”) and elastoplastic damage

(“damage”) models.
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Fig. 17.
Contour plot showing the spatial distribution of damage at the end of the uniaxial tension

analysis of Section 6.9, for the material model incorporating reactive plasticity with damage.
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Fig. 18.
Finite element model and experimental data (Norris Jr et al., 1978) for (a) normalized neck

radius and (b) applied load as a function of gage strain, for both undamaged and damaged

elastoplastic material models (Section 6.9).
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Table 1

Loading history for fundamental 2D plasticity benchmark, R = 2.5 × 10−5 mm.

Step 1 2 3 4 5 6 7 8

ux R 2R 2R 2R R 0 0 0

uy 0 0 R 2R 2R 2R R 0
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Table 2

Loading history for fundamental 3D plasticity benchmark, R = 2.5 × 10−5 mm.

Step 1 2 3 4 5 6 7 8 9 10 11 12

ux R 2R 2R 2R 2R 2R R 0 0 0 0 0

uy 0 0 R 2R 2R 2R 2R 2R R 0 0 0

uz 0 0 0 0 R 2R 2R 2R 2R 2R R 0
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