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Abstract

Exercise intolerance (EI) is the primary manifestation of chronic heart failure with preserved 

ejection fraction (HFpEF), the most common form of HF among older individuals. The recent 

recognition that HFpEF is likely a systemic, multi-organ disorder that shares characteristics with 

other common, difficult-to-treat aging-related disorders suggest that novel insights may be gained 

from combining knowledge and concepts from aging and cardiovascular disease disciplines. 

This state-of-the-art review is based on the outcomes of an NIA-sponsored working group 

meeting on aging and EI in HFpEF. We discuss aging-related and extra-cardiac contributors 

to EI in HFpEF, and provide the rationale for a transdisciplinary, ‘gero-centric’ approach to 

advance our understanding of EI in HFpEF and identify promising new therapeutic targets. 

We also provide a framework for prioritizing future research, including developing a uniform, 

comprehensive approach to phenotypic characterization of HFpEF, elucidating key geroscience 

targets for treatment, and conducting proof-of-concept trials to modify these targets.

Condensed Abstract:

Exercise intolerance (EI) is the primary manifestation of heart failure with preserved ejection 

fraction (HFpEF) in older adults and is associated with poor outcomes. A better understanding 

of the pathophysiology of EI in HFpEF is needed for its optimal management. Here, we provide 

a comprehensive discussion of the evidence supporting key roles for extra-cardiac contributors 

to EI in HFpEF and biological mechanisms of aging to the development and progression of 

HFpEF. Future research leveraging a transdisciplinary approach that includes cardiovascular 

and geroscience experts are needed for better phenotypic characterization of HFpEF and the 

identification of key geroscience targets for treatment.

Keywords

Heart failure with preserved ejection fraction; aging; exercise intolerance; skeletal muscle; 
senescence

Introduction

Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common form of 

HF; its prevalence is increasing, its prognosis is worsening, and pharmaceutical trials in 

HFpEF have been neutral on their primary outcomes.(1,2) Thus, there is an urgent need 

for an enhanced understanding of HFpEF. The recognition that HFpEF is likely systemic 

and multi-organ in nature, and shares many characteristics with other common, difficult-to

treat aging disorders supports examining the condition from a gerontological viewpoint 

as well as from a cardiovascular perspective.(2,3) However, few efforts to date have 
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capitalized on these new insights. This State-of-the-Art Review is based on an eponymous 

workshop sponsored by the National Institute of Aging (NIA) held September 12–13, 2019, 

to address this critical knowledge gap. The workshop brought together a diverse group 

of experts in aging and/or HFpEF, including geroscientists, geriatricians, cardiologists, 

exercise physiologists, skeletal muscle biologists, and metabolic and adipocyte experts. 

These disparate groups of investigators rarely interact, yet each holds complementary 

and potentially valuable knowledge and insights relevant to HFpEF. The goal was to 

maximize sharing of information and concepts that could enhance understanding of HFpEF 

pathophysiology and management to forge a framework for new transdisciplinary research 

discoveries.

The meeting focused on extra-cardiac mechanisms underlying development of exercise 

intolerance (EI) in HFpEF. EI is the primary manifestation of chronic, stable HFpEF, is 

severe and debilitating, and is associated with poor quality-of-life and clinical outcomes.

(2) However, the pathophysiology and optimal management of EI in HFpEF are poorly 

understood. Although the role of cardiac contributors to the development of HFpEF and 

EI has been discussed extensively in prior reviews,(3–5) there has been far less focus on 

extracardiac determinants. This state-of-the-art review is unique in that it offers a new, 

comprehensive, evidence-based ‘road map’ of the under-recognized but critical contributions 

of extra-cardiac factors and the array of research opportunities to advance the diagnosis and 

treatment of this pervasive, debilitating condition in older adults.

New Paradigm for HFpEF as a Multi-system Geriatric Syndrome

HFpEF —originally described by a geriatrician, Robert Luchi, 38 years ago—is the most 

common form of HF in community-dwelling older persons.(1,6) Almost all HF cases 

encountered among nonagenarians are HFpEF. Aging is one of the strongest risk factors 

for HFpEF and its increasing prevalence is largely driven by the aging population. The 

impact of aging and circulating factors in promoting HFpEF is supported by heterochronic 

parabiosis studies, whereby animals of different ages are joined surgically leading to 

common circulation, demonstrating reversal of some HFpEF features in older mice after 

prolonged exposure to the circulating growth differentiation factor-11 in young mice.(7)

HFpEF was initially believed to be due solely to abnormal relaxation of the left ventricle 

and decreased LV compliance.(8) However, our understanding of the pathophysiology of 

HFpEF has evolved over time toward the concept of a systemic, multi-organ geriatric 

syndrome.(2) It is likely initiated by inflammation and other circulating factors that 

originate from increased adiposity, particularly excess intra-abdominal adipose tissue, in 

the setting of multi-morbidity, aging, and physical inactivity.(5) These factors foment loss 

of capillarity, sarcopenia, mitochondrial dysfunction, and endothelial dysfunction resulting 

in multiorgan dysfunction, frailty, cardiac and skeletal myopathy. Consistent with other 

geriatric syndromes, co-morbidities, frailty, and decline in functional capacity are central 

to the clinical manifestations of HFpEF and contribute to the high burden of mortality, 

hospitalizations, and poor quality-of-life (Central Illustration).

The implications of the concept of HFpEF as a systemic geriatric syndrome are profound 

and may help explain why pharmacological intervention trials to date have been neutral. 
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They also redirect attention and resources from a purely cardio-centric approach to that of 

an integrated, whole-patient approach. Moreover, the new paradigm of HFpEF suggests a 

shift in treatment focus toward integrated patient-reported outcomes including quality-of-life 

and symptom burden, as well as functional assessments, i.e., exercise tolerance, physical 

performance, and cognition. They also point to opportunities for testing novel agents for 

treatment, including those that can affect anti-inflammatory; capillary-sparing, rejuvenating; 

and improved mitochondrial function. Thus, a geroscience approach, which focuses on 

biological mechanisms of aging to improve the treatment of age-related chronic conditions, 

may foster needed advances in the understanding and treatment of HFpEF.

EI: A Key Manifestation of HFpEF

Low exercise capacity, measured objectively as peak oxygen uptake (VO2peak) during 

maximal exercise, is an independent predictor of HFpEF development among older adults.

(9) On average VO2peak is reduced by 35% in HFpEF compared with healthy age- and 

sex-matched controls.(10) Among older HFpEF patients, VO2peak during upright exercise 

is on average 3–4 ml/kg/min below the VO2 threshold of functional independence.(11) 

Thus, many activities of daily living that are trivial for healthy adults to perform require 

near-maximal effort for patients with HFpEF (Figure-1).(4) VO2peak can be measured 

reproducibly with standardized cardiopulmonary exercise testing with modest participant 

burden and cost. VO2peak can be measured as an absolute value (ml/min) or relative to the 

body size (ml/kg/min), and their use depends on the setting. It is customary to index VO2peak 

to body size given its intimate relationship with a wide range of morphometric measures, 

including weight, body surface area, BMI, and skeletal muscle mass. Extremes of body size, 

obesity, and weight loss interventions may disproportionately influence body size indexed 

measures of VO2peak.In these settings, changes in VO2peak can be verified and compared 

with measures of exercise capacity that are not indexed to weight, including exercise time to 

exhaustion, six-minute walk distance, and maximal workload achieved.(12,13)

Health aging is associated with declines in VO2peak but in the absence of disease does not 

cause EI, i.e., shortness of breath and fatigue with normal day-to-day activity. Development 

of HFpEF is associated with accelerated functional decline and lowering of the threshold for 

dyspnea and fatigue so that they occur even with usual normal daily activity. EI is a key, 

patient-centered outcome that is critical to understand HFpEF pathophysiology and optimal 

treatment, independent of clinical events. EI is an important outcome for observational, 

mechanistic, and interventional studies. In this section we have discussed the key attributes 

of HFpEF as a geriatric syndrome and their implications in the pathogenesis of EI and its 

management.

Aging, accelerated functional decline, and EI in HFpEF—The strong predisposition 

of older adults to the development of HFpEF suggests potentially specific age-related 

vulnerabilities to HFpEF. Recently, molecular hallmarks of aging and shifts in subcellular 

biology have become recognized as fundamental determinants of age-related changes that 

can lead to chronic age-related diseases, including overt cardiovascular diseases (CVD).

(14) Paneni et al. describe how progressive changes in geroscience-related subcellular 

mechanisms can lead to increased CVD vulnerability with aging that likely influence 
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development of HFpEF.(15) This includes changes in sirtuins, autophagy, and cellular 

senescence which lead not only to changes in cardiac cells, but to broader changes in fat and 

skeletal muscle, autonomic regulation, hematology, endothelial function, and other wide

ranging effects that impact HFpEF and may require different approaches than those utilized 

for CVD in younger persons. The strong associations of HFpEF with multi-morbidity is 

predictable, since these changes related to the hallmarks of aging trigger multiple diseases, 

including frailty, cognitive changes, and other systemic effects. Thus, traditional single 

organ-focused care may not be optimal for understanding HFpEF that occurs in the context 

of change in aggregate aging, multiple comorbidities, and a decline in physiologic reserve 

(Figure-2).

EI in HFpEF likely depends not only on cardiac changes specific to HFpEF but also on 

a broad range of factors related to aging that sets the stage for the development of EI in 

older HFpEF patients. Prior studies among healthy adults have showed that VO2peak declines 

significantly with age.(16,17) The rate of decline in VO2peak accelerates in older age from 

3–6% per decade in the 20s to 30s to >20% per decade after the age of 70.(16) Age-related 

declines in strength and balance exacerbate decrements in VO2peak due to alterations in 

skeletal muscle including atrophy, loss of strength, and impaired mitochondrial respiration.

(18)

Sex differences in EI in HFpEF—There are important sex differencesin the 

pathophysiology and clinical manifestations of HFpEF. Women have a two-fold higher 

lifetime risk of HFpEF vs. HFrEF and the prevalence of HFpEF is much higher than 

HFrEF among older women.(19) In the Cardiovascular Health Study, >80% of incident 

HF in older women was due to HFpEF.(1) Women with HFpEF have higher burden of 

symptoms, worse quality-of-life, and lower VO2peak (~20–30% lower VO2peak) compared 

with men(20); however percent predicted VO2peak appears similarly reduced among men 

(68%) and women (66%) with HFpEF.(21) Women have lower exercise cardiac reserve 

and reduced peripheral oxygen extraction.(22) The lower VO2peak among women may be 

related to sex-specific differences in cardiac remodeling patterns and adiposity distribution. 

Women (vs. men) have small LV cavity size, higher LV stiffness, higher LV filling pressure, 

and lower stroke volume at rest.(22) Furthermore, women have greater decline in LV 

contractility and greater concentric remodeling with aging.(23) Animal studies have also 

demonstrated sex differences in cardiac response to increased pressure overload (aortic 

banding) with greater LV dilation, loss of concentric remodeling, and loss of contractile 

reserve in male rats (vs. female rats).(24) Remodeling differences may be related, in part, 

due to ACE gene polymorphisms, sex-specific differences in mRNAs, and peri-menopausal 

adiposity changes in women.(25) Specifically, women with (vs. without) HFpEF have 34% 

higher visceral adipose tissue (VAT). Higher amount of VAT has been associated with more 

exaggerated increase in pulmonary capillary pressure with exercise in women but not in 

men.(26)

Role of extracardiac comorbidities in manifestations of EI in HFpEF—HFpEF 

is associated with, and partly driven by extra-cardiac comorbidities. On an average, 

patients with HFpEF have ≥5 co-existing comorbidities, with a significant increase in the 
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comorbidity burden over time.(27) In older patients with HFpEF, noncardiac comorbidities 

are involved in adverse outcomes more frequently compared with HFrEF.(27,28) Higher 

burden of comorbidities contributes to lower VO2peak and EI in patients with HFpEF 

through extracardiac mechanisms detailed in Table-1. The importance of extracardiac 

contributors to EI in HFpEF is highlighted as they account for: 1) ~50% of the reduced 

VO2peak;(29) 2) ~85% of the improvement in VO2peak with exercise training;(30) and 3) 

skeletal myocytes, in contrast to cardiac myocytes which are terminally differentiated, have 

a rapid regenerative and repair capacity.(2,31) These observations may have important 

implications given that optimal management of comorbidities and their consequences may 

represent an important strategy for older patients with HFpEF. Consistent with this notion, 

lifestyle interventions such as exercise and weight loss, which have pleiotropic favorable 

effects on non-cardiac and cardiac co-morbidities, have been shown to improve exercise 

capacity and quality-of-life in HFpEF primarily through improvements in extracardiac 

factors such as systemic inflammation, adiposity, and peripheral oxygen utilization in 

skeletal muscle.(12,30,32)

Frailty and EI in HFpEF—Frailty is a biological syndrome reflecting decreased 

physiological reserve and vulnerability to stressors,(33) and represents the key factor 

underlying the heterogeneity in functional decline with aging.(34) The two most widely 

accepted measures of frailty, the Fried Frailty phenotype model and the Frailty Index, 

have advantages and disadvantages in the context of HF, as described in Table-2.(33) The 

Fried Frailty phenotype measures decline in physiologic reserve across 5 physical function 

domains: weight loss, weakness, poor endurance, slowness, and low physical activity level.

(33) The Frailty Index quantifies frailty as cumulative deficit in multiple organ system 

resulting in decreased physiologic reserve.(35)

The prevalence of frailty in HFpEF patients is reported to be up to 75%.(36,37) Frailty 

in older patients with HFpEF is associated with poor quality-of-life, greater functional 

impairment and reduced submaximal aerobic exercise capacity. Frailty predisposes to 

severe EI in HFpEF through several shared mechanisms including a higher burden of co

morbidities, chronic inflammation, sarcopenia, and a global decrease in functional reserve. 

Frailty is also associated with higher risk of hospitalization and mortality.(37,38)

Considering the prevalence and prognostic impact of frailty in HFpEF, it should be 

considered when designing treatment paradigms for older patients with HFpEF with the 

goal of reducing symptom burden, improving functional status and exercise capacity, and 

ultimately, improving clinical outcomes. Treatment approaches targeting frail patients with 

HFpEF are being evaluated; one study showed significant improvement with a novel 

physical rehabilitation intervention.(39)

Pathophysiology of EI in HFpEF

Both cardiac and extra-cardiac abnormalities contribute to EI in HFpEF by reducing 

physiologic reserve capacity for the key determinants of VO2peak: exercise cardiac 

output and peripheral oxygen extraction. An integrative approach to quantifying relative 

contributions to impaired VO2peak in HFpEF can be achieved by tracing oxygen pathway 
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from “mouth to mitochondria”. Deficiencies in alveolar ventilation, lung diffusion capacity, 

cardiac output, hemoglobin, skeletal muscle diffusion capacity for O2, and mitochondrial 

respiration can contribute to impaired VO2peak associated with HFpEF.(11) There is 

heterogeneity of O2 pathway derangements in patients with HFpEF, the majority of whom 

have multiple abnormalities in the O2 pathway.(11) Given the serial nature of the steps in the 

O2 pathway, targeting a single step may not result in a significant overall enhancement of O2 

utilization.(11) Deficiencies in specific steps of the O2 pathway can be assessed by invasive 

hemodynamic monitoring during exercise and via tests of peripheral skeletal muscle blood 

flow, O2 diffusion and utilization.

Hemodynamic measurements during exercise permit assessment of the relative contributions 

of cardiac versus peripheral impairments and confirm the presence HF and influence of 

extra-cardiac abnormalities. Anticipated changes in response to treatment interventions may 

then be modeled in the context of the compound O2 pathway deficits. Multiple benefits can 

be achieved through exercise training which thus serves as an example of an intervention 

that demonstrably improves EI in HFpEF by improving impairments in multiple steps in the 

O2 pathway in multiple organ systems.(40) In the following section, we have discussed in 

detail the underlying contribution of different cardiac and extra-cardiac abnormalities toward 

EI in older patients with HFpEF.

Cardiovascular contributors to EI

Impairment in left atrial and left ventricular reserve: Abnormalities of left heart 

structure, function, and reserve play a pivotal role in the pathophysiology of EI in HFpEF. 

These components have been described in detail elsewhere(41) and are summarized in the 

online supplement and integrated into Figure-3.

Right heart function and the pulmonary vasculature in HFpEF: Pulmonary vascular 

remodeling, both arterial and venous, are common and severe in HFpEF and is related to 

several factors including chronically elevated left-sided filling pressures, vasoconstriction, 

decreased nitric oxide availability, and metabolic and inflammatory dysregulation.(42) 

Pulmonary hypertension is prevalent in up to 80% of HFpEF patients and is associated 

with increased morbidity, mortality, and EI.(43)

Several age-related changes likely underlie the above findings, including decreased right 

ventricular (RV) systolic and diastolic function, which may exceed corresponding changes in 

the left heart.(44)Aging and associated cardiometabolic dysregulation may also contribute to 

impaired RV function (Figure-3).(45) Measures of pulmonary function and gas exchange 

deteriorate with aging; this may be related in part to aging-related kyphotic changes, 

declines in respiratory muscle function, and reduction in functional alveolar-capillary units.

(46)Additionally, structural and dynamic compliance of the pulmonary vasculature likely is 

reduced with aging.(47) These abnormalities are amplified in patients with HFpEF.(48,49)

Systemic vascular contributions to HFpEF: The systemic arterial tree plays a central role 

in modulating LV afterload, ventricular-arterial coupling, systolic and diastolic function, 

and the distribution of the cardiac output at rest and during exercise.(50) Thus, it has an 

important mechanistic role at several steps of the oxygen consumption cascade and in the 
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chronic maladaptive remodeling of the heart and other target organs (Figure-3). Due to 

widely varying characteristics, individual territories within the arterial tree are discussed 

separately below.

Aorta: A healthy arterial system delivers relatively steady flow to the microvasculature, 

despite intermittent LV ejection, largely due to the cushioning (windkessel) function of 

the aorta. Aging results in stiffening of the aorta, and this is accelerated by comorbidities, 

particularly hypertension, obesity, and diabetes. Aortic stiffness is higher in patients with 

established HFpEF compared with healthy age-matched controls. Greater large-vessel 

arterial stiffness at rest is associated with lower Vo2peak in older HFpEF patients.(51) 

Moreover, central arterial stiffness worsens during exercise and contributes to EI in HF.

(52,53) The changes in large arteries favors adverse patterns of pulse pressure with 

consequent changes in pulsatile LV afterload, which promotes LV remodeling, fibrosis, 

dysfunction, and failure.(54) Large artery changes also leads to excessive delivery of 

pulsatile energy to the microvasculature of target organs as a function of arteriolar 

resistance.(55) Therefore, in addition to its impact on the heart, large artery stiffening may 

be one of the factors contributing to clustering of HFpEF with various comorbidities in older 

persons, such as chronic kidney disease and dementia.

Muscular arteries: LV contraction generates a pulse wave that travels forward in the arteries 

and is partially reflected at sites of impedance mismatch, such as points of branching or 

change in wall diameter or stiffness. Numerous peripheral reflections are summed into 

a larger reflected wave, which travels back to the LV. In older adults, lower vascular 

compliance results in a reduced wave transit time (pulse wave velocity) from the LV to 

reflection sites and back to the proximal aorta. In some cases, wave reflections return to the 

LV while the aortic valve is still open and ejecting blood in mid-to-late systole resulting in 

increased afterload. Thus, pulse wave reflections can increase the late systolic LV workload 

and adversely shift the LV loading sequence from early to late systole, which promotes LV 

remodeling and dysfunction.(54,55)

HFpEF patients have increased late systolic load from wave reflections during exercise, 

which contributes to exaggerated afterload, increased LV filling pressure, reduced exercise 

cardiac output, and reduced VO2peak. Furthemore, vasodilator therapies such as inorganic 

nitrites and beet-root juice have been shown to imporve arterial compliance and VO2peak in 

patients with HFpEF. Thus, wave reflections may represent a mechanistic therapeutic target 

for novel therapies such as inorganic nitrates/nitrites.(52,56)

Microvasculature: In addition to its role in determining mean arterial pressure and resistive 

load to the LV, microvascular function has an important role in peripheral oxygen delivery 

and utilization. Vasodilatory responses during exercise mediate the peripheral redistribution 

of flow to working muscle, a key component of the normal hemodynamic response 

to exercise and depends on local vasodilatory mechanisms within muscle as well as 

neurovascular sympathetic control mechanisms.(57) Hypoxic vasodilation is an important 

local mechanism that ensures adequate local blood flow to oxygen to muscle tissue, and 

allows the local vasculature to overcome humoral and reflex-mediated vasoconstriction 
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during exercise.(57) Microvascular dilatory reserve is abnormal in HFpEF, contributes to EI, 

and may be improved by exercise training.(58)

HFpEF patients also have abnormalities of the coronary microcirculation, impaired coronary 

flow reserve, and greater burden of myocardial injury with exercise due to oxygen supply

demand mismatch.(59,60) Large artery stiffness and wave reflections are key determinants 

of myocardial perfusion pressure through their effects on the diastolic pressure profile.

(55) It is possible that the reduced coronary microvascular perfusion reserve in HFpEF is 

due to both abnormalities in coronary microvasculature such as myocardial microvascular 

rarefaction,(61) endothelial dysfunction, and abnormal central aortic hemodynamics.

Contribution of skeletal muscle myopathy to EI in HFpEF

Overview of skeletal muscle aging: Sarcopenia, the age-associated loss of skeletal muscle 

mass and function results in impaired mobility, reduced physical function, and increased 

disability and mortality.(62) The causes of sarcopenia are multi-factorial but include poor 

nutritional status, physical inactivity, inflammation, and chronic co-morbidities, i.e., the 

hallmarks of aging. The recognition of sarcopenia as a relevant clinical syndrome of 

advancing age has led to refinements in its identification, prevention, and treatment.(62–64)

Strength, power, and endurance each comprise unique physiological domains of muscle 

performance and are differentially related to the declines in physical functioning with aging 

(Table-3).

The link between peripheral vascular function and sarcopenia: Aging is associated 

with reduced sensitivity of skeletal muscle proteins to all key anabolic stimuli: general 

nutrition; dietary amino acids; insulin; and resistance exercise.(65) This phenomenon, called 

anabolic resistance, is promoted by abnormal rapamycin (mTOR) complex 1 signaling (a 

key regulator of the anabolic response in skeletal muscle), and contributes to sarcopenia. 

Endothelial dysfunction may also play a fundamental role in the anabolic resistance of aging 

as shown in Figure-4.

Because nutritive flow helps regulate skeletal muscle protein anabolism, the decrease in 

endothelial function with aging contributes to anabolic resistance and sarcopenia in older 

adults. HFpEF is associated with worse endothelial function, which is correlated with 

symptoms of EI and reduced VO2peak,(66) and could exacerbate aging-associated impaired 

muscle anabolism.

Impairment in skeletal muscle architecture and oxygen transport in HFpEF: HFpEF

mediated reduction in the peripheral O2 extraction reserve is also secondary to impaired 

skeletal muscle O2 diffusion capacity (i.e., transport of O2 from microcirculation to muscle 

mitochondria).(11) HFpEF patients with slower VO2 kinetics have more severely impaired 

peripheral oxygen utilization and higher cardiac output during submaximal exercise 

compared to HFpEF patients with faster VO2 kinetics as well as healthy controls suggesting 

that the limitation for oxygen during submaximal exercise is not related to impaired cardiac 

output.(67) Thus, evaluation of VO2 kinetics with brief, low-intensity exercise could help 

phenotype older HFpEF patients with peripheral limitations.
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Since most of the O2 intake during exercise is consumed in the active skeletal muscles, 

the decline in VO2peak in older HFpEF patients may be partially due to a loss in muscle 

mass, which is reduced in HFpEF.(68) Haykowsky et al. demonstrated a strong association 

between lean mass (percent total as well as leg lean mass) and peak VO2peak. However, in 

addition to the muscle mass, Haykowsky et al. also implicated impaired muscle quality in 

the reduced VO2peak among patients with HFpEF such that VO2peak indexed to total and 

leg lean mass was significantly lower and the change in VO2peak with increasing percent 

leg lean mass was markedly reduced in HFpEF compared with healthy controls.(68) Older 

HFpEF patients also have significantly increased thigh intermuscular fat and intramuscular 

fat to skeletal muscle area ratio compared with healthy controls, both of which were 

inversely related to VO2peak.(25) Furthermore, skeletal muscle biopsy studies have shown 

that older patients with HFpEF have a shift in fiber type distribution with a reduction in 

percent type I (oxidative) fibers and reduced capillary to fiber ratio,(69) and both of these 

alterations were associated with reduced VO2peak.(69) This is in contrast with changes in 

skeletal muscle architecture noted with healthy aging whereby the loss of muscle mass in 

healthy old versus. young adults has been attributed to smaller type-II muscle fiber size 

without substantial reduction in muscle fiber numbers.(70) Taken together, abnormalities in 

skeletal muscle mass and quality contribute to EI in older HFpEF patients (Figure-4).(25,68)

Skeletal muscle mitochondrial bioenergetics and HFpEF: Older patients with HFpEF 

have abnormal skeletal muscle oxygen utilization that is related to reduced VO2peak.

(11,29,71) By magnetic resonance spectroscopy, skeletal muscle oxidative metabolism is 

reduced in patients with HFpEF.(72) Using hemodynamic monitoring during exercise, 

the ability to extract O2 in the skeletal muscles and reduce venous O2 content is 

significantly impaired in HFpEF and is a major contributor to reduced VO2peak.(11,73) 

Mitochondrial content and oxidative capacity are significantly reduced in skeletal muscle 

biopsy samples from older patients with HFpEF vs. age-matched controls.(74) These 

mitochondrial alterations are related to measures of aerobic exercise capacity such as 

VO2peak and 6-minute walk distance. Improved mitochondrial function contributes to 

improvements in VO2peak associated with exercise training, further supporting that skeletal 

muscle mitochondrial abnormalities contribute to pathophysiology of EI in HFpEF patients.

(2) Exercise training can increase mitochondrial electron transport chain (ETC) enzyme 

function 2-fold, accompanied by a 60% increase in mitochondrial mass(75) and has been 

shown to increase electron transport chain activity, mitochondrial mtDNA content, and 

citrate synthase activity.

Contribution of Myosteatosis to EI in HFpEF: Common risk factors associated with 

HFpEF such as obesity, aging, and physical inactivity contribute to deranged energy 

metabolism and metabolic inflexibility (76)– a loss in the capacity to switch effectively 

between fatty acids and carbohydrates as fuel for energy. These are associated with 

impaired skeletal muscle energetics and excess adipose accumulation in muscle tissue, or 

myosteatosis. Older HFpEF patients have significant myosteatosis and abnormal skeletal 

muscle energetics including impaired mitochondrial function, reduced mitochondrial 

density, and impaired peripheral O2 extraction with exercise compared with healthy, age

matched controls, and these are significantly correlated with their severe EI.(74,77,78) 
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Furthermore, improvement in VO2peak in obese HFpEF patients in response to dietary 

weight loss and exercise training appear to be mediated, at least partly, by improved skeletal 

muscle mitochondrial function in tandem with reduction in adipose depots in the skeletal 

muscle tissue.(12)

Contribution of systemic metabolic abnormalities to EI in HFpEF

Obesity, Regional Adiposity, and their implications in senescence and HFpEF: Obesity, 

particularly central and visceral adiposity, have emerged as major risk factors for HFpEF.

(9,25,79,80) Nearly half (~47%) of HFpEF patients are obese; and HFpEF patients with 

BMI in the “normal” range typically have significant visceral adiposity.(81) Visceral obesity 

is associated with abnormal cardiac mechanics prior to the development of HFpEF,(82) and 

the addition of hypertension to obesity accelerates the development of cardiac dysfunction 

and elevated filling pressures.(83)

Age-associated changes in body composition include redistribution of fat mass mainly to 

the visceral compartment. There is also a shift in lipid storage from the subcutaneous to 

the VAT depot,(84) which is thought to be due to a decline in progenitor cell function and 

an accumulation of senescent adipose tissue cells in subcutaneous fat.(85) There is also 

redistribution of adipose tissue to the abdominal compartment, which is presumed to be 

due to the decline in testosterone in men and estrogen in women following menopause. 

VAT is pro-inflammatory, vasoactive, and dysmetabolic, with many factors secreted by 

visceral adipocytes that may contribute to pathogenesis of HFpEF. Of these, plasminogen 

activator-inhibitor-1 (PAI-1), encoded by SERPINE1, is a leading candidate due to its known 

association with VAT, accelerated senescence, and risk of incident HFpEF but not HFrEF in 

population-based studies.(86–88) In animal models of diabetes and aging, PAI-1 levels are 

elevated and genetic deficiency or inhibition of PAI-1 prevents diabetes and extends lifespan.

(86) These findings have been replicated in humans with genetic PAI-1 deficiency.(87)

Aging is also associated with changes in the cellularity and function of subcutaneous 

adipose tissue.(89) Brown adipose tissue declines with aging with a resultant predominance 

of white adipose tissue, which is proinflammatory and exacerbates aging-associated 

inflammation. In white adipose tissue, adipocytes undergo hypertrophy, adipocyte necrosis, 

adipose tissue inflammation, and a switch to proinflammatory classical cytokines and 

adipokines. In addition, there is recruitment of monocytes and other immune cells to 

remove necrotic adipocytes and to participate in tissue remodeling in an attempt to limiting 

lipid storage, but this eventually results in ectopic lipid accumulation (e.g., liver and 

skeletal muscle) and insulin resistance. Importantly immune cells have been shown to 

play a pivotal role in the pathogenesis of HFpEF.(90) The resulting state of chronic, low

grade inflammation and systemic metabolic inflammation,(90,91) and augmented nitrosative 

stress have been implicated in obesity-associated HFpEF and associated EI.(83) In a 

preclinical model of normal weight HFpEF, cardiac NP signaling causes alterations in 

energy expenditure and metabolism, and promotes brown adipose-like features in white 

adipose tissue depots.(92) The sympathetic nervous system and NP signaling increases 

metabolic activity in adipose tissue by activating lipolysis and modulating the brown-fat 

thermogenic program. NP signaling is an important regulator of overall NP activity in 
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adipose tissue in HFpEF and its relevance in obese HFpEF and in aging requires further 

exploration.

Obesity, Regional Adiposity, and EI in HFpEF: Obese patients with HFpEF have reduced 

relative VO2peak (ml/kg/min) as compared with their non-obese counterparts(93). This is 

related to both peripheral and central limitations in exercise induced oxygen uptake. Obese 

individuals have exaggerated LV filling pressure and pulmonary artery pressure response to 

exercise which contributes to reduced exercise cardiac output. Obese individuals also have 

greater infiltration of fatty tissue in peripheral skeletal muscles leading to impairment in 

oxygen extraction.(25) Recent studies have also demonstrated that obese individuals have 

depletion of myocardial energetic source namely, the Creatine Kinase shuttle, which is the 

main transfer mechanism for maintaining ATP delivery in myocardial mitochondria.(94) As 

a result, the delivery of ATP cannot be maintained with exercise stress leading to reduced 

VO2peak. Furthermore, intentional weight loss is associated with restoration of the ATP 

delivery with exercise in the myocardium.(94)

Among regional adipose depots, increased VAT is a major contributor to reduced VO2peak 

in obese patients with HFpEF (25) and may partially explain the female-predominance of 

HFpEF. A recent study demonstrated that excess VAT is associated with more exaggerated 

increase in pulmonary capillary wedge pressure with exercise in women but not in men. 

VAT associated EI is modifiable and loss of visceral fat with caloric restriction has strongly 

associated with improvement in VO2peak among patients with HFpEF.(12) In tandem with 

VAT, pericardial fat also increases, which is associated with more adverse hemodynamics 

and lower VO2peak in HFpEF.(95) Taken together, obesity and excess regional adipose depot 

may be important targets for improvement in VO2peak in patients with HFpEF.

Contribution of diabetes and insulin resistance to EI in HFpEF: The risk of HF 

increases substantially with diabetes, and up to 40% of patients in HFpEF studies 

have diabetes.(96) HFpEF patients with (vs. without) diabetes have higher burden of co

morbitidies, lower VO2peak and submaximal exercise capacity, elevated levels of biomarkers 

of inflammation, and higher risk of adverse clinical events of follow up.(96) The lower 

VO2peak in HFpEF patients with diabetes may be related to higher left ventricular filling 

pressures, chronotropic incompetence, and impaired parasympathetic and sympathetic 

response to exercise due to underlying autonomic neuropathy.(97) Patients with diabetes 

also have reduced delivery and extraction of oxygen in the exercising skeletal muscles 

due to higher prevalence of anemia, reduced vasodilator reserve, higher peripheral vascular 

resistance from endothelial dysfunction and vasoconstriction, and impaired mitochondrial 

function.(96,98,99) Considering the higher burden of EI, HFpEF patients with diabetes are 

an important target for exercise training strategies which can improve VO2peak through 

peripheral adapations in the O2 pathway. Recent small RCTs have evaluated the role of 

novel pharamcotherapies such as Sodium Glucose Co-transpoter-2 inhibitors (SGLT2-i) in 

patients with HFpEF with variable effects (Table-4). Larger outcomes trials using these 

therapies in HFpEF are currently underway.
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Tenets of Aging and Geroscience: Implications for EI in HFpEF

Hallmarks of aging: Role in health and disease—Two foundational reviews 

established the field of geroscience by identifying a short-list of biological processes 

implicated in aging and conserved across species which could serve as new therapeutic 

targets for many age-related chronic diseases and geriatric syndromes, including HFpEF. 

These curated lists of seven to nine biological processes, referred to “hallmarks” or “pillars” 

of aging provide a framework for understanding the role of conserved biological processes 

in health and disease (Figure-5).(14,100) These processes include macromolecular damage, 

metabolism, proteostasis, inflammation, adaptation to stress, epigenetics, cell senescence, 

stem cells/regeneration, and pleiotropic processes. As discussed earlier, aging is a universal 

biological phenomenon that results in a progressive decline in integrated function over time. 

These age-related declines ultimately lead to an increased probability of death.

Approximately 5–10 overlapping and highly intertwined molecular and cellular processes 

are evolutionally conserved ‘common denominators’ that are implicated in biological aging.

(101) These biological processes are active during ‘normal aging’ and when ameliorated, 

the phenotype of aging and its sequelae are retarded. In contrast, when the activity of 

a hallmark is augmented, phenotypic aging processes are accelerated. The hallmarks are 

interdependent such that the effects of one biological process activates others and leads to 

increased dysregulation across multiple processes at progressively accelerating rates over 

time. Interventions to ameliorate the aging sequelae of each of the different hallmarks have 

been demonstrated in mice, suggesting that similar amelioration is possible in humans.(102)

The geroscience hypothesis posits that incident aging-related chronic disease can be 

prevented, delayed, or attenuated by therapeutically targeting these biological processes.

(103) One example is mTOR, which has emerged as a key regulator of aging in laboratory 

studies, with the genetic or pharmacological inhibition of mTOR shown to delay aging in 

animal models.(102,104) Extant evidence suggests that mTOR antagonists may ameliorate 

nearly all identified biological aging processes to some extent, with consistent attenuation 

of multiple positive feedback interactions between hallmarks.(102) Another example is 

cellular senescence and the resulting generation of a senescence-associated secretory 

phenotype (SASP), which is hypothesized to be at the nexus of several age-related 

chronic diseases and geriatric syndromes.(100) The SASP is a consequence of altered 

gene expression that contributes to sterile inflammation and adverse tissue remodeling, and 

further accumulation of senescent cellsin vivo. Experimental therapies targeting cellular 

senescence, or senotherapeutics, include senolytic drugs (selective removal of senescent 

cells) and senomorphic drugs (modulate or reverse SASP) represent an emerging strategy for 

treatment of age-related disease(s), including HFpEF.

Contribution of proteostasis and autophagy to EI in HFpEF—Proteostasis is 

a homeostatic pathway involving the generation and removal of cellular proteins and 

organelles for regeneration purposes and for the provision of energy substrates.(105) The 

cellular machinery involved in proteostasis includes the proteasome and the autophagosome/

lysosome. Functional proteostasis is required for tissue health and its impairment is 

associated with tissue dysfunction and disease. Aging brings a global reduction in cellular 
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proteostasis, especially the autophagy process, in various tissues including skeletal muscle, 

cardiac tissue and liver.(106)

In cardiac tissue, aging is associated with reduction in autophagy and tissue proteostasis.

(107) While relatively little is known regarding the role of cardiac proteostasis in HFpEF, 

mouse models of HFpEF have shown a decline in proteostasis and autophagy in skeletal 

muscle and liver tissue.(108) Exercise, which increases muscle autophagy in many other 

conditions, does not increase autophagy in a young rat model of HFpEF.(109) Taken 

together, both aging and HFpEF independently reduce proteostasis in tissues involved in 

the pathogenesis of HFpEF.

Inflammation, ‘omics of immune cells, and EI in HFpEF—Chronic inflammation, 

one of the hallmarks of aging, has been implicated as the key pathway unifying 

multifactorial and intertwined mechanisms leading to HFpEF.(110) Prior studies have 

shown high levels of circulating inflammatory biomarkers, including IL6 and CRP, are 

present in established HFpEF, and are associated with risk for development of HFpEF, 

and with severity and prognosis of HFpEF.(111) Furthermore, dietary weight loss in obese 

HFpEF results in improved symptoms, VO2peak, quality-of-life, and the improvement is 

associated with reduced inflammation biomarkers.(12) A causal role for inflammation in HF 

is further supported by results from a recent randomized clinical trial (RCT) showing that 

anti-inflammatory therapy targeting IL1β may reduce risk for HF.(112) Among patients with 

HFpEF, a 12-week, phase-II, placebo-controlled trial demonstrated a significant reductions 

in CRP and NT-ProBNP levels with IL-1 receptor blockers, and a modest improvement in 

the treadmill exercise time, a measure of aerobic exercise performance, within the treatment 

arm.(113)

Current understanding of mechanistic links between inflammation and HFpEF has mainly 

been derived from animal models.(114) The inflammatory response is a protective 

mechanism in which activated immune cells phagocytose and remove pathogens. However, 

during chronic inflammation, innate immune cells such as monocytes can be reprogrammed 

and promote exaggerated inflammatory responses after infiltrating the myocardium.

(114,115) Therefore, ‘omics profiling of human immune cells, particularly of easily 

accessible circulating immune cells, holds great promise in the exploration of the cell

specific mechanisms leading to HFpEF and may facilitate the development of innovative 

interventions through modulation of these cells. Additionally, ‘omics approaches enable 

generation of a systemic view of fundamental mechanisms of the aging process and 

their interconnection. For example, aging-associated decline in several inter-correlated gene 

modules relevant to mitochondrial function has been reported in a transcriptomic study of 

human peripheral monocytes.(116) The down-regulation of mitochondrial function-related 

genes is a common feature of aging in various tissues across humans and other species,(117) 

and may contribute to EI in HFpEF.(14)

Approaches targeting aging-related contributions to EI in HFpEF

Exercise training and multidomain physical function interventions in 
HFpEF: Short-term exercise training has been associated with significant improvement 
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VO2peak (~20%) and quality-of-life in patients with HFpEF.(40) Exercise training can 

improve VO2peak by favorably affectingmultiple pathophysiologic impairments in the 

oxygen pathway as discussed earlier and summarized in Table-4. Despite the well-known 

benefits of exercise training, the optimal intensity and duration of exercise training for 

patients with HFpEF are uncertain. In a recent large multicenter exercise training trial, 

high intensity vs. moderate continuous exercise training for 3 months were associated 

with comparable improvements in VO2peak among patients with HFpEF.(32) Long-term 

adherence to exercise training in older patients with HFpEF is generally suboptimal. Older 

patients with HFpEF, particularly those recently hospitalized, are often frail and have 

physical function impairments in multiple domains including balance, mobility, and strength 

as well as endurance and may benefit from a novel, early, tailored, multidomain physical 

function intervention more than patients with HFrEF, as reported in the recent REHAB-HF 

trial.(39,118) However, such interventions need to be evaluated in larger RCTs of older 

patients with HFpEF to evaluate their efficacy in improving not only physical function and 

quality-of-life but also clinical outcomes (rehospitalization, death) which are important to 

ensure uptake and broad implementation of such an intervention by patients, healthcare 

systems, and payers.

Caloric restriction, weight loss, and nutrition—Dietary CR has strong potential as a 

strategy to prevent obese HFpEF and reduce EI when HFpEF develops. Intentional weight 

loss by CR and bariatric surgery in obese patients is associated with a lower risk of HFpEF.

(119) In a 20-week, controlled trial of CR with and without exercise in 100 patients with 

obese HFpEF, CR produced significant weight loss, more than exercise alone, and both CR 

and exercise produced strong, additive improvements in VO2peak(ml/kg/min). Significant 

improvements in exercise capacity were confirmed by improvement in measures that are not 

indexed to body weight such as VO2 reserve, exercise time to exhaustion, workload, and 

leg power supporting the notion of true improvement in exercise capacity with weight loss. 

CR was also associated with greater improvements in quality-of-life than exercise. In the 

CR group versus exercise-only and control patients, VAT decreased by 15–20% and hs-CRP 

levels declined, and reductions in both were associated with improved VO2peak.(12)

CR studies in animal models have shown numerous, robust favorable impacts on aging

related pathways, such that the benefits of CR in HFpEF could extend beyond the pathways 

examined above.(120) In mice, these include mechanisms that have been directly implicated 

in the pathophysiology of HFpEF; CR from young adulthood prevents diastolic dysfunction, 

endothelial dysfunction and increased arterial stiffness, and even in older mice CR reduces 

oxidative stress, improves endothelial function, and increases nitric oxide bioavailability.

(121,122) When compared with age-matched controls, humans voluntarily participating in 

moderate, long-term CR (while maintaining nutritional quality) have favorable alterations 

in aging-related pathways including PI3 K/AKT and AMPK/SIRT and up-regulation of 

antioxidant defense, DNA repair, proteostasis, and autophagy-related genes.(123)

In RCT of CR, 10–30% CR in young to middle-aged, non-obese participants produced 

decreased resting metabolic rate, improved insulin sensitivity, reduced VAT, decreased 

oxidative stress and associated DNA damage, and increased skeletal muscle mitochondrial 
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DNA content, confirming feasibility, safety, and anti-aging potential of long-term CR.(123–

125)

In the CR trials in non-obese adults as well as in the obese HFpEF patients, CR was 

associated with decreased skeletal muscle mass despite careful attention to adequate protein 

and micronutrient intake.(12,124,125) However, CR produced gains in endurance and 

strength despite decreased muscle mass. Future studies are needed to evaluate the long-term 

safety of CR in patients with obese and HFpEF. Among other dietary interventions, recent 

trials suggest that focusing on dietary quality among hospitalized patients with HF can 

improve quality-of-life, prevent readmissions, and reduce mortality.(126) Future studies are 

needed to evaluate the efficacy of such dietary interventions in patients with obesity and 

HFpEF.

Senotherapeutics: A novel potential treatment paradigm for EI in HFpEF—
Senotherapeutics and senolytic drugs hold promise as therapeutic targets to improve 

function, geriatric syndromes, and age-associated chronic diseases including HFpEF. 

Several pro-survival senescent cell anti-apoptotic pathways (SCAPs) have been identified 

from bioinformatics analyses of senescent vs. non-senescent human cells and RNA 

interference studies. Dasatinib, a tyrosine kinase inhibitor used clinically to treat leukemia, 

and Quercetin, one of the first senolytic agents identified, is a natural product that 

targets B-cell lymphoma, insulin and insulin-like growth factor-1, and hypoxia-inducible 

factor-1α SCAP network components.(127) The combination of these two agents reduces 

senescent cell burden and the SASP in human tissues. In animal models, combination 

of Dasatinib and Quercetin alleviates a range of age- and senescence-related disorders 

in mice including cardiovascular dysfunction, , fibrosis-related lung diseases, lipotoxicity, 

hypercholesterolemia, metabolic syndromes, depression, cancer, frailty, and substantially 

increases survival.(127) Future animal and human studies are needed to test similar 

interventions that target biologic hallmarks of aging for management of HFpEF.

Knowledge gaps and recommendations for future research

Several knowledge gaps pertaining to our understanding of the contribution of extracardiac 

factors toward EI in patients with HFpEF have been identified and summarized across 

different extra-cardiac domains in Table-5. Future research should focus on four key 

priorities in older patients with HFpEF: 1) better understand the pathophysiology of EI; 

2) develop novel approaches to phenotypic classification of HFpEF based on underlying 

pathophysiology; 3) identify novel, promising targets for preventing and mitigating EI; 4) 

design and test transdisciplinary interventions to prevent and mitigate EI (Figure-6).

A key step to advance understanding of the pathophysiology of EI in HFpEF would be 

the development of a uniform, comprehensive approach to phenotypic characterization of 

patients with HFpEF recognizing that the phenotypes may differ across the age distribution. 

This would entail baseline and follow up assessment of physical function, metabolic 

function, and cardiopulmonary exercise reserve testing using non-invasive and invasive 

approaches and uniform collection of biospecimen samples from cardiac, adipose tissue, 

skeletal muscle, endothelial, and blood cells. These efforts could be organized as inter

related studies, a registry, a precision biobank, or as ancillary studies to a clinical trial. 
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The resultant data could be examined by computational modeling and machine learning 

approaches to elucidate the biological mechanisms and clinically meaningful phenotypes in 

older individuals with HFpEF.

Investigations should prioritize the assessment of the role of biological hallmarks of 

aging in the development of EI in HFpEF with the goal of identifying key geroscience 

therapeutic targets such as senescent cellular pathways, epigenetic pathways, adipose 

biology, skeletal muscle biology and mitochondrial dysfunction. Efforts should leverage 

approaches recently developed for use in contemporaneous NIA-sponsored efforts, including 

SOMMA, MoTrPac, LIFE, and the Geroscience network.(128–131) Aligning approaches 

with these efforts would also provide non-HFpEF comparison/control groups. Efforts should 

also leverage other NIA resources, including the Pepper Center Network, Nathan Shock 

Center, and relevant ongoing clinical studies.

Once promising targets are identified, proof-of-concept intervention trials can be designed 

to test whether they are modifiable, and if so, whether this improves EI and other key 

outcomes, including hallmarks of aging, in older patients with HFpEF. Positive proof-of

concept studies should then be scaled to community-based and larger trials to confirm 

proof-of-concept and to implement and disseminate the interventions.

Studies are critically needed to address long-term adherence, particularly to behavioral and 

lifestyle interventions such as exercise, CR, and nutrition. Since these interventions have 

been the most successful for improving EI in older patients with HFpEF, studies designed 

to understand their mechanisms of improvement could yield important insights that could be 

translated to other interventions. Studies should also carefully account for and address multi

morbidity, which is a key feature of HFpEF in older patients and strongly contributes to 

adverse outcomes and assess presence and impact of depression and cognitive dysfunction. 

The above research initiatives will require a broad range of approaches and funding 

mechanisms, including exploratory, pilot, developmental, and program projects, clinical 

conferences for developing consensus, infrastructure-building grants, and development of 

registries, precision biobanks, and large multi-center clinical trials.

Conclusions

EI is the primary manifestation of chronic HFpEF, the most common form of HF in the older 

population, its pathophysiology is not well understood, and there are few proven treatments. 

Progress can be optimized and accelerated with transdisciplinary teams that include experts 

in the fields of both aging and CVD, recognize key principles of both domains, and utilize a 

broad range of approaches.
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Study Highlights

• In older patients with heart failure with preserved left ventricular ejection 

fraction (HFpEF), exercise intolerance is common and associated with 

adverse outcomes.

• Several age-related extracardiac mechanisms contribute to the manifestation 

of exercise intolerance in older patients with HFpEF.

• A multidisciplinary approach focused on age-related drivers of exercise 

intolerance are needed to improve outcomes among older patients with 

HFpEF
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Figure 1. VO2peak required for ADLs relative to average VO2peak in HFpEF.
Among patients with HFpEF, the threshold of functional independence is 21% above the 

average peak VO2 (blue bar) of patients with HFpEF. Figure reproduced with permission 

from Nayor et al. JACC Heart Failure 2020.
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Figure 2. The multimorbidity model of exercise intolerance in HFpEF.
Accumulation of cardiac and non-cardiac co-morbidities coupled with aging contributes to 

systemic inflammation, endothelial dysfunction, global reduction in physiologic reserve, and 

exercise intolerance in patients with HFpEF.
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Figure 3: Contribution of cardiovascular maladaptations to exercise intolerance in HFpEF.
Patients with HFpEF have impairment in stroke volume reserve and chronotropic reserve, 

and increased afterload, all of which contribute to reduced forward flow. This “central 

limitation’ coupled with impairment peripheral vasodilation and reduced oxygen extraction 

contributes to lower peak exercise oxygen uptake.
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Figure 4: Microvascular function and sarcopenia.
Comparison of the thigh compartment fat and muscle composition in a control vs. HFpEF 

individual on MRI. HFpEF patients have greater intramuscular fat and reduced skeletal 

muscle mass. Impaired microcirculatory function leads to sarcopenia, which is magnified 

by the catabolic effects of inflammation, insulin resistance, and increased myostatin. 

AA=amino acids; FFA=free fatty acids; GH=growth hormone; IGF-1=insulin-like growth 

factor-1.
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Figure 5: Contribution of hallmarks of aging to HFpEF and exercise intolerance.
The hallmarks of aging refers to closely inter-related cellular and molecular processes 

implicated in aging and conserved across species which could serve as new therapeutic 

targets for many age-related chronic diseases and geriatric syndromes, including HFpEF.
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Figure 6: Proposed high priority extracardiac areas for future research in HFpEF.
Future research should focus on advancing the understanding of the pathophysiology of EI, 

development of novel approaches to pathophysiology-guided phenotypic classification of 

HFpEF, identification of novel targets for preventing and mitigating EI, and testing such 

interventions in animal and human studies.
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Central Illustration: Pathophysiology and outcomes in HFpEF.
Risk factors such as multimorbidity, aging, physical inactivity, and systemic inflammation 

lead to loss of capillarity, mitochondrial and endothelial dysfunction, and sarcopenia and 

result in downstream multi-organ dysfunction, frailty, and cardiac and skeletal muscle 

myopathy. This constellation of pathophysiologic abnormalities contributes to the clinical 

manifestation of HFpEF.
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Table 1:

Extracardiac contributors to exercise intolerance in older patients with heart failure with preserved ejection 

fraction.

Hallmarks of Aging
- Cell senescence
- Systemic inflammation
- Oxidative stress
- Accelerated exercise capacity decline
- Reduced physiologic reserve

Skeletal Muscle Abnormalities
- Increased fatty deposition in skeletal muscle
- Sarcopenia
- Reduced microvascular density (capillarity)
- Impaired skeletal muscle perfusion
- Reduced conductive and diffusive oxygen transport
- Impaired mitochondrial function and bioenergetics

Excess Adiposity
- Upregulation of inflammatory pathways
- Increased metabolic and neurohormonal dysfunction
- Insulin resistance
- Natriuretic peptide deficiency
- Plasma volume expansion
- Systemic endothelial dysfunction
- Reduced microvascular density (capillarity)
- Impaired mitochondrial function

Pulmonary Dysfunction
- Altered ventilatory reserve
- Impaired gas diffusion
- Ventilation perfusion mismatch
- Increased dead space ventilation
- Restrictive and obstructive deficits
- Obstructive and Central Sleep Apnea
- Pulmonary vascular remodeling
- Pulmonary hypertension
- Right heart dysfunction

Kidney dysfunction
- Excess perinephric fat
- Reduced glomerular filtration rate
- Excess sodium retention and plasma volume expansion
- Upregulation of renin-angiotensin-aldosterone pathway

Liver dysfunction
- Non-alcoholic fatty liver disease
- Upregulation of proinflammatory pathways

Vascular dysfunction
- Increased aortic stiffness
- Adverse pulsatile hemodynamics and late systolic load
- Microvascular rarefaction
- Impaired vasodilatory reserve
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Table 2.

Measures of Physical Frailty

Frailty 
measure

Description Advantages Disadvantages

Fried Frailty
Phenotype
Model

• Quantifies the decline in physiological 
reserve across 5 domains: weight loss, 
weakness, poor endurance, slowness, and 
low physical activity levels

• Most commonly used tool to 
assess frailty in the literature

• Poor discriminatory power
• Overlap in clinical features of HF and 
frailty
• Time and resourceintensive

Frailty Index • Based on a “multiple hit” model
• Quantifies frailty as an accumulation 
of deficits across several healthrelated 
domains
• Estimated as the ratio of the total deficits 
present to the number of deficits assessed 
across signs, symptoms, comorbidity index, 
laboratory values, and ADLs

• Continuous nature of the 
estimate with a wide range of 
distribution
• Ability to use preexisting 
data from medical records for 
estimating frailty
• Ability to estimate cut-offs for 
specific clinical populations

• The number of deficits assessed is 
not standardized and vary according to 
available data
• Focuses more of the number of deficits 
and does not account for the severity of 
deficits
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Table 3.

Measures of muscle performance relevant to older adults

Muscle performance 
measure

Description

Strength • Maximum capacity to generate force or tension
• Can be assessed using isometric handgrip dynamometry or a more dynamic measure of the 1-repetition maximum

Power • Rate of physical work performance
• Has a component of velocity that may be have clinical relevance for older adults
• Peak power is more closely associated with declines in physical function than muscle strength in older adults

Endurance • Ability to maintain a specific force output
• Related to functional capacity in older adults.
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Table 4:

Therapeutic Strategies that have shown promise for improving exercise intolerance in patients with HFpEF via 

extra-cardiac factors

Therapeutic Approach Known and Potential Therapeutic Effects in HFpEF

Supervised Exercise Improvement in peak VO2

Improvement in QOL
Improvement in peripheral oxygen extraction at peak exercise

Multidomain Physical
Function Intervention 

(REHAB-HF)

Improved physical function
Improvement in frailty burden
Improvement in quality-of-life

Weight Loss Improvement in VO2peak

Improvement in quality-of-life
Reduction in visceral adiposity and systemic inflammation burden Reduction in myostasis

IL-1 Receptor Blockers (Anti
inflammatory agents)

Reductions in CRP and NT-ProBNP levels
Modest improvement in the treadmill exercise time from baseline to follow up

Senotherapeutic Agents Reduction in senescent cell burden and the SASP in human tissues.
In mouse model, alleviation of age- and senescence-related cardiovascular dysfunction, lung diseases, 

metabolic syndromes, frailty, and improvement in survival
Therapeutic effects in animal models or patients with HFpEF are not available.

Novel pharmacotherapies for 
diabetes (SGLT-2 inhibitors/

GLP-1 agonists

Improved in adverse cardiac remodeling patterns in animal models with use of liraglutide and dapagliflozin
No significant effects on empagliflozin on exercise capacity or quality of life in patients with

HFpEF in small RCT (EMPERIAL-PRESERVED)

Inorganic nitrates/nitrites Single dose of Beet root juice (inorganic nitrate donor) has been shown to improve VO2peak and reduce 
systemic vascular resistance and arterial wave reflections with exercise

1-week of daily Beet root juice dosing has been shown to improve aerobic capacity by 24%.
Inorganic sodium nitrite has been shown to improve VO2peak, skeletal muscle oxygen conductance, VO2 
kinetics, alveolar capillary membrane O2 conductance, and O2 utilization during submaximal exercise.

No effects of inhaled nitrite on VO2peak in HFpEF in the INDIE-HFpEF trial may be related to challenges 
with the drug delivery and short-acting nature of the therapy.

Results from other ongoing studies awaited

Abbreviations: VO2peak – Peak exercise oxygen uptake; HFpEF- heart failure with preserved ejection fraction; SASP – Senescence associated 

secretory phenotype; CRP- C-reactive protein; NT-ProBNP- N-terminal pro brain natriuretic peptide; RCT: Randomized controlled trial
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Table 5:

Key knowledge gaps in our understanding of the extracardiac contributors to exercise intolerance in HFpEF

Organ System/
Domain

Specific 
Pathyway/Target

Key knowledge Gaps for Future Research

Skeletal Muscle

Sarcopenia 1. Integrating ‘pathophysiology of sarcopenia development’ in drug designing for HFpEF.
2. Examine structural and functional changes in muscle in HFpEF trials
3. Role of protein supplementation and / or resistance training in attenuating development of 
sarcopenia

Oxygen 
utilization

1. Impact of exercise and weight loss intervention on skeletal muscle mitochondrial functional.
2. Role of VO2 kinetics during the rest to low-level exercise transition in phenotyping HFpEF 
patients with a ‘peripheral’ limitation to exercise
3. Evaluating the contribution of peripheral adaptations to the improvement in VO2peak with 
exercise training and/or CR in older HFpEF patients.

Endothelial 
Dysfunction

1. The molecular mechanisms linking endothelial dysfunction and age-related muscle anabolic 
resistance
2. If treatment of endothelial dysfunction improves muscle bulk and function in older adults
3. Effects of endothelial function and nutrition on skeletal muscle anabolism and physical function 
in older patients with HFpEF.

Pulmonary and 
right ventricular 
system

Right heart and 
pulmonary 
function

1. Delineate the interaction of other comorbidities with pulmonary hypertension in HFpEF
2. Examine the relative contributions of pulmonary venous versus arterial remodeling to EI
3. Improve understanding of the right ventricular response to aging and cardiopulmonary disease.

Metabolic 
disorders

Obesity 1. Role of browning of white adipose tissue in development and outcome of HFpEF
2. Mechanisms whereby increased remote, inter- and intracellular adiposity contribute to EI in 
older HFpEF patients
3. Greater representation of obese patients in HFpEF trials

Diabetes and 
Insulin resistance

1. Mechanisms underlying the increased risk of HFpEF in diabetes patients
2. Peripheral and central impairments in exercise reserve among HFpEF patients with diabetes or 
insulin resistance
3. Peripheral and central adaptations to exercise training in patients with HFpEF and diabetes
4. Effects of SGLT-2 inhibitors on exercise capacity in HFpEF

Geroscientific 
mechanism

Senescence 1. Burden of senescence cells in HFpEF
2. Identify adipose, skeletal, and cardiac markers of senescence in patients with HFpEF.
1. Evaluate role of senolytic agent in managing patient with HFpEF.

Proteostasis 1. Role of cardiac and skeletal muscle proteostasis in HFpEF development
3. Role of proteostatic function as a possible molecular marker of peripheral dysfunction in 
HFpEF and as a potential mechanism underlying EI.

Inflammation 1. Inflammatory pathways specifically in HFpEF
2. Delineate ‘omics profiling of human immune cells, particularly of easily accessible circulating 
immune cells to better understand the role of aging hallmarks on HFpEF
3. Role of anti-inflammatory therapies and therapies targeting immune cells specific for HFpEF in 
improving EI and other outcomes in patients with HFpEF

Frailty 1. Test interventions designed to reduce physical frailty and its adverse consequences in older 
patients with HFpEF
2. Develop and evaluate strategies to overcome barriers to frailty assessment in clinical care of 
patients with HFpEF
3. Develop novel screening tools to efficiently detect frailty

Lifestyle 
intervention

Calorie 
restriction, 
exercise, and 
multidomain 
physical function 
interventions

1. Examine effects of dietary and exercise on clinical outcomes in patients with HFpEF
2. Evaluate efficacy of multidomain physical function intervention for improving functional status 
(balance, strength, mobility, and endurance) and clinical outcomes in HFpEF
3. Optimal dietary weight loss strategies in patients with HFpEF, particularly among patients with 
modestly elevated BMI
4. Optimal exercise training intensity (high intensity interval vs. moderate intensity continuous), 
modality (resistance vs. aerobic vs. combination) and duration for patients with HFpEF
5. Development of strategies to minimize loss of skeletal muscle during CR in patients with 
HFpEF
6. Development of strategies for enhancing long-term adherence to dietary and exercise regimens
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