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ABSTRACT
American ginseng, a valuable medicinal and food plant, is threatened by rot root, which affects its yield 
and quality. However, limited studies have investigated the changes in soil microbial community and 
physiochemical properties between healthy and rot root American ginseng. Here, high-throughput 
sequencing and soil physiochemical properties were used to characterize these changes. The soil 
physiochemical properties showed significance differences between the soil of healthy and rot root, in 
which the pH, available potassium, available phosphorus, soil organic carbon and soil organic matter were 
significantly higher in healthy root soil. Besides, fungal α-diversity was also higher in healthy root soil than 
that in rot root. Importantly, the dominant fungal genera differed between soils of healthy and rot root of 
American ginseng, and LEfSe further indicated that six fungal genera (Devriesia, Chrysosporium, 
Dichotomopilus, Pseudeurotium, Acaulium and Scedosporium) were significantly enriched in the soil of 
healthy plants, whereas six fungal genera (Gibellulopsis, Fusarium, Plectosphaerella, Tetracladium, 
Gibberella and Ilyonectri) were significantly enriched in the soil of rot root, suggesting that an increase 
in the relative abundance of these pathogenic fungi (Fusarium, Plectosphaerella, and Ilyonectri) may be 
associated with ginseng rot root. Notably, this study is the first to report that an increase in the relative 
abundances of Gibellulopsis and Gibberella in the rot root soil of American ginseng may be associated with 
the onset of rot root symptoms in this plant. The functional profile prediction showed that the there was 
a significantly Pathotrophs increase in the rot root soil compared with healthy root soil and Saprotrophs 
were more abundant in the healthy root soil. Finally, correlation analyses revealed that soil cation 
exchange capacity was an important factors affecting the composition of rot root of American ginseng 
soil microbial communities. This study not only used a new approach to explore the new fungal associated 
with rot root in American ginseng but also excavated the major soil physiochemical properties affecting 
the microbiome diversity, providing foundation for developing biocontrol strategies against rot root.
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Introduction

American ginseng (Panax quinquefolius L.) is a perennial herb 
of Panax genus.1 Native to the moist, deciduous forests of 
eastern North America, it is now grown in China, Japan, 
Korea and Russia.2,3 Ginsenoside is the primary chemical 
component of American ginseng.4 Modern pharmacological 
studies have shown that it has a wide range of therapeutic 
properties, including hypoglycemic,5–8 immunomodulatory9– 

13 and neurotrophic effects,14,15 and anticancer activities.16,17 

Considering the high medicinal and economic value of 
American ginseng, it has been listed as the homology product 
of medicine and food by the National Health Commission and 
the State Administration for Market Regulation in 2020.18

American ginseng is susceptible to infection with fungal 
pathogens because of its special growing conditions.19 Seeds 
germinate for two years, and plants usually grow for more than 
four years before being harvested.20 During the growth process 
of American ginseng, it requires low temperatures, low light 

and moist soil, which are ideal growth conditions for fungal 
pathogens contributing to the plant disease. Rot root, charac-
terized by reddish-brown to orange-brown discoloration areas 
on the root surface, is one of the most destructive plant diseases 
affecting American ginseng quality.21 The fungal identification 
rot root in American ginseng is primarily based on the isola-
tion and culture of fungi at present. The morphological and 
microscopic characteristics of pure isolates are usually analyzed 
in combination with DNA sequences.22,23 However, the isola-
tion and culture of fungi is a complex and time-consuming 
process, with the risk of losing some strains, resulting in inac-
curate characterizations of fungal diversity.

High-throughput sequencing (HTS) is a growth-independent 
approach that can provide large amounts of data on the compo-
sition of low-abundance mixed microbial communities, such as 
soil, sediment and air filter samples.24 It has been employed to 
discovery of vital microbiomes associated with plant disease.25 

The study of soil microbial communities between rusty and 
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healthy ginseng root showed that there was an increase in 
pathogenic microorganisms such as Ilyonectria and a reduction 
of beneficial microorganisms such as Tremellomycetes 
Acidobacteria subgroup 6 and Gemmatimonadetes in Ginseng 
rusty root.26Moreover, rot root affected the community structure 
and diversity of endophytic fungi in the rhizosphere and root of 
Panax notoginseng.Further, the occurrence of plant disease is 
related to the deterioration of soil physical and chemical 
properties.28 However, limited studies are exploring the com-
prehensive microbiomes associated with the rot root of 
American ginseng and the relationship between soil micro-
biomes and physicochemical properties of rot root of 
American ginseng.

In 27 this study, we compared the soil physicochemical 
properties and microbial communities in of both healthy and 
rot root American ginseng. Moreover, the relationship of soil 
physicochemical properties and microbial communities was 
explored. Finally, the functional profile of healthy and rot 
root American ginseng was also studied. The research results 
will help to understand the contribution of soil microecology 
to rot root etiology and promote the formulation of effective 
biological control strategies and the sustainable development 
of traditional medicine industry.

2. Material and methods

2.1. Sample collection

In October 2020, we collected the rot and healthy root and its 
corresponding soil samples in Huoshaodian Township, Liuba 
County, Shannxi provinces, one of the major producing areas 
of American ginseng in China (Table 1). Voucher specimens 
with voucher numbers from 20201013019-PQ to 
20201013030-PQ were deposited in the herbarium of the 
Institute of Medicinal Plant Development at the Chinese 
Academy of Medical Sciences in Beijing, China, which was 
identified as Panax quinquefolium by professor Linfang 
Huang. Six healthy roots (HS:HS1,HS2,HS3,HS4,HS5 and 
HS6)soil and six rot roots (RS:RS1,RS2,RS3,RS4,RS5 and RS6) 
soil of American ginseng were collected in different places in 
Huoshaodian Township. Soil cores were taken at a depth of 
5 cm using a stainless-steel cylindrical driller with a diameter of 
5 cm and then in liquid nitrogen. After being transported to the 
laboratory, the soil samples were passed through a 2 mm sieve 
to remove plant tissues, roots, rocks, and other debris and then 
stored at −80°C in a refrigerator before further experiments.

2.2. Soil physicochemical properties

Physicochemical parameters including soil texture, moisture 
content, pH, available phosphorus, available potassium, 
ammonium N, organic matter (SOM), cation exchange 
capacity(CEC) and soil organic carbon (SOC) were deter-
mined by standard methods (LY/T 1225–1999, NY/T52- 
1987, LY/T1239-1999, LY/T 1232–2015, LY/T 1234–2015 
and LY/T1228-2015, respectively,). Each experiment was 
repeated in triplicate.

2.3. DNA extraction and sequencing

The microbial DNA of 12 soil samples (six healthy roots and six 
rot roots) of American ginseng was extracted using the HiPure 
soil DNA Kits ((Magen, Guangzhou, China) according to man-
ufacturer’s protocols. For each sample, DNA was used to amplify 
the fungal ITS2 region ITS3/KYO2 and ITS4).29 PCR reactions 
were performed in triplicate 50 uI mixture containing 5 uL of 
10× KOD Buffer,5 uL of 2 mM dNTPs,3 LL of25mM MgSO4,1.5 
uL of each primer(10 uM),1 uL of KOD Polymerase, and 100 ng 
of template DNA. Amplicons were extracted from 2% agarose 
gels and purified using the AxyPrep DNA GelExtraction Kit 
(Axygen Biosciences, Union City, CA,U.S.) according to the 
manufacturer’s instructions and quantified using ABI 
StepOnePlus Real-Time PCR System(Life Technologies, Foster 
City, USA). Purified amplicons were pooled in equimolar and 
paired-end sequenced (PE250) on an Illumina platform accord-
ing to the standard protocols.

To get high quality clean reads, raw reads were further 
filtered according to the specification. After clean reads were 
merged as raw tags, raw tags were filtered according to the 
standard pipeline to obtain the high-quality clean tags. The 
clean tags were clustered into operational taxonomic units 
(OTUs) of ≥ 97% similarity. Finally obtained effective tags for 
further analysis. The tag sequence with highest abundance was 
selected as representative sequence within each cluster.

2.4. Bioinformatics and statistical analysis

The representative OTU sequences were classified into organ-
isms by a naive Bayesian model ITS2 database (version 
update_2015),30 with the confidence threshold value of 0.8. 
The circular layout representations of species abundance 
were graphed using CIRCOS (version 0.69–3).31

Alpha diversity was employed to analyze the complexity of 
species diversity using five indexes, namely, Chao1, observed 
species and ACE. These three indices were calculated using the 
QIIME software.32 Alpha index comparison between groups was 
calculated by Wilcoxon rank test in R project Vegan package. 
Beta diversity analysis was used to evaluate differences of sam-
ples in terms of species complexity. Beta diversity was calculated 
using the principal coordinate analysis(PCoA). PCoA of 
Unweighted unifrac was generated in R project Vegan package 
(version 2.5.3) and plotted in R project ggplot2 package (version 
2.2.1).33

Biomarker features in each group were screened by LEfSe 
software34(version 1.0)(LDA>3.5 and p < .05) and randomfor-
est package [25] (version 4.6.12) in R project. For functional 
profile, the FUNGuild v1.0 database was used to assign ecolo-
gical functions (trophic modes) to each OTU.35

2.5. Correlation analysis of relative high abundance 
microbiomes and soil physicochemical properties

Redundancy analysis(RDA) of relative high abundance micro-
biomes and soil physicochemical properties was performed 
using Canoco 5 software. Principal components analysis 
(PCA) was first used to reduce the number of environmental 
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variables taken forward to further analyses. Variables that sig-
nificantly explained variation in ginsenosides were determined 
with forward selection (999 Monte Carlo permutations; false 
discovery rate (FDR) p < .05) and used in RDA.

3. Results

3.1 Soil physicochemical properties

The major physicochemical properties of the soil samples are 
presented in Figure 1. The particle distribution analysis of the 
soil samples reveals that all soil samples were sandy loam. The 
soil samples tend toward acidic with pH of 5.50 for RS, while 
HS soil has a higher pH of 6.26. In compared with HS soil, RS 
soil appeared nutrition deficiency (defined by low of detectable 
available potassium, available phosphorus, ammonium N, SOC 
and SOM. This indicated that the soil physicochemical proper-
ties of the HS and RS soil is significantly different.

3.2. Microbiomes composition

The clean reads were obtained in the 12 samples, and the 
number varied from 120,610 to 136,619 (Table 1). These 
sequences were divided into 1,107 OTUs after cluster analysis. 
The number of unique and common OTUs for the two groups 
are shown in a Venn diagram(Figure S1). The results showed 
that the HS group possessed more unique OTUs than the RS 
group. Of the OTUs, 376 and 259 were respectively unique for 
HS and RS soil groups, and the remaining 224 were shared by 
both of the groups.

The microbiomes composition of HS and RS soil differed. 
The fungal community was identified into 12 phyla, 72 orders 
and 266 genera. The circos plot generated by using CIRCOS 
software, visualizes the similarities and differences between HS 
and RS soil microbiomes. At the order level(Figure 2a), 
Hypocreales tend to be the dominant between the two groups 
(HS,27.37%;RS, 27.18%). Following that, Microascales 
(23.75%) tilted toward HS soil, unlike Glomerellales (25.38%) 
that was abundant in RS. At the genus level (Figure 2b), 
Pseudogymnoascus (14.03%) and Chrysosporium (8.24%) were 
dominant in HS soil, whilst Gibellulopsis (19.00%) and 
Fusarium (18.41%) were abundant in RS. This revealed that 
the composition of HS and RS soil differed.

3.3. Microbiomes diversity

The measurements of α-diversity revealed that the diversity of 
RS soil decreased compared with HS soil. The α-diversity of 
soil fungal communities in each sample was evaluated on the 
observed species diversity(Figure 2c),Chao 1(Figure 2d) and 
ACE(Figure 2e). The Chao 1, observed species diversity and 
ACE indexes suggested that α-diversity was higher than that in 
the HS soil compared with the RS soil. The results of good’s 
coverage which is an index of sampling completeness, indi-
cated good overall sampling with levels of >97%(Figure S2a). 
Rarefaction curve analysis showed that all samples were almost 
parallel to the x-axis, thereby indicating that the obtained reads 
were sufficient to represent the overall fungal diversity (Figure 
S 2b). For β-diversity, The results of the unconstrained 

principal coordinate analysis (PCoA) of unweighted UniFrac 
distance 2D plots indicated that the soil samples of fungal 
(Figure 1f) in different kind soil were well clustered. The 
PCoA PC1 and PC2 represented 62.21% and 14.13%, respec-
tively, of the variance, and the contribution of the cumulative 
variance of the two principal coordinates (PC1 and PC2) 
accounted for 76.34%. Anosim results (Figure S3) also showed 
that there are significant differences (p < .01) among the HS 
and RS soils. Heat maps on the basis of the Bray-Curtis dis-
tance matrix (g) and Cluster Dendrogram based on Jaccard 
distance (Figure 4h) of the soil samples demonstrated that the 
HS soil were closely clustered and RS soil were also closely 
clustered.

3.4. Biomarker microbiomes determination

Figure 3 displays that the fungal biomarker microbiomes from the 
phylum to genus level between the rot root soil and healthy root 
soil samples were different. The LEfSe methods were used to 
identify features with significant differential abundance between 
the soil samples, calculate the effect size of each differentially 
abundant features and determine the biomarker fungal micro-
biome in the two different soil at the genus level. The results 
presented in Table S1 revealed that at the class level, the LDA 
score of GS35, Saccharomycetes, Eurotiomycetes and 
Pezizomycetes class were much higher in HS soil samples, whereas 
the RS soil samples feature higher number of Tremellomycetes 
and Dothideomycetes. At the genus level, the LDA score of 
Devriesia, Chrysosporium, Dichotomopilus, Pseudeurotium, 
Acaulium and Scedosporium was the highest in the HS soil micro-
biomes, whilst that of Gibellulopsis, Fusarium, Plectosphaerella, 
Tetracladium, Gibberella and Ilyonectri was the highest in RS soil.

3.5. Prediction of the microbial functional profiles of the 
microbiome

We used FUNGuild to assign functional roles to OTUs. The 
function of HS and RS soil fungi was different and can classified 
into eight trophic modes(Figure 4). Among these trophic modes, 
Pathotroph-Saprotroph-Symbiotroph was the most abundant 
fungal guild, followed by the Pathotroph and Saprotroph. Very 
few symbiotrophs were observed. Although many OTUs were 
not assigned a trophic mode during FUNGuild analysis, there 
was still a significantly increase in Pathotrophs in the RS soil 
compared with HS soil samples. However, Saprotrophs showed 
the reverse trend, and were more abundant in the HS soil. The 
results indicated that the microbial functional profiles of the HS 
and RS soil was obviously different.

3.6. Correlation analysis of relative high abundance 
microbiomes and soil physicochemical properties

In order to explore the dominant factors affecting the micro-
biomes of American ginseng HS and RS soil, the RDA analysis 
of high relative abundance microbiomes and soil physicochem-
ical properties was performed at the genus level, and reanalysis 
was performed on the basis of effects(Figure 5). The adjusted 
interpretation of variance was 91.6% (Table S2). The results 
showed that soil CEC (p = .032, F = 31.9) had a significant effect 
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Figure 1. Soil physiochemical characteristics between RS and HS soil of American ginseng. a: clay; b: sand; c: silt; d: soil moisture content; e: pH; f: available phosphorus; 
g: available potassium; h: Ammonium N; i: Soil organic carbon; j: Soil organic matter; k: Cation Exchange Capacity;. “*”represent significant differences, p < .01. HS: 
healthy root; RS: rot root.
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on the American ginseng RS soil microbiomes, and the inter-
pretation rate was 88.9%. Moreover, CEC was negatively cor-
related with Fusarium, Plectosphaerella and Gibellulopsis, 
whereas it was correlated positively with Oidiodendron and 
Metarhizium.

4. Discussion

4.1. Soil physiochemical characteristics of the rot root of 
American ginseng

Soil pH has significantly impact on crop growth and microbial 
community composition in the soil.36,,37 In our study, the pH 
of American ginseng RS soil significantly decreased compared 

with the HS group(Figure 1), which was in line with a former 
study that the pH of Panax ginseng(the same genus of 
American ginseng) planting soil with dangerous rusty root 
phenomenon decreases significantly.26 American ginseng in 
northern China usually grows in acid soil, but the lower pH 
value may affect the healthy growth of American ginseng. 
Additionally, the growth of American ginseng has high 
requirements for various substances in the soil. Phosphorus is 
an essential component of nuclear and membrane structure in 
plants. Normal phosphorus levels can complete the healthy 
metabolism of protein in plants, stimulate the growth of plant 
roots, and increase the absorption of mineral nutrients by 
rhizomes, to alleviate the damage of plant diseases.38,39 In our 
results, the RS soil phosphorus significantly decreased 

Figure 2. The microbial community composition and diversity in HS and RS soil of American ginseng (a) Distribution of bacterial community for each group at the order 
level were visualized by Circos. (b) Distribution of bacterial community for each group at the genus level were visualized by Circos. The upper half circle indicates the 
species composition in each group: the color of the outer ribbon represents different groups; the color of the inner ribbon represents the composition of different 
species in group, and the length of the ribbon represents the relative abundance of the corresponding species. The lower half circle indicates the distribution ratio of 
species in different group at the genus level: the outer ribbon represents the genus; the inner color of the ribbon represents different groups, and the length represents 
the proportion of the sample for a particular genus.α-diversity:(c)Sob;(d)Chao1;(e)ACE.β-diversity:(f)PCoA plot based on the unweighted UniFrac distance matrix.(g) Heat 
map on the basis of Bray-Curtis distance matrix. (h) Cluster Dendrogram based on Jaccard distance. HS: healthy root; RS: rot root.
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compared with HS soil. Furthermore, potassium can promote 
the development of the thick outer wall of epidermal cells, thus 
preventing the occurrence of diseases.40,41 As shown in 
Figure 1, the RS soil had significantly less potassium than the 
HS rhizosphere soil. Further, plants obtain their nutrition from 
two natural sources: organic matter and minerals.42 Soil 
organic matter consist of any plant or animal material that 
returns to the soil and undergoes decomposition. It provided 
nutrients and habitat for soil organisms, organic matter can 
also condense soil particles into aggregates and improve soil 
water retention capacity.43 Soil organic carbon, a component of 
soil organic matter, can affect soil properties, which linked to 
crop yield.44 The HS soil had a significantly high soil organic 
matter and soil organic carbon content compared to the RS 
soil. Overall, the decrease of some nutrients in RS soil may be 
associated with the rot root of American ginseng.

4.2. Soil microbiomes characteristics of American ginseng 
rot root

In this study, we compared the composition of fungal commu-
nities between soils of HS and RS American ginseng using 
Illumina MiSeq high-throughput sequencing. Overall, the α- 
diversity analysis of RS and HS soil, Chao 1, ACE and Sob 
index values for fungi were lower in RS soil of American 
ginseng than in those of HS soil. We then performed β- 
diversity analysis using unweighted UniFrac, Jaccard and Bray- 
Curtis distances. The unweighted UniFrac, Jaccard and the 
Bray-Curtis distance are the index to determine the difference 
of species composition in different soil samples. They can 
calculate the characteristics of the composition of different 
species in the sample. Jaccard only considers the presence or 
absence of species in the sample, while Bray-Curtis only con-
siders the presence or absence of species and the relative 
abundance of different species in samples.45 Our findings on 
fungal diversity are consistent with previous findings that the 

microbial diversity in healthy plant soils is greater than that in 
diseased plant soils.46 There were significant differences 
between RS group and HS group, indicating that soil micro-
organisms in RS group had significant changes compared with 
HG group.

Further analysis uncovered a strong imbalance in the 
composition of fungal microbial communities between the 
soils of HS and RS of American ginseng, which was mainly 
due to differences in the dominant genera and their relative 
abundances. Moreover, LEfSe showed that six fungal genera 
were more abundant in the soil of RSt American ginseng 
than that of healthy one (p < .05, LDA >3.5). Soil microbial 
diversity and community composition play an essential role 
in maintaining the function, health and quality of soil 
ecosystem,47 while the occurrence of medicinal plant dis-
eases is mainly controlled by the imbalance of soil micro-
bial diversity and community composition.48 Because 
pathogens cause rot root in American ginseng and contri-
bute to crop losses at the time of harvest, various studies 
have investigated the relationship between soil microbes 
and rot root;19,49,50 however, most studies have considered 
only one or two pathogenic fungi that are involved in the 
occurrence of rot root in American ginseng, such as 
Ditylenchus destructor,51 Phytophthora cactorum52 and 
Cylindrocarpon destructans.53

In our study, LEfSe indicated that six fungal genera, 
namely, Gibellulopsis, Fusarium, Plectosphaerella, 
Tetracladium, Gibberella and Ilyonectria, were considerably 
more abundant in the soil samples of RS of American ginseng 
than in those of HS soil (p < .05). Generally, three of these six 
genera (Ilyonectria, Plectosphaerella and 
Fusarium)21,54,55have been widely reported to be closely asso-
ciated with the occurrence of rot root in medicinal plants of 
American ginseng. However, interstingly, Gibellulopsis and 
Gibberella which can cause rot root of American ginseng 
have not been reported. As far as we known, Gibellulopsis 

Figure 3. Differential microbial profiles of American ginseng HS and RS soil. Linear discriminant analysis effect size(LEfSe) for microbial communities from phyla to 
genera in rot and health root soils. Green circles represent taxa that were significantly abundant in RS soil, while red circles represent taxa that were significantly 
abundant in HS soil. Only taxa meeting a linear discriminant analysis significance threshold of > 3.5 and p ≤ 0.05 were shown and color-coded. HS: healthy root; RS: rot 
root.
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chrysanthemi is responsible for seedling rot of garland chry-
santhemum, and the symptoms (light brown spots first 
appeared on lower leaves of seedlings, and the leaves blighted 
or rotted.) are similar to those of ginseng rot root.56 

Gibberella can lead to the ear rot of corn, which called 
Gibberella ear rot.57 Severe rot of leaves, peduncles and flow-
ers caused by Gibberella zeae was also found on potted plants 
of hyacinth.58 To date, there have been no reports of 
Tetracladium being associated with plant diseases. The soil 
microbial community contains many pathogenic, nonpatho-
genic, and symbiotic microorganisms that interact with plant 
roots simultaneously.59 The relative abundance of rot root 
pathogens of American ginseng increased significantly, such 
as Ilyonectria, Plectosphaerella and Fusarium, may co-act on 
American ginseng. In view of these observations, this study 
shows for the first time that the increase in the relative 
abundance of Gibellulopsis and Gibberella in the soil of 
American ginseng may be related to the occurrence of rot 
root in this plant. More research is needed to test this hypoth-
esis and identify the strains.

The HTS platform was employed to analyze the abundance 
and richness of low-abundance microbial species in environ-
mental samples, overcoming the isolation limitations of cul-
ture-based methods. Most microorganisms cannot be 
cultured using traditional culture techniques.60 Xia et al. 

identified 55 fungal genera from Chinese Cordyceps by 
Illumina Miseq sequencing, but these genera were not 
observed using culture-dependent approach.61 In our study, 
we first used HTS to discover the potential fungi associated 
with rot root of American ginseng, providing an fast and 
rapid approach for the discovery of pivotal fungi associated 
with plant disease.

4.3. Correlation analysis of relative high abundance 
microbiomes and soil physicochemical properties

RDA analysis results shows that soil CEC was the dominant 
factor affecting the soil microbiomes. CEC refers to the total 
amount of various cations (e.g., K+, Na+, Ca2+, Mg2+, NH4+, 
H+ and Al3+) that can be adsorbed by negatively charged soil 
colloid. The value is expressed in terms of the amount of the 
various ions in the soil per kilogram, cmol/kg,62 which is often 
used as an index to evaluate soil fertilizer-preserving ability.63 

ECE was negatively correlated with Fusarium, Plectosphaerella 
and Gibellulopsis, whereas it was correlated positively with 
Oidiodendron and Metarhizium. Ginseng roots growing in 
the field are susceptible to several soil-borne diseases. These 
diseases are primarily caused by several species of 
Fusarium21and Plectosphaerella.55 However, several 

Figure 4. Relative abundance of trophic modes based on FUNguild determinations. HS: healthy root; RS: rot root.

Figure 5. RDA plot of overall top10 relative abundance microbial communities and soil physicochemical properties by Canoco 5.
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Oidiodendron species have long been recognized as typical 
ericoid mycorrhizal fungal partners.64 Mycorrhizae fungi 
have an ecologically significant role in the establishment of 
the host plant in heathlands by facilitating the transfer of 
nutrition to the host plant and by contributing to the detox-
ification of the root environment.65 Furthermore, Metarhizium 
not only kill pest insects also boosts plant growth by providing 
nitrogenous nutrients and increasing resistance to plant 
pathogens.66,67 In summary, CEC is the major factor that 
need to be considered for rot root of American ginseng, 
because it was positively correlated with beneficial micro-
biomes and negatively correlated with pathogens.

5. Conclusion

This study was the first to reveal two pivotal microbiomes 
associate with rot root of American ginseng by high- 
throughput sequencing. Moreover, the major factor affecting 
the soil microbiomes was explored. The following conclusions 
were obtained: (1) The soil physicochemical properties and 
fungal community structures of rot root American ginseng and 
healthy root significantly differed. (2) The relative abundances of 
several pathogenic fungi, such as Ilyonectria, Plectosphaerella and 
Fusarium, were significantly higher enriched in the soils of rot 
root of American ginseng than that in healthy ginseng.(3) This 
study was the first to highlight that a significant increase in the 
relative abundances of Gibellulopsis and Gibberella, may be 
associated with the rot root American ginseng. (4) Soil cation 
exchange capacity was identified as the important factor in 
shaping microbial communities between the healthy root and 
rot root. Our study is of great significance for the biocontrol of 
rot root, and management of medicinal plant cultivation.
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