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The role of autophagy in targeted therapy for acute myeloid leukemia
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ABSTRACT
Although molecular targeted therapies have recently displayed therapeutic effects in acute myeloid 
leukemia (AML), limited response and acquired resistance remain common problems. Numerous studies 
have associated autophagy, an essential degradation process involved in the cellular response to stress, 
with the development and therapeutic response of cancers including AML. Thus, we review studies on 
the role of autophagy in AML development and summarize the linkage between autophagy and several 
recurrent genetic abnormalities in AML, highlighting the potential of capitalizing on autophagy mod
ulation in targeted therapy for AML.

Abbreviations: AML: acute myeloid leukemia; AMPK: AMP-activated protein kinase; APL: acute promye
locytic leukemia; ATG: autophagy related; ATM: ATM serine/threonine kinase; ATO: arsenic trioxide; 
ATRA: all trans retinoic acid; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BET proteins, bromodo
main and extra-terminal domain family; CMA: chaperone-mediated autophagy; CQ: chloroquine; DNMT, 
DNA methyltransferase; DOT1L: DOT1 like histone lysine methyltransferase; FLT3: fms related receptor 
tyrosine kinase 3; FIS1: fission, mitochondrial 1; HCQ: hydroxychloroquine; HSC: hematopoietic stem cell; 
IDH: isocitrate dehydrogenase; ITD: internal tandem duplication; KMT2A/MLL: lysine methyltransferase 
2A; LSC: leukemia stem cell; MDS: myelodysplastic syndromes; MTORC1: mechanistic target of rapamycin 
kinase complex 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPM1: nucleophosmin 
1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PML: PML nuclear body scaffold; 
ROS: reactive oxygen species; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAHA: vorinostat; SQSTM1: 
sequestosome 1; TET2: tet methylcytosine dioxygenase 2; TKD: tyrosine kinase domain; TKI: tyrosine 
kinase inhibitor; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VPA: 
valproic acid; WDFY3/ALFY: WD repeat and FYVE domain containing 3.
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Introduction

As a common type of acute leukemia with poor survival and 
prognosis, acute myeloid leukemia (AML) originates from 
aberrant alterations of hematopoietic cells, which result in 
the blockage of myeloid differentiation and the suppression 
of hematopoietic functions [1]. The poor prognosis and clin
ical response of patients with AML are closely associated with 
the molecular genetic characteristics of this disease, which are 
illustrated by chromosomal translocations and recurrent 
mutations in the genes related to hematopoietic functions 
[2]; this correlation has provoked research interest in mole
cular targeted therapy for patients suffering from AML. 
Recently, targeted therapies have gradually enriched the cur
rent pattern of clinical treatment for AML. Small molecule 
agents targeting altered proteins or signal pathways such as 
FLT3 (fms related receptor tyrosine kinase 3), IDH (isocitrate 
dehydrogenase) and BCL2 (BCL2 apoptosis regulator) have 
shown benefits [3–5]. However, treatment failures caused by 
limited clinical response and acquired resistance have 
restricted the development and clinical applications of mole
cular targeted agents. Recently, emerging evidence has 

revealed that autophagy has a critical role in AML develop
ment and the response to targeted therapies, suggesting that 
autophagy modulation holds promise for enhancing the ther
apeutic benefit of AML treatment.

Extensive evidence has shown that disordered autophagy 
regulation is necessarily associated with cancer and other 
diseases. Autophagy has been acknowledged as a metabolic 
process to digest intracellular contents, and is involved in 
important cellular responses to external or internal stimuli 
arising from hypoxia, genomic instability, metabolic stress, 
energy demand and chemotherapy in cancer [6,7]. 
Autophagy may support cell survival and assist cancer cells 
in resisting against metabolic and therapeutic stress [8]. 
Moreover, the effects of the contents degraded by the auto
phagy-lysosome pathway on cancer development need to be 
taken into consideration. It is universally acknowledged that 
autophagy exerts complicated affects on the generation and 
progression of cancers including AML. Thus, this review 
discusses the role of autophagy in AML development and 
explains how autophagy may be manipulated to strengthen 
therapeutic benefits of targeted therapy for AML.
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The role of autophagy in AML development

Macroautophagy is acknowledged as the major autophagic 
process; other common forms of autophagy include micro
autophagy and chaperone-mediated autophagy (CMA). 
Hence, we will discuss how the distinct types of autophagy 
participate in the initiation and progression of AML, which 
will shed some light on the exploitation of targeted strategies 
for AML (summarized in Table 1).

Macroautophagy

In the process of macroautophagy (autophagy), a double- 
membrane structure called the phagophore engulfs intracel
lular components including proteins and organelles. This 
transient compartment matures into a completed autophago
some. Subsequently, the fusion of autophagosomes and lyso
somes produces autolysosomes, leading to the lysosomal 
digestion of vesicle contents for recycling. Various investiga
tions have linked macroautophagy with AML development. 
The high expression of key genes involved in autophagic 
processes, such as ATG7 (autophagy related 7), SIRT1 (sir
tuin 1), STK11/LKB1 (serine/threonine kinase 11) and BECN1 
(beclin 1), are correlated with poor clinical outcome and short 
remission duration in AML patients [9,10]. Besides, multiple 
proteins deregulated in AML, such as TRPM2 (transient 
receptor potential cation channel subfamily M member 2) 
[11], VMP1 (vacuole membrane protein 1) [12] and CXCR4 
(C-X-C motif chemokine receptor 4) [10], elevate basal auto
phagy levels in leukemia cells, and thus facilitate cell survival 
and leukemia progression. These investigations indicated that 
heightened autophagy activity is required for malignant pro
gression in AML. Notably, accumulating evidence has shown 
that intrinsic autophagy activity supports the maintenance, 
pluripotency and self-renewal capacity of cancer stem cells 
[13], leading to malignant progression in various cancer types 
including AML. AML LSCs (leukemia stem cells) intrinsically 
retain high mitophagy activity through AMP-activated pro
tein kinase (AMPK) activation to sustain the reactive oxygen 
species (ROS)-low physiological state, which is critically 
required for the maintenance of their self-renewal potential 
[14]. Furthermore, the genetic inhibition of these essential 
autophagy-associated genes including Atg5 and Atg7 can pro
long the survival of murine leukemia models and eliminate 
leukemia-initiating cells [15]. These findings have highlighted 
the significance of autophagy activity in AML development.

Autophagy can trigger the selective elimination of 
impaired or extra organelles, protein aggregates and other 
contents [8]. For example, mitophagy is the selective autop
hagic elimination of mitochondria [16]. Mitochondrial 
translation, mitochondrial DNA copy number and other 
characteristics of mitochondria are regulated differently in 
AML cells and normal hematopoietic cells [14]. 
Additionally, several drugs targeting mitochondria are 
under research for the treatment of AML [17,18]. The loss 
of SQSTM1 (sequestosome 1), a selective autophagy recep
tor that binds to mitochondria and mediates mitophagy, 
induces the accumulation of injured mitochondria and 
mitochondrial superoxide, thus impairing leukemia cell 

survival [19]. The overexpression of the mitophagy regula
tor FIS1 (fission, mitochondrial 1), is observed in AML cells, 
and FIS1 depletion impairs mitophagy, weakening the self- 
renewal capacity of leukemia stem cells and resulting in 
myeloid differentiation induction through GSK3 (glycogen 
synthase kinase 3) inactivation [14]. These findings impli
cate mitophagy as a regulatory mechanism of AML progres
sion [19] and provide the rationale for mitophagy-targeting 
strategies in AML treatment. Treatment with several classi
cal macroautophagy inhibitors targeting lysosomes such as 
chloroquine (CQ), Lys05 and bafilomycin A1, are thought to 
attenuate mitophagy in AML cells and enhance anti- 
leukemic effects, specifically when mitophagy activity 
increases under hypoxia stress [20]. This result broadens 
the further clinical development of autophagy inhibitors 
for AML therapy.

Moreover, aggrephagy is also involved in autophagic 
degradation of oncoprotein aggregates in AML. Aggrephagy 
is an autophagic pathway specialized in the selective degrada
tion of protein aggregates, which tend to accumulate aber
rantly and perturb normal cellular functions. For instance, the 
PML (PML nuclear body scaffold)-RARA/RARα (retinoic acid 
receptor alpha) fusion protein, inducing acute promyelocytic 
leukemia (APL), can be degraded through aggrephagy 
mediated by SQSTM1 [21] and WDFY3/ALFY (WD repeat 
and FYVE domain containing 3) [22], which sequentially 
modulates granulocytic differentiation.

Pexophagy is another selective autophagic pathway that 
mediates the elimination of excessive peroxisomes. 
Specificity for the selective autophagic degradation of peroxi
somes requires the involvement of ATM (ATM serine/threo
nine kinase) [23,24]. ROS activates cytoplasmic ATM kinase, 
and activated ATM kinase phosphorylates PEX5 (peroxisomal 
biogenesis factor 5) and subsequently leads to the monoubi
quitination of PEX5, which is recognized by autophagy recep
tor protein SQSTM1, thus targeting peroxisomes to selective 
lysosomal degradation [23]. Notably, several widely used 
DNA-damaging agents in AML clinical treatment, such as 
doxorubicin, mitoxantrone and etoposide, induce DNA 
damage response and ATM activation. And some reports 
have shown that activated ATM resulting from DNA damage 
can be exported from the nucleus to the cytoplasm [25], 
which indicates that the treatment of these DNA-damaging 
agents may trigger pexophagy. However, whether pexophagy 
affects malignant progression and therapeutic response of 
AML needs to be further studied.

Other types of autophagy

Emerging evidence shows that other types of autophagy par
ticipate in the regulation of AML development. Chaperone- 
mediated autophagy allows selective degradation of proteins 
recognized by chaperone proteins. These proteins can be 
directly transported to LAMP2A (lysosomal associated mem
brane protein 2A), and ultimately degraded by lysosomes [26]. 
Although the upregulation of CMA has been found in the 
majority of cancers, CMA deficiency has recently been 
reported in hematological malignancies [27]. A significant 
defect in CMA caused by the lack of LAMP2 expression is 
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correlated with resistance to azacytidine and poor survival of 
patients with myelodysplastic syndromes (MDS)-AML, and 
AML cells with LAMP2 deficiency display sensitivity to lyso
somal autophagy inhibitors such as CQ [28]. The CMA path
way mediates the degradation of MLLT11/AF1Q (MLLT11 
transcription factor 7 cofactor), which is closely linked to 
poor prognosis in patients with pediatric AML [29]. In addi
tion, CMA is also partially responsible for the elimination of 
mutant TP53/p53 (tumor protein p53) [30]. The molecular 
mechanism of oncoprotein degradation via CMA and the 
crosstalk between CMA and macroautophagy should be stu
died further.

The association between autophagy and therapies 
for different molecular types of AML

Currently, conventional chemotherapy constitutes the main
stay of clinical treatment for AML, and it has been well 
documented that several chemotherapeutic agents widely 
used in AML treatment such as cytarabine and daunorubicin 
are able to induce autophagy as a survival mechanism to resist 
cytotoxic stress and counteract the therapeutic effects of these 
drugs [31,32]. In addition, pharmacological inhibition of au
tophagy synergized with traditional cytotoxic agents would 
help to overcome drug resistance, improve clinical outcomes 
and alleviate drug toxicity for AML therapy [31,33,34]. 
Moreover, autophagy activity also serves as a cytoprotective 
adaptive mechanism against cellular stress, such as che
motherapy, in leukemia stem cells. Autophagy activation by 
antileukemic agents is regarded as a prosurvival response 
contributing to the drug resistance of AML LSCs, including 
deoxycytidine analogs [15,35], BET inhibitors [36], dual 
MTOR (mechanistic target of rapamycin kinase) complex 1 
(MTORC1)-MTORC2 inhibitors [37], histone methyltransfer
ase inhibitors [38] and BCL2 inhibitors [12]. In summary, 
autophagy has a critical role in AML therapy, and targeting 
autophagy may represent a feasible strategy to fight 
against AML.

In recent years, the development of an accurate classifica
tion of AML into specific molecular subtypes according to the 
genome landscape of AML has promoted a deeper under
standing of the associations between autophagy and AML 
therapy from a subtype-specific perspective. Next, we propose 
distinct associations between autophagy and certain genetic 
alterations and specific applications of autophagy modulation 
to molecular targeted therapies for different subtypes of AML, 
including AML with mutated FLT3, mutated NPM1, wild- 
type/mutated TP53, epigenetic dysregulation and balanced 
rearrangements. Preclinical studies that have validated the 
therapeutic efficacy of autophagy regulation are summarized 
in Table 2.

FLT3-mutated AML

As a receptor tyrosine kinase mainly expressed by hemato
poietic progenitor cells, FLT3 plays a critical role in the 
normal development of the hematopoiesis system [3,39]. 
Mutations in FLT3 are commonly found in AML, and there 
are two main types of FLT3 mutations: FLT3-ITD (internal 

tandem duplications) and FLT3-TKD (point mutations gen
erally involving the tyrosine kinase domain). Both types of 
FLT3 mutations overactivate FLT3 kinase activity and down
stream pathways, resulting in high hematopoietic malignancy 
burdens and poor clinical outcomes in AML patients [3].

The associations of FLT3 with autophagy in AML have 
been gradually revealed. FLT3-ITD mutations are found to 
increase autophagic flux in AML cells [40,41]. The identical 
phenomenon was also observed in sorafenib-resistant AML 
cell lines bearing FLT3-TKD mutations [42]. Consequently, 
enhanced autophagy activity, required for leukemic cell sur
vival and proliferation, participates in AML initiation and 
progression. In addition, increased autophagy levels are also 
related to FLT3 inhibitor resistance. However, the molecular 
mechanisms by which FLT3 mutations enhance autophagic 
flux have not been demonstrated in detail. It is highly 
improbable that FLT3 mutations increase autophagy in 
a kinase-independent manner [41]. It was reported that the 
transcription factor ATF4 (activating transcription factor 4) is 
a crucial mediator of autophagy activity stimulated by FLT3- 
ITD [40]. Consequently, targeting autophagy and potential 
regulators of the autophagic response induced by FLT3 
mutants will likely be combined with FLT3 inhibitors to 
enhance the effects of FLT3 inhibitors and overcome resis
tance, because poor treatment outcomes and drug resistance 
have hindered the development of effective FLT3 inhibitors. 
For example, combinatorial treatment with quizartinib, an 
FLT3 inhibitor with more specific and potent inhibitory 
activity, and the novel autophagy inhibitor Lys05, of MV4- 
11 and MOLM13 cells, achieved markedly improved efficacy 
of proliferation inhibition and apoptosis induction in com
parison with quizartinib alone [41]. In addition, in solid 
tumors, quizartinib combined with autophagy inhibitors 
such as spautins or TAK-165 (an ERBB2/HER-2 antagonist 
inhibiting autophagy) synergistically exert antitumor effects 
in various types of cancer cells [43,44]. The growth of 
MOLM-14 cells with the FLT3D835Y mutation, which confers 
resistance to quizartinib, is significantly inhibited by autopha
gy suppression through treatment with the PIK3C3/VPS34 
(phosphatidylinositol 3-kinase catalytic subunit type 3) inhi
bitor SAR405 [40]. These studies suggest that targeting auto
phagy is a promising approach to enhance sensitivity to 
tyrosine kinase inhibitor (TKI) treatment and overcome 
acquired resistance to FLT3 inhibitors in FLT3-mutated 
AML (Figure 1).

Moreover, the participation of autophagy in the posttran
slational degradation of FLT3-ITD was revealed. For example, 
proteasome inhibitors such as bortezomib can activate auto
phagy and consequently induce the degradation of FLT3 
proteins with both ITD and TKD D835Y mutations in AML 
cells [45]. In addition, a study also found that receptor tyr
osine kinase RET (ret proto-oncogene), highly activated in 
AML with pro-survival functions, can drive MTORC1 activa
tion then inhibit autophagic degradation of FLT3 proteins 
[46]. Thus, RET suppression by small-molecule inhibitors, 
such as vandetanib or danusertib, combined with crenolanib, 
a selective FLT3 inhibitor, synergistically attenuates the viabi
lity and proliferation of FLT3-mutated AML cells [46]. 
Additionally, ATO (arsenic trioxide) can also induce 

2668 W. DU ET AL.



autophagic degradation of the FLT3-ITD proteins [47]. 
Accordingly, the induction of autophagy by proteasome inhi
bitors, RET inhibitors or ATO combined with FLT3 TKI 
inhibitors provides a therapeutic opportunity and prevents 
drug resistance acquired after TKI treatments in AML 
patients with FLT3 mutations (Figure 1).

Similarly, an activating mutation in another receptor tyr
osine kinase, KIT (KITD816V), which is associated with AML, 
was reported to increase basal autophagy levels in a STAT3- 

dependent manner, contributing to cell survival in AML. 
Furthermore, autophagy suppression through ATG12 knock
down inhibits KITD816V-AML burden in vivo [48].

NPM1-mutated AML

NPM1 (nucleophosmin 1) acts as a chaperone protein that 
shuttles between the nucleus and the cytoplasm. The shuttling 
capability of NPM1 and its interaction with other proteins are 

Table 2. The preclinical application of autophagy modulation in targeted therapies for different subtypes of AML.

AML subtype
Autophagy 
Regulation

Autophagy 
Modulator

Molecular Targeted 
Therapy Combined 

with

leukemic model

Benefits from Autophagy 
Regulation Refscell line in vitro

cell lines/ 
xenografted 

animals

FLT3-mutated

autophagy 
suppression

PIK3C3/VPS34 
inhibitor SAR405

– MOLM-14 with FLT3-ITD and 
FLT3-D835Y

– overcomes acquired 
resistance to FLT3 inhibitors

[40]

autophagy 
suppression

shRNA against 
ATG12

– – MOLM-14 with 
FLT3-D835Y

overcomes acquired 
resistance to FLT3 inhibitors

[40]

autophagy 
suppression

lysosomal 
autophagy 
inhibitor Lys05

FLT3 TKI inhibitor 
Quizartinib

MV4-11, MOLM-13 with FLT3- 
ITD

– enhances sensitivity of FLT3- 
ITD+ AML cells to TKI 
treatment

[41]

autophagy 
improvement

Proteasome 
inhibitor 
bortezomib

FLT3 TKI inhibitor 
Quizartinib

MOLM-14 with FLT3-ITD and 
FLT3-D835Y

MOLM-14 with 
FLT3-ITD and 
FLT3-D835Y

overcomes acquired 
resistance to FLT3 inhibitors

[45]

autophagy 
improvement

RET inhibitor 
vandetanib

FLT3 TKI inhibitor 
crenolanib

MV4-11, MOLM-13 with FLT3- 
ITD; MONO-MAC-6 with FLT3- 
V592A

– enhances sensitivity of FLT3- 
ITD+ AML cells to TKI 
treatment

[46]

NPM1-mutated autophagy 
suppression

shRNA against 
PML

– OCI-AML3 with NPM1 
mutation type A (NPM1-mA)

– serves as a potential 
strategy for NPM1-mutated 
AML therapy

[51]

Table 2b (continued).

AML subtype
Autophagy 
Regulation

Autophagy 
Modulator

Molecular 
Targeted 
Therapy 

Combined 
with

leukemic model

Benefits from 
Autophagy 
Regulation Refscell line in vitro

cell lines/ 
xenografted 

animals

TP53

TP53- 
WT

autophagy 
suppression

shRNA against 
ATG5 or ATG7

– AML cell lines (HL60, 
MOLM13, OCIM3, NB4)

patient AML 
CD34+ cells

acts as a potential 
strategy for TP53-WT 
AML therapy

[55,56]

autophagy 
suppression

lysosomal 
autophagy 
inhibitor HCQ

– AML cell lines (HL60, 
MOLM13, OCIM3, NB4), 
patient AML CD34+ 

cells

– acts as a potential 
strategy for TP53-WT 
AML therapy

[55,56]

TP53- 
mutated

autophagy 
improvement

HSP90 inhibitor 
17-AAG

– NB4 with TP53-R248Q – serves as a potential 
means for mutant- 
p53 elimination in 
AML therapy

[30]

Epigenetic dysregulated autophagy 
suppression

lysosomal 
autophagy 
inhibitor CQ

HDAC 
inhibitor 
valproic acid 
(VPA)

t(8;21) positive AML 
cell lines (Kasumi-1, 
SKNO-1), primary t 
(8;21) AML cells

– serves as 
a combination 
therapy for t(8;21) 
AML

[95]
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involved in several cellular processes, including centrosome 
duplication, ribosome biogenesis, ribosomal protein transport 
and the regulation of tumor suppressors such as TP53. NPM1 
mutations positioned in the NPM1 nuclear localization 
domain, frequently detected in AML patients, disturb the 
subcellular localization and functions of NPM1 protein, thus 
promoting hematopoietic malignant transformationb [49].

Several findings have revealed that autophagy contributes 
to the survival and growth of leukemia cells with NPM1 
mutations. According to an analysis of cancer-related altera
tions in the autophagy pathway in multiple cancer types 
harboring recurrent mutations, elevated mRNA levels of au
tophagy-associated genes were discovered in NPM1-mutated 
AML [50]. Mutated NPM1 enhances autophagic activity, 
which confers a survival benefit onto leukemia cells [51]. 
Mutant NPM1 binds to PML and results in the abnormal 
cytoplasmic localization and accumulation of PML protein, 
which promotes autophagy activation and cell survival via 
AKT signaling. Treatment with 3-methyladenine (3-MA), an 
autophagy inhibitor, counteracts the cell survival promoted by 
mutant-NPM1-mediated autophagy induction [51]. In addi
tion, PKM/PKM2 (pyruvate kinase M1/2) was also reported to 
phosphorylate BECN1 and activate autophagy in NPM1- 
mutated AML [52]. In light of the significant effects of heigh
tened autophagy activity on NPM1-mutated AML, pharmaco
logical inhibitors of autophagy and/or crucial mediators, 
including PML, may supply potential opportunities for the 
development of therapies for NPM1-mutated AML (Figure 2).

TP53-WT and -mutated AML

Acting as a tumor suppressor, TP53 has a critical role in 
genome integrity preservation and oncogenesis suppression. 
Mutations in the TP53 gene are commonly identified in 
therapy-related AML [53,54]. It has been proposed that the 
role of autophagy in the development of AML may be deter
mined by TP53 status.

For AML with wild-type TP53, research showed that phar
macological blockage of autophagy achieves therapeutic ben
efit, whereas AMLs harboring TP53 mutations fail to respond 
to autophagy inhibition by hydroxychloroquine (HCQ) 
[55,56]. Consistent with these observations, the deletion of 
key genes related to the autophagy pathway in pancreatic 
cancer blocks the tumor progression to high-grade carcinoma 
when TP53 functions are intact [57]. In hereditary breast 
cancer, autophagy impairment through the ablation of 
BECN1 restrains tumorigenesis in wild-type TP53 but does 
not affect tumor development with TP53 deletion [58]. 
Another study on lymphoma revealed that CQ induces lyso
somal stress and subsequently promotes lymphoma cell death 
in a TP53-mediated manner [59]. These findings can be 
partially explained by TP53 induction caused by autophagy 
suppression. atg7Δ/Δ trp53Δ/Δ mice have significantly pro
longed survival periods compared with atg7Δ/Δ mice, and 
atg7Δ/Δ trp53Δ/Δ mice also exhibit reduced apoptosis and 
DNA damage in liver and brain tissues, suggesting that 
TP53/TRP53 mediates death induction by autophagy impair
ment [60].

In a model of tumor-bearing mice, genetic deletion of Atg7 
promotes atypical accumulation of impaired mitochondria, 
which results in TRP53 induction and proliferation inhibition, 
leading to relieved tumor burden. Importantly, the antitumor 
effects of Atg7 ablation are partially reversed by the loss of 
Trp53 [61,62]. In light of the aforementioned evidence, it can 
be reasonably deduced that intact functions of TP53 are 
required for the tumor-suppressing effects of autophagy inhi
bition. Similarly, in AML cells with wild-type TP53, blocking 
autophagy by silencing ATG5 or ATG7 or by pharmacological 
inhibition, such as applying HCQ treatment, stimulates the 
apoptotic response, which is accompanied by the enhanced 
activity of TP53 and the downstream genes BAX (BCL2 asso
ciated X, apoptosis regulator) and BBC3/PUMA (BCL2 bind
ing component 3) with proapoptotic functions [55,56]. These 
findings indicate that pharmacological inhibition of 

Figure 1. The roles of autophagy in the development and targeted therapy response of AML with FLT3 mutations. FLT3-ITD mutations promote autophagy in AML 
cells via ATF4, which benefits leukemia cell survival and acquired resistance to FLT3 inhibitors. Coupling FLT3-inhibiting agents with autophagy inhibitors enhances 
the therapeutic effectiveness for FLT3-mutated AML. Proteasome inhibitors and RET suppression (RET inhibits autophagy by activating MTORC1) can stimulate 
mutated-FLT3 degradation by enhancing autophagy activity, holding promise as a combinatorial treatment for FLT3-mutated AML.
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autophagy holds potential to be a therapeutic strategy, parti
cularly for wild-type TP53 AML (Figure 3).

For AML with TP53 mutations, because mounting evi
dence has shown that TP53 gain-of-function mutants contri
bute to malignancy progression [63], eliminating mutant 
TP53 through autophagy pathways may offer therapeutic 
opportunities. Research has shown that macroautophagy 

stimulation by the HSP90 inhibitor 17-AAG mediates the 
degradation of TP53R248Q in AML cells, and 17-AAG may 
trigger autophagic flux by enhancing the transcription of 
autophagy-associated genes [30]. Moreover, when metabolic 
stress arises and results in macroautophagy repression fol
lowed by TP53R248Q accumulation, 17-AAG also promotes 
the elimination of the TP53R248Q protein via the CMA 

Figure 2. The interactions of autophagy with NPM1-mutated (mt-NPM1) AML. NPM1 interacts with PML in the nucleus. Mutated NPM1 abnormally localizes at the 
cytoplasm, leading to PML cytoplasmic delocalization and stabilization. Aberrantly-accumulated PML enhances autophagy levels via AKT and promotes leukemic cell 
survival and the progression of AML with NPM1 mutations. Pharmacological repression of autophagy and/or PML may be a promising approach for treating NPM1- 
mutated AML patients.

Figure 3. The associations between autophagy with AML depending on TP53 status. (A) for AML with wild-type TP53, autophagy suppression activates TP53 to 
increase the efficacy of promoting apoptosis. (B) for AML with TP53 mutations (mt-TP53), HSP90 inhibitor 17-AAG induces macroautophagy to promote the 
autophagic degradation of TP53R248Q. When metabolic stress suppresses macroautophagy, 17-AAG can mediate the CMA-dependent degradation of TP53R248Q in 
AML cells. (C) for AML with wild-type TP53 under cellular stresses, activated TP53 by cellular stress promotes autophagy induction to induce cell death.
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pathway [30]. As for the mechanism of HSP90 inhibitor- 
induced TP53R248Q degradation, mutant TP53 may be asso
ciated with chaperone proteins including HSP90 and HSPA8/ 
HSC70 in cancer cells, which prevents TP53 mutants from 
undergoing degradation [64,65]. Treatment with17-AAG dis
rupts the interaction of HSP90 with TP53R248Q but does not 
affect the binding of HSPA8 [30], thus leading to TP53R248Q 

degradation through CMA (Figure 3).
In addition, accumulating evidence indicates that activated 

TP53 by a variety of cellular stresses can trigger autophagy 
through transactivating pro-autophagic genes, such as 
DRAM1 (DNA damage regulated autophagy modulator 1), 
SESN1 (sestrin 1) and SESN2 (sestrin 2) [66–69]. Autophagy 
induction by activated TP53 under cellular stress may result 
in cell death. For instance, TP53 activation by DNA damage 
was reported to upregulate ULK1 (unc-51 like autophagy 
activating kinase 1) and promote sustained autophagy activa
tion, which is critical for the cell death induced by genotoxic 
stress [70]. Consistently, TP53 inactivation is frequently pre
sent in AML due to the overexpression of its E3 ubiquitin 
ligase MDM2 [71], and it has been reported that MDM2 
inhibitors can restore TP53 activity to enhance autophagy by 
the transcriptional activation of AMPK, contributing to the 
cytotoxic effect of MDM2 antagonist Nutlin 3a in AML cells 
with wild-type TP53 [72,73].

Epigenetic dysregulated AML

The major forms of epigenetic modifications include DNA 
methylation, histone posttranslational modifications and 
chromatin remodeling [74]. Numerous studies have linked 
epigenetic alterations to leukemogenesis and disease develop
ment in AML. Epigenetic dysregulation has been regarded as 
a feasible target for AML treatment because these changes are 
pharmacologically reversible and do not involve DNA 
sequence alterations [74].

IDH proteins encoded by the IDH1 and IDH2 genes are 
related to diverse processes of epigenetic regulation, including 
DNA and histone demethylation. IDH mutations are present 
in approximately 20% of adult patients with AML [75]. IDH 
mutants obtain a neomorphic function to catalyze the con
version of alpha-ketoglutarate (α-KG) to 2-hydroxyglutarate 
(2-HG), which impairs the activities of TET2 (tet methylcy
tosine dioxygenase 2) and histone demethylases, promoting 
the hypermethylation of DNA and histones. This hyper
methylation phenotype causes gene expression alterations 
and blocks hematopoietic progenitor cell differentiation 
[75,76]. Drugs directly or indirectly targeting mutant IDH 
are currently under clinical investigation. Interestingly, recent 
studies have suggested the potential associations between IDH 
alterations and autophagy. IDH1 mutants or 2-HG product 
can induce autophagy, as confirmed by increased autophago
some formation in glioma cells [77]. Moreover, the autophagy 
inhibitor CQ suppresses GLUD (glutamate dehydrogenase), 
an enzyme that catalyzes the conversion of glutamate to α- 
KG, disrupting the mutant IDH metabolic pathway, because 
cells with IDH1/2 mutations require α-KG for the production 
of 2-HG [78]. These results suggest that inhibiting autophagy 
might benefit mutated-IDH targeting therapy for AML 

treatment. And the association of autophagy and IDH altera
tions need to be further studied.

TET functions in DNA demethylation by catalyzing the 
conversion of 5-methylcytosine/5mC to 5-hydroxymethylcy
tosine/5hmC, 5-formylcytosine/5fC and 5-carboxylcytosine/ 
5caC [79]. TET2 mutations in AML, which cause hyper
methylation profiles and inactivation of protein functions, 
have been identified to alter hematopoietic stem cell functions 
and development [80]. Several studies found evidence that 
TET2 may participate in cellular autophagy regulation. The 
downregulation of TET2 during the development of athero
sclerosis induces the methylation of the BECN1 promoter, 
which results in impaired autophagic flux in endothelial cells 
[81]. Similarly, impaired TET2 expression decreases the 
expression levels of autophagy-associated genes BECN1 and 
MAP1LC3/LC3 (microtubule associated protein 1 light 
chain 3) to downregulate endothelial cell autophagy during 
the atherogenic process [82]. In addition, TET2 activity can be 
recovered under treatment with vitamin C. Vitamin C is able 
to enhance the generation of 5-hydroxymethylcytosine, which 
results in DNA hypomethylation, thus blocking leukemia 
progression [83]. In addition, vitamin C combined with the 
hypomethylating agent decitabine holds therapeutic promise 
for patients with MDS or AML [84]. Interestingly, vitamin 
C has been demonstrated to trigger autophagy in pancreatic 
cancer [85]. These investigations suggest that autophagy 
induction of vitamin C partially results from the restoration 
of TET2 functions. Thus, it seems that TET2 alterations affect 
autophagy by regulating the transcription of autophagy- 
associated genes.

There are also several studies indicating that DNMTs 
(DNA methyltransferases) are involved in the regulation of 
autophagic flux. DNMT3A mutations are frequently found in 
myeloid malignancies with negative effects on clinical out
come [86]. The upregulation of DNMT3A is involved in 
rapamycin-induced autophagic responses through a decrease 
of Mir200b (microRNA 200b) in cardiac fibroblasts [87]. In 
contrast, some reports demonstrated that treatment with 
DNMT-inhibiting agents may induce autophagy activity. 
A DNMT-inhibiting phthalimido-alkanamide derivative, 
MA17, enhances autophagic flux in glioblastoma cells [88]. 
Similarly, treatment with the DNMT2 inhibitor EGCG or 
siRNA targeting Dnmt2 upregulates the expression of Atg5 
and Lc3 in macrophages derived from aged mice [89]. In 
summary, the interactions between DNA methylation dysre
gulation and autophagy in AML development need to be 
further studied.

Numerous reports have shown that a number of HDAC 
(histone deacetylase) inhibitors (HDACis) such as VPA (val
proic acid), SAHA (vorinostat), TSA (trichostatin A), pano
binostat and givinostat can enhance autophagy levels in 
a variety of cancer types [90–94]. In AML1-ETO-positive 
AML cells, autophagy is also stimulated by SAHA and VPA, 
which facilitates cell survival and weakens the pro-apoptotic 
effects exerted by HDAC inhibitors. The synergistic combina
tion of VPA with autophagy inhibitors promises to provide 
a therapeutic opportunity to patients with AML1-ETO- 
positive leukemia (Figure 4A) [95]. However, several recent 
publications demonstrated that HDAC inhibition represses 
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autophagy in acute megakaryoblastic leukemia (AKML), 
which is a peculiar type of pediatric AML [96,97]. 
Treatment of Down syndrome-associated (DS-) AMKL cells 
with TSA, SAHA or VPA leads to autophagy suppression, 
because DS-AMKL cells display low basal autophagy levels 
owing to MTOR activation (Figure 4A). Autophagy repression 
results in mitochondrial mass accumulation along with ROS 
production, and contributes to the apoptotic effects of HDAC 
inhibitors [97]. These findings suggested that a low degree of 
autophagic flux might reflect a susceptibility to HDAC inhi
bitors, whereas heightened autophagy activity contributes to 
therapy resistance, which was confirmed by the correlation 
analysis of autophagy levels and treatment responses to 
HDACis in multiple AML cell lines and pediatric AML 

patient specimens [96]. In addition, reducing basal autophagy 
levels can reverse resistance to HDACi-induced apoptosis 
[95,96].

BET protein (bromodomain and extra-terminal domain 
family) inhibitors, targeting bromodomain proteins that 
bind acetylated chromatin marks, show therapeutic potential 
especially in AML treatment [98]. However, resistance against 
BET protein inhibitors in leukemia stem cells is viewed as the 
major cause of treatment failure. BET protein inhibitor JQ1 
enhances autophagy by activating the AMPK-ULK1 pathway, 
thus conferring the ability to antagonize the apoptotic effects 
of JQ1 to LSCs [36]. Therefore, autophagy inhibition holds 
promise as an effective means of eliminating resistance against 
BET protein inhibitors in AML (Figure 4B).

Figure 4. The role of autophagy in epigenetic dysregulation in AML. (A) HDAC inhibitors repress autophagic flux in DS-AMKL cells exhibiting low basal autophagy 
levels because of MTORC1 activation, contributing to apoptotic effects of HDAC inhibition. In contrast, t(8:21) AML cells acquire resistance against HDAC inhibitors 
due to autophagy induction, and the combination of HDAC inhibitors with pharmacological autophagy suppression represents a promising approach to overcoming 
resistance of t(8:21) AML. (B) BET inhibitors enhance autophagy through the activation of the AMPK-ULK1 pathway, thus conferring drug resistance to leukemia stem 
cells, which can be overcome by synergistic treatment with AMPK-inhibiting agents.

Figure 5. Interactions between autophagy and fusion oncoproteins caused by chromosome rearrangements in AML. (A) The differentiation-inducing agent ATRA can 
enhance autophagy through MTORC1 repression, and stimulated autophagy activity promotes PML-RARA autophagic degradation via a variety of mechanisms. (B) 
The stability of KMT2A-MLLT3 and KMT2A-AFF1 fusion proteins is maintained by LAMP5 through the suppression of selective autophagic degradation, and DOT1L 
mediates the activation of LAMP5. LAMP5 knockdown can be applied to synergize with DOT1L inhibitors to promote KMT2A fusion eradication for KMT2A treatment.
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AML with balanced rearrangements

APL is classified as AML-M3 and presents the chromosome 
rearrangement t(15;17), which generates the aberrant fusion 
protein PML-RARA. The PML-RARA oncoprotein causes 
transcriptional dysregulation and differentiation disruption, 
leading to malignant transformation [99]. Early studies sug
gested that affecting the stability of PML-RARA is an impor
tant approach for APL treatment, and that the ubiquitin- 
proteasome pathway is mainly responsible for PML-RARA 
degradation induced by medical treatment. However, mount
ing recent evidence has shown that autophagy participates in 
the degradation of PML-RARA. In detail, ATRA (all trans 
retinoic acid) and ATO, two classical differentiation inducers 
that achieve ideal therapeutic effects, can stimulate autophagy 
through the MTOR pathway in APL cells, which contributes 
to PML-RARA degradation [100] (Figure 5A). Silencing of 
genes associated with the autophagy pathway including ATG1, 
ATG5 or those encoding components of the class III phos
phatidylinositol 3-kinase (PtdIns3K) complex, and pharmaco
logical inhibition by 3-MA can block PML-RARA degradation 
and impede the process of myeloid differentiation. 
Conversely, the MTOR kinase inhibitor rapamycin promotes 
PML-RARA elimination and subsequent myeloid differentia
tion by enhancing autophagy levels [21].

Researchers have delineated that autophagic degradation of 
PML-RARA is induced through multiple mechanisms (Figure 
5A). SQSTM1, an autophagy receptor protein, can bind to 
PML-RARA and trigger PML-RARA degradation, thus con
tributing to differentiation induction [21]. Additionally, PML- 
RARA can also interact with WDFY3/ALFY, which facilitates 
SQSTM1 function in promoting autophagy-dependent PML- 
RARA degradation [22]. Furthermore, the long noncoding 
RNA (lncRNA) HOTAIRM1 (HOXA transcript antisense 
RNA, myeloid-specific 1) also participates in PML-RARA 
degradation and myeloid differentiation by activating the 
autophagy pathway [101]. Therefore, enhancing autophagy 
activity in combination with classical differentiation- 
inducing agents constitutes an attractive strategy for APL 
differentiation therapy and holds potential for enhancing the 
sensitivity of other AML subtypes to ATRA and ATO. 
Promising improvement for autophagy induction can be rea
lized by several available drugs approved by the FDA, includ
ing rapamycin analogs (sirolimus, temsirolimus, and 
everolimus), calcium channel blockers (verapamil, lopera
mide, and pimozide), lithium and dasatinib [102–104].

KMT2A/MLL (lysine methyltransferase 2A) gene translo
cation leads to the fusion of KMT2A and multiple partner 
genes, which drives gene transcription dysregulation impli
cated in poor prognosis of AML patients [105]. Atg5-mediated 
autophagy activity plays a critical role in the leukemogenesis 
of Kmt2a-Mllt3/Af9-driven murine AML [106]. Homozygous 
Atg5 ablation significantly delays Kmt2a-Mllt3-induced AML 
initiation and progression in vivo [107]. These results revealed 
the possibility that autophagy modulators may be effectively 
applied to the treatment of AML with KMT2A rearrange
ments. However, the ablation of Atg5 in AML cells during 
secondary transplantation had no impact on the chemother
apeutic sensitivity of mice with leukemic burdens, which 

indicated that Atg5-dependent autophagy may not influence 
chemotherapy outcome of KMT2A-rearranged AML [106].

Similar to PML-RARA, targeting the autophagic degrada
tion process of KMT2A fusion proteins serves as a potential 
therapy for AML with KMT2A rearrangements, because the 
ubiquitin-proteasome pathway does not seem to be responsi
ble for the degradation of KMT2A fusion proteins due to their 
domain defects and/or the degradation resistance of the 
fusion partners. As an autophagic repressor, LAMP5 sustains 
the stability of KMT2A-MLLT3 and KMT2A-AFF1/AF4 
fusion proteins by suppressing selective autophagic degrada
tion. It was further demonstrated that H3K79 histone methyl
transferase DOT1L (DOT1 like histone lysine 
methyltransferase) mediates the activation of LAMP5, and 
the therapeutic effectiveness of DOT1L inhibitors coupled 
with LAMP5 knockdown was confirmed in vivo, underscoring 
the potential of promoting KMT2A fusion degradation via the 
autophagic pathway for KMT2A leukemia treatment (Figure 
5B) [108].

In addition, the SQSTM1-NUP214 (nucleoporin 214) 
fusion protein has been discovered in AML and reported to 
promote leukemia development in mice [109]. Also, the 
fusion of SQSTM1 with NUP214 may lead to impaired auto
phagy activity [110]. However, whether this defect in auto
phagy is involved in leukemogenesis is still lacking evidence.

The application of autophagy modulators to 
targeted therapy for AML

The involvement of autophagy modulation in targeted ther
apy for AML has achieved remarkable progress in preclinical 
studies. Multiple early-phase clinical trials have been con
ducted to combine conventional autophagy inhibitors with 
cytotoxic anticancer agents or molecular targeted drugs to 
improve clinical outcomes. These combination strategies 
were tested in patients with other cancer types including 
glioblastoma, non-small cell lung cancer, myeloma, melanoma 
and other solid tumors, where HCQ or CQ was combined 
with vorinostat, bortezomib, erlotinib or other oncological 
therapeutic agents. These trials provided important lessons 
showing that the validation of predictive biomarkers would 
facilitate the identification of AML patient subpopulations 
that are likely to respond to autophagy modulation treatment. 
Several clinical trials have already started to validate or utilize 
some biomarkers of estimating the dependency on autophagy 
in cancers [111]. A clinical trial in glioblastoma is assessing 
EGFRvIII as a marker to recognize patients that may benefit 
from the treatment of CQ coupled with chemotherapy and 
radiation. Thus, research on the molecular biology mechan
isms to elucidate how autophagy associates with distinct 
genetic alterations is of great importance to select molecular 
subgroups of AML highly dependent on autophagy.

Bringing the concept of genetic diversity into autophagy 
modulation therapy

It is widely acknowledged that gene mutations and chromo
somal rearrangements provide cell growth advantages and/or 
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disrupt hematopoietic differentiation, thus leading to AML 
initiation and progression. The distinctive pathogenesis, prog
nosis and clinical outcomes of AML greatly depend on differ
ent gene alterations and/or chromosomal abnormalities. 
Many studies suggest that changes in autophagy levels derived 
from genetic defects vary based on the diverse molecular 
subgroups. Furthermore, responses to pharmacological regu
lation of autophagy also differ in various AML subtypes. 
Thus, different types of autophagy modulators, including au
tophagy inhibitors and autophagy inducers, should be applied 
to different molecular subgroups of AML under diverse ther
apeutic conditions.

Autophagy inhibitors
Some common genetic defects in AML, such as FLT3-ITD and 
NPM1 mutations were found to promote autophagy and thus 
facilitate the survival and proliferation of leukemia cells, sug
gesting that autophagy inhibition is a promising approach to 
promote the therapeutic effectiveness of targeted therapies. 
For instance, FLT3-ITD mutants can enhance autophagic 
flux to support cell survival in AML, and, correspondingly, 
autophagy inhibitors combined with FLT3 inhibitors demon
strate significant synergistic efficacy. Additionally, several stu
dies have established that TKIs such as sorafenib and imatinib 
induce autophagy as a protective cellular response in various 
cancers, including leukemia [112–114]. Autophagy stimula
tion has been reported to contribute to resistance against 
imatinib treatment in chronic myeloid leukemia (CML) 
[115,116]. These results indicated that autophagy inhibitors 
can also overcome autophagy-related resistance for therapeu
tic advantage and antagonize autophagy induction by genetic 
abnormalities.

Moreover, because the response to autophagy inhibitors is 
affected by TP53 status, autophagy inhibitors such as HCQ 
holds potential to be a therapeutic strategy for wild-type TP53 
AML rather than AML with TP53 alterations. These phenom
ena indicate that the treatment with autophagy inhibitors may 
not be applicable to certain subtypes of AML, further under
scoring the necessity of identifying molecular biomarkers that 
can predict the therapeutic outcome of autophagy inhibitors.

Autophagy inducers
Eliminating oncoproteins through the autophagic pathway 
represents a promising approach for AML therapy. 
Autophagy induction by available drugs to promote autopha
gic degradation of oncogenic proteins including FLT3-ITD, 
mutant TP53, PML-RARA and KMT2A fusion proteins in 
AML, has displayed remarkable anti-leukemia effects in mul
tiple preclinical studies for the development of novel thera
pies. These findings are apparently contradictory to the fact 
that autophagy activity enhanced by FLT3-ITD facilitates cell 
survival and promotes AML development. These conflicting 
observations may be attributed to the differences in the extent 
of autophagy manipulation and/or the stage of disease 
progression.

In conclusion, the roles of autophagy in the process of 
disease development and targeted therapy show differences 
in various AML subtypes. These findings further emphasize 
the necessity of performing specific and detailed molecular 

analysis on the associations between autophagy and each 
AML subtype with certain genetic alterations. The results of 
these studies are required for providing accurate guidance on 
whether and how autophagy manipulation can be applied to 
targeted therapy for individual AML patients.

Development of autophagy modulators

Currently, preclinical findings and clinical studies applying 
pharmacological modulation of autophagy to cancer therapies 
have exhibited encouraging results, which has instigated 
a demand for novel autophagy modulators with higher effi
cacy and safety. The further exploitation of autophagy mod
ulators is expected to facilitate the practicality of using these 
therapeutic approaches and offer more opportunities to AML 
patients.

Autophagy inhibitors
Currently, CQ and HCQ are the only autophagy inhibitors 
approved for clinical application [117]. These agents block the 
autophagic progress by deacidifying the lysosome and impair
ing its fusion with autophagosomes. A crucial limit to the 
clinical applications of CQ and HCQ is the high concentra
tions required for effective autophagy inhibition in vitro, 
which are difficult to be achieved in patients [118]. The lack 
of selectivity and the existence of side effects also impede the 
development and clinical usage of CQ and HCQ. Apart from 
the canonical function of lysosome inhibition through raising 
the lysosomal pH, CQ was also reported to disrupt the endo
cytosis processes requiring low pH, as well as the exiting 
process out of the Golgi [119]. In addition, CQ can also 
diminish the transcription of inflammatory cytokines such 
as TNF/TNF-α by a nonlysosmotropic mechanism [120]. In 
addition, several studies have found that CQ can facilitate the 
normalization of tumor vasculature through enhanced 
NOTCH1 signaling [121]. Moreover, several studies have 
reported that CQ inhibits survival and proliferation of cancer 
cells, and this effect cannot be imitated by the knockdown of 
autophagy-related genes, which indicates that the antitumor 
effects of CQ may not entirely result from lysosomal inhibi
tion [122,123]. Based on these findings, the utilization of CQ 
and its analogs as tool compounds in cancer research should 
be treated cautiously. The limitation of CQ prompts 
a demand for novel autophagy inhibitors with higher efficacy 
and specificity. A novel lysosomal autophagy inhibitor, Lys05, 
with relatively high safety, can target lysosomes potently 
[124], and it holds greater promise for utilization in medical 
applications in cancer therapy [125,126]. Lys05 has already 
been used in AML preclinical research and achieved good 
effects. Another novel lysosomal inhibitor ROC-325 displays 
significantly higher potency than HCQ as well as heightened 
therapeutic efficacy in combination with azacitidine in AML 
[127]. Furthermore, multiple steps in the autophagy pathway 
can be targeted to provide novel approaches for inhibiting 
autophagy in the clinic. Compounds targeting autophagy 
modulators such as ULK1 [128], the BECN1-PIK3C3/VPS34 
complex [116], and ATG4 [129] have been reported in early 
preclinical anticancer research. The development of novel 
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autophagy inhibitors provides strong support for the applica
tion of autophagy modulation in AML therapy.

Autophagy inducers
To date, autophagy inducers applied to AML therapeutics 
have mostly been used to induce autophagic degradation of 
proteins promoting AML development. At present, the major
ity of autophagy inducers with the potential to be used in 
combination with AML therapies are currently approved 
drugs, including proteasome inhibitors (bortezomib), rapamy
cin and its analogs, kinase inhibitors (vandetanib, danusertib, 
dasatinib) and so on. The investigation of autophagy inducers 
among approved drugs would contribute to studies of their 
therapeutic potential for medical application in vivo. Further 
exploration of the specific molecular mechanisms regulating 
autophagic degradation of oncoproteins is still needed to 
develop novel therapies for AML patients.

Concluding remarks and perspective

Mounting evidence has expanded the scope of the significant 
role of autophagy in the development of AML. Associations 
between autophagy and recurrent genetic alterations in AML 
revealed the potential of applying autophagy modulation to 
therapeutic treatment for different AML subtypes, to enhance 
therapeutic efficacy and overcome drug resistance. 
Researchers have a long road to the discovery of the specific 
molecular mechanisms involved and to combine autophagy 
manipulation accurately with specific classifications of AML 
molecular subgroups, to further render autophagy modulation 
as an effective strategy in molecular targeted therapy for AML.

Notably, while autophagy may be a therapeutic target in 
established AML, autophagy also plays significant roles in the 
maintenance and functioning of normal HSCs (hematopoietic 
stem cells). Several investigations have found that the ablation 
of autophagy-related genes such as RB1CC1/FIP200 (RB1 
inducible coiled-coil 1), ATG5 or ATG7 reduces HSC frequen
cies and impairs the reconstituting function of normal HSCs 
[130,131]. Moreover, ATG7 or RB1CC1 deficiency in the 
hematopoietic system results in aberrant myeloid expansion, 
coinciding with ROS accumulation and genomic instability, 
which is responsible for the development of aggressive phe
notypes [130,132]. And it has been shown that mice harboring 
the deletion of Atg7 or Rb1cc1 in HSC display symptoms 
similar to MDS-AML such as anemia, lymphopenia and sple
nomegaly [130,132,133]. Similarly, mutated U2AF1 (U2 small 
nuclear RNA auxiliary factor 1), which associates with MDS, 
promotes malignant transformation through autophagy inhi
bition [134]; the defect in autophagy may be attributed to 
diminished ATG7 levels due to the abnormally altered 3ʹ UTR 
of ATG7. These findings suggested that autophagy impair
ment may facilitate malignant transformation during the 
initiation period of AML, whereas enhanced autophagy activ
ity may contribute to leukemia progression and poor thera
peutic outcomes in advanced stages. Thus, these findings 
deserve attention as they show that the roles of autophagy in 
AML may vary according to the stage of disease development.

Taken together, the potential toxicity induced in HSCs 
even during development of hematological malignant 

phenotypes should be considered before introducing autopha
gy inhibitors to AML treatment. To overcome this potential 
toxicity, further studies should focus on determining the 
therapeutic index of autophagy inhibitors. Additionally, 
novel drug delivery system specifically targeting leukemia 
cells (including LSCs) is also a possible route to achieve 
successful clinical application of autophagy inhibitors.
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