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Abstract

A significant research problem of recent interest is the localization of targets like vessels, 

surgical needles, and tumors in photoacoustic (PA) images. To achieve accurate localization, a 

high photoacoustic signal-to-noise ratio (SNR) is required. However, this is not guaranteed for 

deep targets, as optical scattering causes an exponential decay in optical fluence with respect to 

tissue depth. To address this, we develop a novel deep learning method designed to explicitly 

exhibit robustness to noise present in photoacoustic radio-frequency (RF) data. More precisely, we 

describe and evaluate a deep neural network architecture consisting of a shared encoder and two 

parallel decoders. One decoder extracts the target coordinates from the input RF data while the 

other boosts the SNR and estimates clean RF data. The joint optimization of the shared encoder 

and dual decoders lends significant noise robustness to the features extracted by the encoder, 

which in turn enables the network to contain detailed information about deep targets that may be 

obscured by noise. Additional custom layers and newly proposed regularizers in the training loss 

function (designed based on observed RF data signal and noise behavior) serve to increase the 

SNR in the cleaned RF output and improve model performance. To account for depth-dependent 

strong optical scattering, our network was trained with simulated photoacoustic datasets of targets 

embedded at different depths inside tissue media of different scattering levels. The network trained 

on this novel dataset accurately locates targets in experimental PA data that is clinically relevant 
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with respect to the localization of vessels, needles, or brachytherapy seeds. We verify the merits of 

the proposed architecture by outperforming the state of the art on both simulated and experimental 

datasets.
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I. INTRODUCTION

Photoacoustic (PA) imaging is a promising method for the non-invasive visualization 

of optical contrasts in deep tissue. PA images (PAI) are typically reconstructed from 

measurements of acoustic waves generated by the thermoelastic expansion of light­

absorbing molecules (e.g. hemoglobin) in the imaged tissue [1], [2]. Thermoelastic 

expansion of biological tissue occurs as a result of transient heating and expansion caused 

by the absorption of optical energy. Ultrasound transducers, capable of measuring high­

frequency changes in pressure, capture the acoustic waves in the form of radio-frequency 

(RF) data. This data is typically reconstructed with a beamforming algorithm to produce 

a PA image representative of initial pressure distribution that is proportional to optical 

absorption in the tissue [3]–[5]. Given knowledge about the relative optical absorption of 

different tissue constituents, these images enable mapping of vascular structure and other 

tissue molecular contents. Moreover, the distribution of specific molecules and contrast 

agents (e.g. indocyanine green) can be determined, and blood oxygen saturation can be 

imaged [6]–[9]. Despite these benefits, PAI suffers from low signal-to-noise ratios (SNR) 

when imaging deep tissue targets. This is mainly due to an unknown non-linear attenuation 

in optical fluence as a function of tissue depth. Figure 1 provides a visualization of this 

effect in PA experimental RF data captured from three 0.5 mm diameter pencil lead targets, 

placed at different depths, in an optically scattering medium.

Deep learning has recently been shown to perform well in a variety of problem domains 

encompassing image processing [10]–[12], natural language processing [13], [14], and 

other applications [15]–[17]. Specifically, Convolutional Neural Networks (CNN’s) have 

supplanted state of the art for image classification and segmentation with the ability to 

extract fine and coarse features from various types of images [18]–[24]. The most recent 

studies involving deep learning in the field of PAI benefit from CNNs as well. In the first 

significant effort towards PA target localization, Reiter et al. in [25] map PA RF data to 

numerical coordinates using VGG16 [20] followed by fully connected layers. Extending 

Reiter et al.’s work, the authors in [26] use faster R-CNN [23] to propose regions for the 

targets as well as classify them as sources or artifacts. This work considers multiple point 

targets under different (simulated) noise levels; however, it doesn’t consider the non-uniform 

and depth dependent optical fluence distribution inside tissue medium and associated with 

above-mentioned challenges. The encoder-decoder structures like U-Net [18] are ideal for 

reconstruction tasks where the details in different fields of view are needed to be extracted 

by the encoder step by step through downsampling the input image. Moreover, the skip 

connections help the upsampling layers in the decoder generate the output with knowledge 
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gained by layers in the encoder from lower fields of view. Many past works benefited 

from this for sinogram super-resolution [27], [28], and low CT denoising [29]–[31]. Of 

similar interest to denoising works, Lu et al. [32] propose a model based on generative 

adversarial network (GAN) for recovering high-quality optoacoustic images from limited­

view images. Davoudi et al. [33] also make use of a U-Net based model to remove artifacts 

from optoacoustic artifactual inputs. To address the non-uniform optical fluence distribution, 

Johnstonbaugh et al. [34], [35] proposed a structure based on U-Net with residual modules 

which downsamples the input data while extracting coarse detail. It subsequently upsamples 

the resulting low dimensional feature maps to construct a high-resolution heatmap and 

estimate PA target coordinates inside a deep tissue scattering medium. The network training 

of Johnstonbaugh et al. [34], [35] incorporates depth-dependent optical scattering but does 

not account for variable scattering levels of the tissue medium. Crucially, existing deep 

learning solutions for PAI target localization employ representative training RF image 

samples that are noisy but do not explicitly develop noise robustness by exploiting problem 

characteristics1.

Recognizing that noise is a significant challenge in PAI, our work makes the following 

contributions:

• Novel Problem-Inspired Network Architecture: We propose a custom 
architecture in which we extract noise-robust features from the input noisy 

images. Our proposal is a structure with a shared encoder and two parallel 
decoders. The first decoder is in charge of generating denoised images and 

therefore helping the encoder extract features that have vastly enhanced noise 

robustness. The second decoder localizes the targets in the input image using the 

features provided by the shared encoder. We, therefore, refer to our proposal as 

the Simultaneous Denoising and Localization Network (SDL). Our experimental 

results verify that our proposed simultaneous strategy as opposed to a sequential 

or cascaded strategy (of denoising followed by localization) has state-of-the-art 

performance and efficiency. An architecture of two-cascaded networks would be 

heavily parameterized, cumbersome to train and yields slower inference in the 

test phase. For the same number of network parameters, we find (experimentally) 

that our SDL, in fact, leads to more accurate localization. Moreover, our network 

also outperforms state of the art in terms of the denoising fidelity metrics.

• New Regularized Training Loss Function: While existing deep learning 

approaches in PAI [26], [34], [35] use a loss comprised of the differences 

between ground truth and network estimated target coordinates, we embellish 

our loss with new regularization terms that enhance noise robustness. First, 

because we perform denoising: a new fidelity prior/regularizer is used that 

optimizes the network parameters to minimize departures from the ground truth 

noiseless images used in training. Second, to incorporate the knowledge from 

the domain of photoacoustic imaging, we introduce processing on the estimated 

clean image via wavefront/noise filters to effectively help the network to focus 

1There are other deep learning based works for denoising the PA images leading to improvement in imaging frame rates of PAI [36], 
[37].
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on enhancing geometric attributes that help localize better while mitigating RF 

noise. These filters are designed based on the behavior of the noise and signal 

in the data and influence the network parameter optimization via new domain­
specific regularization terms introduced in the training loss function.

• A Practically Representative Simulated Dataset and Experimental Insights: 
To comprehensively evaluate the effect of scattering level and the number of the 

targets, we generate a new dataset which is highly diverse with respect to the 

number of targets, their locations, and the background tissue scattering level. 

Our numerical evaluation shows greater localization accuracy and higher noise 

robustness than state of the art on both simulated and experimental data. We also 

investigate the effect of the number of training images (for the first time in the 

field of PA target localization) and show that as the number of training samples 

is reduced, the proposed SDL gracefully degrades in performance vs. competing 

methods, owing to the regularizers in SDL.

II. METHODS: SIMULTANEOUS DENOISING AND LOCALIZATION NETWORK

A. Joint Denoising-Localization Autoencoder

1) Encoder: We use an autoencoder structure. Autoencoders have shown good 

performance, where features are extracted from images at various scales [35], [38]–[41]. 

The encoder downsamples the input while constructing a low dimensional feature map, 

extracting low resolution, high field-of-view features. If we denote the input image by x, the 

encoder trainable parameters by θenc, and the new representation of the input image in the 

lower dimensional feature space by z: f(x, θenc) = z. The low dimensional feature map z is 

passed to upsampling modules in each of the two decoders.

2) Localization Decoder: The localization decoder (Dec-L) upsamples the low 

dimensional input to the final size defined for the output heatmap. The heatmap represents 

the probability distribution of a target being located at any depth and lateral position. Finer 

features extracted in the initial layers of the encoder may be used (through skip connections) 

to refine the high-resolution heatmap. In terms of Dec-L parameters (θDec−L) and the 

feature map input (z), the heatmap (h) can be represented as follows: g1(z, θDec−L) = h. 

The numerical coordinates of PA targets are extracted using the Differentiable Spatial to 
Numerical Transform (DSNT) [42].

3) Denoising Decoder: So far, we have developed a typical autoencoder structure 

where no additional information from the noise present in the images is used. To do so, we 

use the features extracted by the encoder to estimate the clean RF input. In other words, 

we train a parallel decoder designed to output the high SNR version of the RF input: 

g2 z, θDec − D = x, where θDec−D and x denote denoising decoder parameters and the cleaned 

RF data, respectively. The joint optimization of the shared encoder and dual decoders 

(denoising and localization) lends significant noise robustness to the features extracted by 

the encoder, enabling them to contain detailed information about deep targets obscured by 

noise.
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B. Feature Extraction and Optimization of the Network

1) Parallel Branches and Joint Optimization: As mentioned above, there are two 

paths in the network: 1) Input → Heatmap and Numerical Coordinates and 2) Input → 
Cleaned RF Data. The parameters in a neural network architecture must be optimized 

according to a loss function defined over the network outputs and desired ground truth via 

(typically) stochastic gradient descent [43] and backpropagation [44]. Our primary goal is to 

predict PA target coordinates as accurately as possible. Thus, the loss term defined on the 

output of the localization decoder is:

ℒ θenc, θDec − L = C−C 2
2 + λ1JS hGaussian, h (1)

where C and C are both normalized Cartesian coordinates corresponding to the lateral and 

axial position of the target and the output of the network. (for example, C = (−1,−1) and C 
= (1,1) are the coordinates of the targets lying on the top left of the heatmap and bottom 

right of the heatmap, respectively.) The operation . 2
2 denotes the ℓ2 norm. The second term 

imposes an additional constraint on the heatmap h , forcing it to follow a spherical Gaussian 

distribution (hGaussian) by the measure of Jenson-Shannon divergence [42].

We also intend to generate a high SNR version of the input RF data, evaluated with respect 

to ground truth clean images included in the training set. This is enforced by a fidelity 

prior/regularization term given by:

ℒFidelity θenc, θDec − D = xclean − x 2
2 (2)

where xclean is the ground truth high-SNR PA RF data. Eq. (2) is used as a regularizer 

in the final training loss function – see Eq. (6). The joint optimization of the denoising 

decoder (Dec-D in Fig. 2) with the shared encoder and localization decoder (Dec-L) in effect 

enhances target localization (i.e. the output of Dec-L). This is due to the fact that the encoder 

parameters (and hence resulting features) are optimized to simultaneously recover a clean 

PA image and accurately estimate target locations, which are tasks that benefit each other.

Justification of the SDL Network Architecture in Fig. 2:  The main benefit of a shared 

encoder-dual decoder architecture is that the denoising decoder acts as a prior and ensures 

that the encoded features are noise-robust. The use of these noise-robust features then leads 

to superior results in target localization over networks that just use noisy images and ground 

truth coordinates for training.

An alternative option for using the knowledge of the noiseless images could be using a 

cascade of two networks in which the output of the denoising decoder (Dec-D) is first 

obtained and then fed into another deep network for target localization. We contend, 

however, that our proposed simultaneous strategy, as opposed to a sequential or cascaded 
strategy, has the upper hand both in performance and efficiency. An architecture of two­

cascaded networks would be heavily parameterized and cumbersome to train. For the same 

number of network parameters, we find (experimentally) that our SDL strategy, in fact, leads 

to more accurate localization. Second, the cascade of denoising and localization networks 
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would be considerably slower than the proposed SDL for processing input PA image data. It 

is worth emphasizing that our proposed architectural enhancements in Fig. 2 only influence 

the training stage. Once trained, only the shared encoder and Dec-L are used to arrive at 

target coordinates, which means that SDL incurs no additional computational burden over 

existing state-of-the-art methods.

2) Custom Regularizer and Wavefront/Noise Filters: Fitting the denoising decoder 

output over the ground truth noiseless images can be achieved using the loss in Eq. (2). 

However, this criterion may not lead to completely accurate outputs because, as we can 

see in Fig. 3, the RF data is mostly free of signal, and the l2 norm in Eq. (2) is a global 

measure that does not pose special emphasis on signal-containing regions in the data. This 

leads to gradients and updates that put significant weight on cleaning signal-free areas in the 

RF input. Moreover, even in the ground truth noiseless images, RF noise usually appears at 

the beginning or the end of data (Fig. 3 a,b and Fig. 1), which we intend to mitigate. To 

achieve these objectives, we define new representation filters as depicted in Fig. 2. These 

filters fall into one of two groups: 1) Wavefront filters: which are generated using the idea 

of Scale and Curvature Invariant Ridge Detectors (SCIRD) [45] to extract the wavefronts 

(curves/signals) and 2) Noise filters: which are crafted manually according to the behavior 

of RF noise in the images2. The corresponding features are extracted by correlating these 

filters with the edges in the denoising network’s cleaned RF outputs:

ℛi = Pwave front
i

i = 1, …, N ⊛ xedge (3)

Ni = Pnoise
i

i = 1, …, M ⊛ xedge (4)

Here, Pwavefront and Pnoise denote wavefront and noise filters, respectively. xedge represents 

the extracted edges in the cleaned output (extracted using simple edge filters) and ⊛ is the 

convolution operation. The filters are defined based on the shape of the RF noise and signals 

in the images (see Fig. 2). Thus, we have a new regularizer term defined as:

ℒWN = ∑
i = 1

N
ℛclean − ℛi

2
2 + ∑

j = 1

M
Nj

2
2

(5)

where ℛclean is the wavefront in the ground truth clean image. Thus, we impose a more 

restrictive constraint over the cleaned data by forcing it to follow the patterns in the ground 

truth, and at the same time remove the RF noise.

The loss function to be minimized for the whole network is the sum of the central loss 

term in Eq. (1), the fidelity prior/regularizer in Eq. (2), and regularization term involving 

wavefront and noise filters in Eq. (5):

2RF noise may be removed using pre-processing steps on the PA image as well, but that process may not be perfect and in certain 
scenarios may, in fact, degrade or distort the signal too. Our proposed regularization will invariably help to enhance signal (wavefront) 
strength with respect to noise, albeit the extent of benefit may be dependent on the particular PA image data.
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ℒ θenc, θDec − L, θDec − D = C−C 2
2 +

λ1JS hGaussian, h + λ2ℒFidelity + γℒWN
(6)

where λ1, λ2 and γ are regularizer constants for Jenson-Shannon divergence, the 

fidelity, and wavefront/noise loss, respectively. Note that the regularization constants are 

experimentally determined by cross-validation [46]. N and M denote the number of 

wavefront and noise filters, respectively.

C. New Practically Representative Simulated Dataset

For the success of any deep learning application in the medical imaging domain, the 

problem of obtaining large training datasets must be addressed. Conventionally, the 

researchers in PAI community have used various types of simulations to obtain the training 

data. Allman et al. [26] have used the K-wave simulation tool to obtain the photoacoustic 

raw data, considering a uniform optical fluence along the tissue depth. These simulations 

are helpful while considering the illumination source always present near the target, 

which is true for endoscopic applications. However, for deep tissue non-invasive imaging 

conditions, heterogeneous optical fluence distribution must be considered. To address the 

problem of PA signal attenuation due to scattering, Agrawal et al. [47] recently introduced 

a hybrid simulation platform where depth-dependent fluence attenuation is considered 

while obtaining the photoacoustic raw data. Johnstanbaugh et al. [34] used this simulation 

platform to obtain a large training dataset of single target photoacoustic images with the 

scattering of background tissue fixed to 10 cm−1, in contrast to realistic PAI scenarios where 

the scattering noise levels might vary up to 20 cm−1. In the work presented here, we have 

addressed these shortcomings by using the same simulation platform [47] to produce a 

dataset that includes multiple point targets placed at different depths inside a deep tissue 

medium with three different μs′ = 1 cm−1, 10 cm−1, and 20 cm−1. As shown in Fig. 4, this 

hybrid simulation platform uses the NIRFAST toolbox to solve for the optical fluence 

distribution inside the tissue medium [48], [49]. At each point in the digital phantom, the 

calculated optical fluence is multiplied by the optical absorption coefficient at that point 

to yield the initial pressure distribution. The K-Wave function kspaceFirstOrder2D [50] 

takes the initial pressure distribution as input and simulates the propagation and detection 

of the resulting photoacoustic waves. The platform outputs time vs. pressure measurements 

detected with a 256-element ultrasound transducer array.

Using this platform, simulated PA signal measurements were generated for 8000 digital (in 

silico) tissue phantoms. The digital phantom consists of a 276ˆˆc3ˆˆ97276 two-dimensional 

grid with 0.2 mm node spacing (Fig. 4a). This grid represents a 55 mm×55 mm sized soft 

tissue. For each phantom, an integer from 1 to 4 was randomly selected. This number of 

blood targets was placed at random positions within the 10 mm to 50 mm depth range of the 

homogeneous tissue medium. The lateral positions of the vascular targets were constrained 

to a range of 10 mm on either side of the center of the transducer array. After the targets 

were placed, PA signal propagation was simulated with three different background scattering 

levels, (μs′ = 1 cm−1, 10 cm−1, and 20 cm−1) (Figs. 4g, h, i).
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1) Optical Fluence Calculation: The first step in generating a photoacoustic signal 

is the photoexcitation of optically absorbing molecules. Acoustic wave propagation 

follows thermoelastic expansion of such molecules, and the initial pressure is modeled as 

proportional to the local optical fluence (Eq. (8)). We adopt the diffusion approximation 

model of light propagation [48] in our digital scattering phantoms (Fig. 4b):

− ∇ ⋅ κ r ∇ϕ r, ω + μa r _ iω
cm r ϕ r, ω = q0 r, ω (7)

where φ(r,ω) is the fluence rate at position r and modulation frequency ω, µa and µs are the 

absorption and reduced scattering coefficients, the diffusion coefficient κ = 1/3(µa+µs), q0(r, 
ω) is an isotropic optical source term, and cm(r) is the speed of light at position r in the 

tissue.

2) Initial Pressure Calculation and Propagation: The initial pressure distribution 

in the phantom is calculated by multiplication of the optical fluence at each point with the 

corresponding optical absorption (Fig. 4f):

p0 r = Γ μa r, λ ϕ r (8)

where φ(r) and µa(r,λ) are the optical influence at position r and optical absorption 

coefficient at position r and excitation wavelength λ, respectively. Γ is the Grüneisen 

parameter, which we model as equal to one unit for simplicity. p0 is the initial pressure 

at tissue position r. The value of the optical absorption coefficient of oxygenated human 

blood is modeled with an optical absorption coefficient of µa = 0.425 mm−1 at 800 nm [51]. 

The initial pressure distribution is input to the k-Wave function kspaceFirstOrder2D, which 

simulates the propagation of acoustic waves in the tissue medium (Fig. 4d). The acoustic 

propagation is solved for using the following set of equations [51]:

∂u
∂t = − 1

ρ0
∇p, ∂ρ

∂t = − ρ0∇ ⋅ u, p = c2ρ (9)

Where p is the acoustic pressure, u is the particle velocity, ρ0 is the ambient density in the 

tissue, ρ is the acoustic density, c is the tissue speed of sound.

III. EXPERIMENTAL RESULTS

A. Network Implementation

Reproducibility: Our implementation code for different training/test scenarios, data files 

for wavefront/noise filters, training, and test dataset, and the exact package numbers can be 

found at: https://github.com/yazdaniamir38/SDL-network-for-PA-target-localization.

Our network is implemented using Python and deep learning packages of Pytorch [52] 

and all of the training and testing experiments were conducted on an NVIDIA Titan X 

GPU (12GB). We trained our model for 100 epochs with batch size 4 using RMSprop 
[53] optimizer with an initial learning rate of 0.0001. We used a learning rate scheduler 

with a decrease factor of 0.1 and a patience factor of 10 epochs. To find the optimum 
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values for hyperparameters including regularizing constants, we performed cross-validation 

by keeping a portion of training data as the validation set (2000 samples) and training 

the network for a couple of epochs to see how fast and stably the error decreases. The 

values we found by cross-validation for λ1, λ2, and γ are 1, 0.5, and 10−4 respectively. 

The simultaneous presence of multiple regularization terms may prevent the training loss 

of the network from converging. So we initially train the model without the ℒWN term. 

After about 60 epochs when the model converges to a suboptimal point, we activate the 

terms corresponding to ℒWN to further refine the network parameters. We extract windows 

of size 45×40 pixels centered on the wavefront in noiseless samples as ℛclean in Eq. (5). 

To approximately estimate the location of the wavefront in the image, we make use of the 

ground truth coordinates and project them to pixel coordinates. The encoder and localization 

decoder architecture (see Fig. 6 for details) follow the residual U-Net based structure of 

[34], [35] with changes in the number of the output channels of the last convolutional layer 

according to the number of targets to be detected. As we will further explain in different 

setups, the network can be used for localizing either single targets or a variable number 

of targets. The denoising decoder jointly with the shared encoder also follow the residual 

U-Net architecture (with a different number of layers) and consist of the following:

1) Residual Convolutional Modules:  These modules consist of three convolutional 

blocks with a 3×3 kernels where each is followed by a batch normalization layer and a 

ReLU activation function. The output of the last batch normalization layer of each module 

is added to the input of the same module and passed to a ReLU activation function. The 

stride in the first block is 2 to downsample the input. The purpose of these modules is to 

encode features at various scales. Downsampling enables larger-scale features to be captured 

with 3×3 convolutions via hierarchical feature extraction. Fig. 6 depicts these modules with 

white boxes and S2 on the right corner of the boxed denotes that the input features are 

downsampled with stride 2.

2) Upsampling Modules:  These modules increase the resolution of the low dimensional 

features to the desired size of the output. There is a nearest neighbor upsampling block, with 

a factor of 2, to upsample the input followed by a convolutional block with 3×3 kernel. The 

output of the convolutional block is concatenated with the corresponding skip connections 

from the encoder and passed to a residual module. In Fig. 6, these modules are shown in 

yellow and fed with two inputs.

Since the output of the denoising decoder (cleaned output) is larger than the output of the 

localization decoder (heatmap), the denoising decoder has one extra module. [35] uses the 

Nyquist convolutional layer to downsample the image; however, in the presence of the 

noise, better performance is observed, when the input image is not downsampled. In total, 

the encoder, the localization decoder, and the denoising decoder have 7, 6, and 7 layers, 

respectively. Table I shows the details of each layer in the encoder and the decoders with 

respect to input/output size and Fig. 6 shows the model architecture.
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B. Experimental Setup

The performance of the proposed network is compared with the state of the art by 

considering different experimental setups. Furthermore, we designed new scenarios to 

evaluate the network in more challenging conditions and find the boundary to which our 

network can still show good performance. Our different scenarios include i) comparing 
the performance of our network over the datasets employed in [26] and ii) [35] for a 
similar application, iii) performance on our own practically representative simulated 
dataset and experimental phantoms with multiple targets, including inside chicken 
breast tissue. Unless otherwise stated, for the proposed SDL – the number of wavefront 

filters N = 10 and the number of noise filters was set to M = 20. These numbers were 

determined by cross-validation for the best overall results.

C. Comparisons with State of the Art

1) Experiments on Allman et al.’s Dataset: Up to Two Targets: To perform 

a fair comparison with the work of [26], we use their released simulated dataset3. This 

dataset contains 16,000 and 4,000 images for training and testing, respectively, with at 

most two targets (source and artifact). The labels provided for the targets are the bounding 

box coordinates, whose centers are used as labels for SDL. We compare the networks in 

3 different scenarios: 1) noiseless images, 2) noisy images when the signal to noise ratio 

(SNR) is −3dB, and 3) when the SNR is −9dB. Zero mean Gaussian noise with a certain 

standard deviation is added to obtain the desired noise levels and the noiseless images are 

used as ground truth for our denoising decoder. Of note, since in this dataset scattering 

noise level is not considered, the signal intensity in different depths is almost fixed. Table 

II compares the results for both networks. Table II confirms that SDL reduces the error 

significantly over [26], particularly for the −3 dB case. Some of the test samples along with 

their corresponding cleaned outputs and heatmaps from our network are shown in Fig. 7. It 

may be observed that SDL predictions have higher precision, since the network generates a 

very small concentrated point versus a bounding box.

2) Experiments on Johnstonbaugh et al.’s Dataset: Single Target with Tissue 
Optical Scattering: The dataset used by Johnstonbaugh et al. [35] is much more realistic 

with regard to scattering noise level, but only considers the single target localization within 

a deep tissue medium of fixed background scattering value. This dataset contains 16,240 

and 4,060 samples for training and test, respectively. Since we are using their proposed 

autoencoder structure as a base for our encoder and denoising decoder, we have the same 

performance in the case without additive Gaussian noise. To obtain the objective SNR (−9 

dB), the average signal intensity in depth 40 mm is calculated and the variance of the noise 

is defined according to that. The numerical results for both networks are compared in Table 

III where lateral, axial, and Euclidean error are calculated as follows:

ErrorAx = x − x ErrorLat = y − y
ErrorEuc = ErrorLat

2 + ErrorAx
2 (10)

3 https://ieee-dataport.org/open-access/photoacoustic-source-detection-and-reflection-artifact-deep-learning-dataset 
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where x and x denote the ground truth and network’s output for axial coordinate, 

respectively. y and y are the ground truth and network’s output for lateral coordinate, 

respectively. These results indicate that injecting PA domain knowledge about RF and 

scattering dependent noise - as SDL exploits – improves the results specifically for the 

targets that lie deeper (than 40 mm) in the scattering noise.

Johnstonbaugh et al. [35] also test the network on experimental samples with different 

scattering levels and in the case of 20 cm−1 noise level, as shown in Fig. 8, their network 

fails (as well as the network proposed in [26]). The output of our network (after it’s trained 

with their modified dataset and tested on these samples) can be seen in Fig. 8, where SDL 

can still predict even with the extreme level of scattering.

Effect of training sample size:  To observe the effect of priors and carefully devised 

architectures, it’s common in state-of-the-art methods [54]–[56] to evaluate the performance 

of the models when the training set is limited. This is important from a practical point of 

view as in most of real world cases the number of annotated samples is limited. Therefore 

networks should be able to maintain their performance with the least degradation possible 

compared to when training samples are not limited. The models should also show robustness 

when the train/test splits change. To investigate this, we chose 5 different randomly chosen 

train/test splits with a training size of 8,120 and a test size of 4,060 using the original dataset 

with SNR=−9dB (used in [35]). We trained SDL and the model in [35] 5 times on different 

training sets and tested them on the corresponding test set. Fig. 9 conveys two key messages: 

1) the average error for SDL even when training is halved is still quite good and much better 

than what [35] achieves with half the data; 2) the significantly lower variance of the error for 

SDL vs. [35] for the 5 train/test splits shows that SDL is much more robust to selection bias, 

i.e. SDL performance is less sensitive to the exact choice of training samples - an important 

practical benefit, which is provided by the priors/regularizers used with SDL.

D. Experiments on Challenging Simulated and Real Data

We use the dataset in Section II-C for evaluating the capability of the network with respect 

to the noise level. To do so, we trained the network 2 times, over 2 different training sets 

of size 8,000, where the scattering noise level in each set was different (10 cm−1 and 20 

cm−1). The samples with 1 cm−1 noise level were used as ground truth for the denoising 

decoder. Each trained model was tested on a test set with the size of 2000 and corresponding 

scattering level. In addition to separate noise level experiments, we also trained the SDL 

network over a large training set obtained by varying the scattering noise level (1 cm−1, 10 

cm−1, and 20 cm−1) and tested it over the combined test set – these are labeled as mixed in 

Table IV. Table IV shows the results with respect to depth and distinct noise levels. Results 

in Table IV reveal that as expected, the average errors for SDL are generally higher for 

the higher scattering noise level. We should mention that average localization errors for the 

mixed case in Table IV appear lower because the training set is a combined set of all the 

training samples with different scattering coefficients and hence it’s richer; moreover, the 

test includes the 1 cm−1 case, which is practically noiseless.
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Ablation Study: To lend greater insight into SDL components, Table IV performs an 

ablation study by reporting results for two SDL variants: one without wavefront/noise 

filters (and hence also without the ℒW N regularizer) and another single encoder-decoder 

configuration that does not employ the denoising decoder. The gains of SDL, over its 

counterparts that are stripped of regularization, are readily apparent in Table IV showing the 

benefit of each regularizer in Eq. (6). While the networks in state of the art were trained 

and designed for different experimental setups as investigated in Section III-C, the single 

encoder-decoder results in Table IV essentially can be thought to represent the performance 

of [26], [35] because they are without the architectural enhancements and regularizers that 

SDL employs. Fig. 4i shows a test sample with a scattering level of 20 cm−1 and Fig. 

5 shows its corresponding cleaned output and heatmap predicted by the SDL network 

(trained over varying scattering levels), which effectively localizes multiple targets while 

beamforming in Fig. 4i does not detect all 4 targets.

Cascaded vs. parallel denoising: To emphasize the benefits of our denoising approach 

over a cascaded strategy (denoising followed by localization), we compare SDL with 

a network consisting of a denoiser followed by a localization network. We make use 

of the denoising network proposed by Awasthi et al. [27] which is based on a hybrid 

U-Net [18] and represents state-of-the-art denoising for PA imaging applications. For the 

localization part, we incorporate the same encoder-decoder structure as the encoder and 

localization decoder in SDL. Both networks are trained over our combined training set 

(with all scattering noise levels) and tested on a set which is the combination of our test 

sets for scattering noise levels of 10 cm−1 and 20 cm−1 (Training size of 24,000 and test 

size of 4,000). Table V shows the localization results and Table VI shows the denoising 

performance of the networks in terms of peak signal to noise ratio (PSNR) and structural 

similarity index measure (SSIM) [57]. While the inference time is significantly less for SDL, 

it outperforms the cascaded network with respect to both localization and denoising. We 

can visually verify the quality of denoised outputs produced by SDL in Fig. 10c compared 

to the output of the denoising network proposed in [27] - Fig. 10d. We contend that SDL 

outperforms state of the art because, in our proposal, localization helps denoising (and 

vice-versa) via the shared encoder in Fig. 2.

Impact of the number of the elements: To investigate the reliability of the network 

when the number of elements (transducers) decreases, we design a new experimental 

scenario with a dataset that is generated with the same setup as our practically representative 

simulated dataset except that the number of transducers decreases from 256 to 128. In this 

experiment, we generate 24,000 samples with optical scattering coefficients of 1, 10, and 

20 cm−1 (1
3  of the whole dataset each) with random number of targets (1–4). We used a set 

of size 18,000 for training and the 6,000 remaining samples for test. We train two models 

in this experiment: SDL and a variation of [35]’s network for detecting multiple targets 

(referred to as the single decoder model). We evaluate the performance of each model on 

the test set. Table VII shows the results. As can be expected, when the number of elements 

decreases, a slight degradation is observed in the performance of both networks (SDL and 

single decoder). This is because the information that the network can grasp decreases with 
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the reduced number of elements, viz. the model now has a downsampled lateral view of the 

wavefront. Note however in Table VII, the relative benefits of SDL still remain.

The performances of the SDL network and [26] are evaluated with experimental PA data 

from two phantoms, intralipid optical scattering and a chicken breast tissue phantom, 

consisting of 0.5 mm pencil lead targets placed at different depths. Since the size of 

the experimental samples is different from the training data, the training data is resized 

and the samples with targets deeper than 35 mm are removed to mimic the experimental 

RF data and the network is trained over the modified dataset. The experimental samples 

and corresponding heatmaps are shown in Fig. 11, 12. Corresponding beamformed image 

for each sample shows the accuracy level of SDL in these highly challenging scenarios. 

Remarkably, SDL detects all three targets accurately in Fig. 11e vs. two targets detected 

by the beamformed output in Fig. 11g and the third target detected by [26] with lower 

accuracy. The SDL’s superiority is more clear for the chicken tissue data in Fig. 12 where 

both beamformed image and [26] fail in detecting the 4th target.

IV. DISCUSSIONS AND CONCLUSION

Design of custom denoising filters that affect the output coordinates by the autoencoder is 

achieved by sharing the low dimensional output of the encoder between the localization 

decoder and our novel denoising decoder. Experimental results indicate this method works 

by influencing the parameters of the encoder as the denoising decoder is not used in 

the test phase. Although the intuitive approach for training the localization decoder is 

to define the mean square error between predicted and ground truth target coordinates 

as the loss function (Eq. (2)), this approach is naive as it does not make use of any 

domain knowledge specific to the problem. We take advantage of our understanding of how 

noise and signal appear in the photoacoustic RF data by devising Noise and Wavefront 
filters and formulating custom regularizers to augment the loss function. Of note, how the 

network is trained is a matter of interest as well. Finding the optimal value for each of the 

regularization constants in the loss is not trivial and convergence of the training loss of the 

network with many regularization terms is not guaranteed. We experimented with different 

training routines and found that the best outcome was achieved by neglecting the wavefront 

and noise terms for the first few training epochs, allowing the network to converge to a 

sub-optimal point, and then engaging the noise and wavefront terms to drive the network 

toward a more optimal point.

The experiments on the datasets of [26] and [35] prove the capability of our network 

in dealing with simulated additive noise in addition to signal attenuation due to optical 

scattering. This is due to the fact that our designed robustness to noise (using the Dec-D 

branch in Fig. 2) is data adaptive and does not make any statistical assumptions on the nature 

of the noise. According to our results on the dataset of [26] (Table II), the percentage of 

test samples for which our network has a total error (mean Euclidean error) of less than 

0.5 mm shows very slight degradation as the SNR decreases to −3dB, and this degradation 

becomes more noticeable as the noise level increases. This may be explained by considering 

the fact that the labels used for training the network are the bounding box centers provided 

by [26], and the data used for training the network is the resized version of the original 
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data. On the other hand, there is a surprising trend in the results of [26], which is the 

unpredictable improvement when noise is added. Note that we exactly reproduced the results 

of [26] from their work, while training and testing on the same samples (as the authors 

of [26] kindly make their dataset available). [35]’s dataset, on the other hand, is more 

realistic with respect to the effect of optical scattering in photoacoustic imaging. However, 

it only considers single target data. Comparing the performance of the network in [35] 

with proposed SDL (Table III), two observations can be made: 1) the overall performance 

is improved with respect to different criteria (lateral, axial, and Euclidean error) and 2) 

results for targets deeper than 40 mm indicate higher gains via SDL in both lateral and axial 

error. This deep region is where optical scattering plays a dominant role, as the weakened 

optical fluence results in photoacoustic signals that barely peak above the noise floor in 

the data. For real-world experimentally captured data with an optical scattering coefficient 

of 20 cm−1, Fig. 8 confirms a highly valuable benefit of SDL over state of the art in 

handling significant levels of scattering noise practically. We attribute this success to the 

explicit attention to noise robustness in the design of SDL via custom-designed regularizers. 

Overall, the proposed architecture shows flexibility with respect to noise level/type and 

number of targets, which suggests its potential significance for PA imaging applications 

including cancer detection and treatment [58]–[60], and treatment of vascular diseases such 

as deep vein thrombosis [61] and blood vessel morphology [62]. One practical constraint 

in the application of deep learning methods for many medical imaging problems is that 

representative labeled training data is often not abundant, unlike analogous detection and 

classification problems in consumer imaging; PAI shares this challenge. The incorporation 

of problem specific domain knowledge via regularization terms/architectural innovations, 

as have been performed in this work, can be useful in addressing the challenge of limited 

training. Our investigation in Fig. 7 demonstrates that SDL can outperform state of the art 

while using half the training data.

In conclusion, this work reveals the importance of taking into account the optical scattering 

noise for photoacoustic target localization problems. Deep learning frameworks have been 

used before for this problem with promising success, but those architectures did not 

explicitly build or enhance noise robustness. Existing deep learning approaches for PAI 

also rely significantly on the quantity and quality of training data available. Our proposal 

addresses these challenges by exploiting the characteristics of PA images towards a noise­

robust approach. Specifically, a shared encoder-dual decoder architecture is designed for 

simultaneous denoising and localization. Custom-designed regularizers inspired by the shape 

of the noise and the signal in the PA images help fit the reconstructed data to the ground 

truth noiseless data more effectively. These regularizers also help enhance performance 

when training data samples are limited. Finally, we design a new dataset that introduces 

significant diversity with respect to the scattering noise levels and the number of the 

targets. Experiments performed on the practically representative simulated dataset, as well 

as existing simulated and experimental datasets from the state of the art, demonstrates the 

capability of our proposed deep network in detecting targets with higher accuracy. Our 

method is also shown to successfully operate in scenarios where existing trained networks 

do not produce meaningful outputs. While our proposed methodology benefits from custom 

priors to effectively improve the signal strength, one can design the wavefront and noise 
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filters using a generative model such as GANs to potentially achieve even better prior 

inspired regularization in Eq (6). GAN-inspired learned filters may hence enhance both 

denoising and localization and form a viable future research direction. Moreover, our model 

is designed for the detection of up to 4 targets in photoacoustic data, which could be a limit 

for the cases when the number of targets is more. However, we can modify the output layer 

of the network to detect a higher number of targets. A versatile detection of an arbitrary 

number of targets is a future research direction. Also, a broad direction for all machine 

learning efforts in PA imaging is the detection of non-point targets.
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Fig. 1: 
Experimental photoacoustic RF data shows the depth dependent signal strength from three 

0.5 mm diameter pencil lead targets, placed at 21 mm, 26 mm and 31 mm depths inside an 

optically scattering medium along with the RF noise.
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Fig. 2: 
The overall scheme of proposed SDL architecture. The Functionality Network consists 

of the main branches (encoder, denoising decoder, localization decoder, and differentiable 

spatial to numerical transform layer (DSNT)) to generate the coordinates and the denoised 

PA RF image. Note that the Dec-D branch essentially acts as a prior on the encoded 

features, which is enforced in the training via the regularizer in Eq. (2). The Wavefront/
Noise Information part calculates two terms needed for the regularizers in Eq. (3) and Eq. 

(4). This is accomplished by extracting edges from the denoised image and subsequently 

convolving them with noise and wavefront filters. The goal is to minimize the strength of the 

noise while matching the wavefront behavior to its counterpart in the ground truth noiseless 

image. Finally note that once trained, target localization involves processing the PA input 

image via the shared encoder and localization decoder (Dec-L).
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Fig. 3: 
Depiction of how wavefront/noise filters are inspired. (a) Presence and intensity of signal 

wavefront and RF noise in PA noisy data. Expected clean outputs of the network (b) without 

wavefront and noise filter training, and (c) with wavefront and noise filter training. The goal 

is to suppress RF noise signals, while enhancing the strength of the PA signal wavefront.
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Fig. 4: 
The schematic of our simulated dataset generation platform with different optical scattering 

levels and numbers of targets. (a) A schematic view of the 55×55 mm digital tissue 

phantom. A 51.2 mm wide 256-element ultrasound transducer array (blue stripe) and 

a 54 mm wide optical source (yellow stripe) are placed along the left edge of the 

phantom. Orange circles are 0.3 mm diameter vascular targets. (b) Simulated diffused light 

propagation via the NIRFAST toolbox solves optical fluence distributions for three different 

tissue mediums with reduced optical scattering coefficients of (c) 1 cm−1; (d) 10 cm−1; 

and (e) 20 cm−1. (f) The photoacoustic wave propagation resulting from the optical fluence­

induced initial pressure is simulated via the K-Wave toolbox. (g, h, i) The time sampled 

photoacoustic signals detected by the 256-element transducer array for each scattering level 

and (j, k, l) their corresponding beamformed images.
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Fig. 5: 
(a) Denoised output and (b) the corresponding heatmap of 4 photoacoustic targets used in 

Fig. 4i (as it will be explained in section III.D) Note that SDL successfully detects all 4 

targets, whereas one is missed by conventional beamforming approaches in Fig. 4i.
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Fig. 6: 
The architecture of the U-Net based network used for the encoder and decoders. Different 

colored boxes represent the following specific modules: Convolution and 1×2 Maxpool, 

residual convolution module (S2 on the right corner of some modules indicates that they 

downsample the input features with stride 2), nn Upsample which is based on the nearest 

neighboring algorithm, DSNT layer, Upsampling module, 1×1 conv, and high field-of-view 

convolution module with 5×5 kernels and strides 1 and 3. They are termed the high field-of­

view modules because the size of kernels (5×5) is comparable to the size of feature maps 

(16×32) which is useful for detecting the dependencies between far apart pixels in the input 

image.
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Fig. 7: 
Performance of our SDL network on [26]’s photoacoustic dataset. (a) A noiseless sample. 

(b,c) Its −3 dB noisy version and its reconstructed output from our network, respectively. 

(d,e) −9 dB noisy version and its reconstructed output, respectively. (f,g) Output heatmaps 

generated by the network for −3 dB and −9 dB inputs, respectively.

Yazdani et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
Comparison between SDL, [26], [35]’s performance, and traditional beamforming. (a) 

Experimental RF data with 20 cm−1 scattering noise taken from [35], (b) the prediction 

from SDL, (c) [35]’s output, (d) beamformed image, and (e) [26]’s output (bounding box 

centers are shown).
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Fig. 9: 
The performance results of the models for 5 different training/test splits when the training 

size reduces to half (8,120 samples). Our lower mean and variance shows the reliability of 

the network in limited training regime.
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Fig. 10: 
The denoising performance of SDL and the cascaded network on a test sample: (a) noiseless 

ground truth, (b) noisy input, (c) SDL denoised output, and (d) the cascaded network 

denoised output.
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Fig. 11: 
(a) The experimental setup to measure photoacoustic signals from light-absorbing pencil 

lead targets submerged inside an optically scattering intralipid solution. (b) Experimental 

photoacoustic data for two different experiments and their corresponding (d,e) heatmap 

outputs from the network, (f,g) respective beamformed images, and (h,i) [26]’s outputs 

(centers of bounding boxes are shown).
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Fig. 12: 
(a) Photoacoustic sample, (b) the chicken tissue experimental setup used for capturing this 

sample, (c) the beamformed image, (d) SDL’s output heatmap, and (e) [23]’s output (centers 

of the bounding boxes are shown).

Yazdani et al. Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yazdani et al. Page 31

TA
B

L
E

 I:

T
he

 d
et

ai
ls

 f
or

 th
e 

la
ye

rs
 o

f 
th

e 
en

co
de

r 
(E

nc
),

 L
oc

al
iz

at
io

n 
de

co
de

r 
(D

ec
 −

 L
),

 a
nd

 D
en

oi
si

ng
 d

ec
od

er
 (

D
ec

−
D

).
 T

he
 s

iz
e 

of
 th

e 
PA

 in
pu

t i
s 

25
6*

10
24

. 

T
he

 d
ef

in
iti

on
 o

f 
en

co
de

r 
in

 o
ur

 w
or

k 
is

 s
lig

ht
ly

 d
if

fe
re

nt
 w

ith
 [

35
]’

s 
as

 w
e 

co
ns

id
er

 la
ye

r 
7 

be
lo

ng
in

g 
to

 th
e 

en
co

de
r 

an
d 

its
 o

ut
pu

t i
s 

co
ns

id
er

ed
 a

s 
th

e 

sh
ar

ed
 in

pu
t f

or
 d

ec
od

er
s.

 E
ac

h 
la

ye
r 

fo
r 

de
co

de
rs

 c
on

si
st

s 
of

 a
 r

es
id

ua
l a

nd
 u

ps
am

pl
in

g 
m

od
ul

e 
ex

ce
pt

 f
or

 th
e 

la
st

 la
ye

r 
w

hi
ch

 is
 a

 s
im

pl
e 

co
nv

ol
ut

io
na

l 

la
ye

r 
an

d 
al

l o
f 

th
es

e 
la

ye
rs

 b
en

ef
it 

fr
om

 th
e 

sk
ip

 c
on

ne
ct

io
ns

 o
f 

th
ei

r 
co

rr
es

po
nd

in
g 

la
ye

r 
in

 th
e 

en
co

de
r.

L
ay

er
s

N
um

be
r 

of
 K

er
ne

ls
/

fe
at

ur
e 

m
ap

s
Si

ze
 o

f 
ou

tp
ut

 f
ea

tu
re

 
m

ap
s

L
ay

er
s

N
um

be
r 

of
 K

er
ne

ls
/

fe
at

ur
e 

m
ap

s
Si

ze
 o

f 
ou

tp
ut

 
fe

at
ur

e 
m

ap
s

L
ay

er
s

N
um

be
r 

of
 K

er
ne

ls
/

fe
at

ur
e 

m
ap

s
Si

ze
 o

f 
ou

tp
ut

 f
ea

tu
re

 
m

ap
s

L
ay

er
1 E

nc
16

25
6*

10
24

L
ay

er
8 D

ec
−

L
25

6
16

*3
2

L
ay

er
8 D

ec
D

25
6

16
*3

2

L
ay

er
2 E

nc
16

25
6*

51
2

L
ay

er
9 D

ec
−

L
12

8
32

*6
4

L
ay

er
9 D

ec
−

D
12

8
32

*6
4

L
ay

er
3 E

nc
32

12
8*

25
6

L
ay

er
10

D
ec

−
L

64
64

*1
28

L
ay

er
10

D
ec

−
D

64
64

*1
28

L
ay

er
4 E

nc
64

64
*1

28
L

ay
er

11
D

ec
−

L
32

12
8*

25
6

L
ay

er
11

D
ec

−
D

32
12

8*
25

6

L
ay

er
5 E

nc
12

8
32

*6
4

L
ay

er
12

D
ec

−
L

16
25

6*
51

2
L

ay
er

12
D

ec
−

D
16

25
6*

51
2

L
ay

er
6 E

nc
25

6
16

*3
2

L
ay

er
13

D
ec

−
L

1
25

6*
51

2
L

ay
er

13
D

ec
−

D
8

51
2*

10
24

L
ay

er
7 E

nc
25

6
8*

16
L

ay
er

14
D

ec
−

D
1

25
6*

10
24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yazdani et al. Page 32

TABLE II:

Comparing the results in the same manner, [26] reported the results over their simulated test set. T is the 

inference time reported per image sample.

Architecture
percentage of total Error≤0.5 mm

T(sec)
Noiseless SNR= −3dB SNR= −9dB

[26] 93.73 96.51 95.63 0.068

SDL 99.71 99.47 96.65 0.058
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TABLE III:

Performance over [35]’s dataset with respect to depth. We can see the significant improvement over deep 

targets which is due to the effect of denoising part as deeper targets suffer from optical scattering more.

Architecture
10 mm≤ Depth≤50 mm

Axial (µm) Lateral (µm) Euclidean(µm)

[35] 26.95 116.43 125.51

SDL 7.62 77.64 81.21

Architecture
Depth>40 mm

Axial (µm) Lateral (µm) Euclidean(µm)

[35] 82.24 427.11 450.99

SDL 21.07 252.65 256.42
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TABLE VI:

The denoising results of the two models, SDL and the cascaded network for the combined 10 cm−1 and 20 

cm−1 test sets. SSIM is an image quality measure normalized to (0,1).

Architecture PSNR(dB)  SSIM

cascaded network 39.00 0.9929

SDL 42.36 0.9945
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