TABLE I:
The details for the layers of the encoder (Enc), Localization decoder (Dec − L), and Denoising decoder (Dec−D). The size of the PA input is 256*1024. The definition of encoder in our work is slightly different with [35]’s as we consider layer 7 belonging to the encoder and its output is considered as the shared input for decoders. Each layer for decoders consists of a residual and upsampling module except for the last layer which is a simple convolutional layer and all of these layers benefit from the skip connections of their corresponding layer in the encoder.
Layers | Number of Kernels/feature maps | Size of output feature maps | Layers | Number of Kernels/feature maps | Size of output feature maps | Layers | Number of Kernels/feature maps | Size of output feature maps |
---|---|---|---|---|---|---|---|---|
Layer1Enc | 16 | 256*1024 | Layer8Dec−L | 256 | 16*32 | Layer8DecD | 256 | 16*32 |
Layer2Enc | 16 | 256*512 | Layer9Dec−L | 128 | 32*64 | Layer9Dec−D | 128 | 32*64 |
Layer3Enc | 32 | 128*256 | Layer10Dec−L | 64 | 64*128 | Layer10Dec−D | 64 | 64*128 |
Layer4Enc | 64 | 64*128 | Layer11Dec−L | 32 | 128*256 | Layer11Dec−D | 32 | 128*256 |
Layer5Enc | 128 | 32*64 | Layer12Dec−L | 16 | 256*512 | Layer12Dec−D | 16 | 256*512 |
Layer6Enc | 256 | 16*32 | Layer13Dec−L | 1 | 256*512 | Layer13Dec−D | 8 | 512*1024 |
Layer7Enc | 256 | 8*16 | Layer14Dec−D | 1 | 256*1024 |