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Abstract

Circadian rhythms regulate a remarkable variety of physiologic functions in living organisms. 

Circadian disruption is associated with tumorigenesis and tumor progression through effects on 

cancer cell biological properties, including proliferation, DNA repair, apoptosis, metabolism, and 

stemness. Emerging evidence indicates that circadian clocks also play an influential role in the 

tumor microenvironment (TME). This review outlines the recent discoveries on how cancer cell 

clock components (including circadian clock and clock genes/proteins) regulate TME biology 

and, reciprocally, how TME clock components affect tumor growth, metastasis, and therapeutic 

response. An improved understanding of how clock components regulate the symbiosis between 

cancer cells and TME will inform the development of novel clock-oriented therapeutic strategies, 

including immunotherapy.
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Circadian rhythm and cancer: old story but new direction

The circadian rhythm is an evolutionarily conserved phenomenon that regulates the 

rhythmicity of physiologic, behavioral and biochemical functions in living organisms [1, 

2]. One of the most well-known circadian rhythms is the sleep-wake cycle, in which the 

term circadian means “around a day” [3]. Circadian rhythms are regulated by circadian 

clocks in mammals. Over the past few decades, the connection between circadian clocks 

and tumorigenesis has been well studied. Mechanistically, circadian clock disruption can 

promote tumor growth and progression via affecting key cancer cell biological properties 
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[1]. However, cancer cells do not live and flourish in isolation, but are surrounded by various 

stromal cells and factors of the tumor microenvironment (TME). Typically, TME comprises 

of extracellular matrix (ECM) and a variety of cells, including innate myeloid cells [e 

g., tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), 
neutrophils, and dendritic cells], lymphocytes (e.g., T cells and NK cells), cancer­
associated fibroblasts (CAFs), and endothelial cells [4]. In recent years, the importance 

of TME in affecting tumor progression and therapeutic efficacy is wildly recognized, and 

multiple TME-targeted therapies have been developed [5]. Moreover, context-dependent 

cancer cell-TME symbiotic interactions have been demonstrated to be critical for tumor 

progression and therapy resistance [6–8]. Improving the molecular understanding of 

circadian clock in tumorigenesis and cancer cell-TME symbiotic interactions is currently 

a major focus of cancer research. Therefore, we need to understand whether and how 

circadian clocks are essential for regulating TME biology and cancer cell-TME symbiosis. 
In this review, we first discuss the influence of circadian clocks on cancer cell hallmarks 

and TME biology. Second, we highlight and discuss how cancer cell clock components 

(including circadian clock and clock genes/proteins) regulate TME biology and, reciprocally, 

how TME clock components affect tumor growth, metastasis, and therapy resistance. 

Finally, we discuss immunotherapeutic potential of targeting clock component-regulated 

cancer cell-TME symbiosis. We believe that this emerging area of interest in cancer biology 

has provided and will continue to provide insights leading to novel and effective treatments 

for cancer patients.

Molecular circadian clock and its effect on the biology of cancer cells and 

TME

Circadian system is composed of central and peripheral clocks [9]. The central clock is 

located in the anterior hypothalamic suprachiasmatic nucleus (SCN), which can function 

autonomously and coordinate peripheral clocks in the body via sending signals [10]. At 

the molecular level, the circadian rhythms emerging from central and peripheral clocks are 

quite similar. The central molecular circadian clock machinery is regulated by transcription–

translation feedback loops (TTFL) [1, 2, 11, 12]. Aryl hydrocarbon receptor nuclear 

translocator-like protein 1 [ARNTL, also named brain and muscle ARNT-like protein-1 

(BMAL1)] and circadian locomotor output cycles kaput (CLOCK) constitute positive factors 

of the feedback loop, which can bind to the E-box motif and promote the expression of 

transcription repressors, including cryptochrome (e.g., CRY1 and CRY2) and period (e.g., 

PER1, PER2, and PER3) genes. As the repressor arm of TTFL, CRY and PER form a 

complex entering to nucleus and suppress the CLOCK–BMAL1 complex [13–15]. On the 

other hand, the CLOCK–BMAL1 complex can regulate the expression of nuclear receptors 

REV-ERBα/β (also known as NR1D1/2, nuclear receptor subfamily 1, group D, member 

1/2) and retinoic acid receptor–related orphan receptors (RORs), which, in turn, repress and 

activate BMAL1, respectively, thus constituting a second feedback loop [1, 2].

Circadian clock disruption induces the pathogenesis of many types of diseases, including 

cancer, [16, 17]. Emerging evidence suggests that circadian clock disruption (e.g., night-shift 

work and ‘late-eaters’ whose eating after 9:30 PM) increases cancer risk [18–20], and is 
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associated with increased tumor metastasis in a variety of cancer types, including breast 

cancer [21, 22], non-small cell lung cancer (NSCLC) [23], and colorectal cancer (CRC) 

[24] in humans. The importance of this line of research is also supported by mouse model 

studies that have shown circadian clocks as playing a prominent role in tumorigenesis and 

in regulating the anti-tumor efficiency of radiotherapy [25, 26] and chemotherapy [27, 28]. 

Mechanistically, circadian clocks can affect tumor growth and progression via regulation of 

multiple cancer hallmarks in cancer cells [29, 30], which include DNA damage response, 

apoptosis, cell cycle, and senescence [1, 18, 31, 32], proliferation [1, 2], metabolism [30, 33, 

34], replicative immortality [35], as well as genome instability and mutation [34]. Cancer 

stem cells (CSCs) represent a subpopulation of cancer cells with self-renewal abilities that 

markedly contribute to tumor initiation, metastasis, and therapy resistance [6]. Increasing 

evidence supports that circadian clocks are essential for maintaining CSC stemness in 

different cancer types, including acute myeloid leukemia (AML) and glioblastoma (GBM) 

[36–38]. Specifically, disruption of the circadian clock machinery pharmacologically (e.g., 

using REV-ERB agonists SR9009 and SR9011) and genetically (e.g., using CLOCK and 

BMAL1 shRNAs) in AML leads to CSC differentiation [38], as well as in GBM impairs 

glioma stem cell (GSC) stemness and causes GSC cell-cycle arrest and apoptosis [36, 37]. 

These results suggest that the core components of circadian clocks regulate key cancer cell 

biological properties across cancer types.

Beyond its impact on cancer cells described above, circadian clock disruption also 

influences the TME and the interactions between cancer cells and TME. For example, in 

a CRC-CAF co-culture model, biological clocks of CRC cells are modulated to enhance 

CRC malignant phenotype via regulating cell metabolism, viability, and apoptosis, and 

inducing chemotherapy resistance [39]. Moreover, in vivo findings from breast cancer and 

melanoma mouse models demonstrate that circadian clock disruption not only significantly 

enhances cancer cell proliferation, dissemination, stemness, and metastasis, but also induces 

an immunosuppressive TME by increasing the proportion of TAMs and Tregs, inducing 

macrophage polarization towards an anti-inflammatory phenotype, and decreasing the 

infiltration and activity of CD8+ T cells [40, 41]. Similarly, computational analysis of 

gene expression data obtained from cancer patient samples has revealed that clock genes 

are associated with immune cell infiltration and cancer cell proliferation [42]. Together, 

these findings suggest a critical role of circadian clocks in regulating cancer cell biological 

properties, TME biology, and their potential symbiotic interactions. Below, we highlight 

specific circadian clock components in cancer cells or in cells of the TME that affect cancer 

cell-TME crosstalk, and discuss its therapeutic potential.

Effect of cancer cell clock components on TME biology

TME is educated by cancer cells and plays an important role in tumor progression 

[4, 8, 43]. This section summarizes the role and underlying mechanisms of cancer cell 

clock components in regulation of TME biology, including angiogenesis, tumor-promoting 

inflammation, and immune evasion (Figure 1).
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Angiogenesis

is a TME-associated cancer hallmark, with new blood vessels forming from existing 

vasculatures [44–46]. Soluble factors secreted by cancer cells in the TME favor tumor 

angiogenesis, thus promoting tumor growth and metastasis [44, 45]. Here, we highlight 

recent findings that underscore the critical role of cancer cell clock components in regulating 

the expression of angiogenic factors, such as hypoxia-inducible factor 1 alpha (HIF-1α), 
aryl hydrocarbon receptor nuclear translocator (ARNT), and vascular endothelial growth 

factor (VEGF). Genetic studies demonstrated that the expression of these pro-angiogenic 

factors is decreased upon CLOCK shRNA knockdown and increased upon CLOCK 
overexpression in human CRC cells [47]. Furthermore, VEGF expression in xenograft 

tumors (including sarcoma, lung carcinoma, and melanoma) is increased under hypoxic 

conditions, fluctuated rhythmically in a circadian fashion (peaking during the light phase 

and decreasing around the early dark phase), and transcriptionally inhibited by PER2 and 

CRY1 [48]. Accordingly, the anti-tumor effect of anti-angiogenic therapies is more potent 

when drugs are administered at ZT 2 than that at ZT 14 (ZT 0 is designated as lights on 

and ZT 12 as lights off) [48]. On the other hand, anti-angiogenic therapy can upregulate 

BMAL1 expression in CRC cells, which, in turn, induces therapy resistance via upregulation 

of VEGF [49]. These results highlight a crucial role of cancer cell clock components in 

influencing tumor angiogenesis and anti-angiogenic therapy efficiency.

Inflammation

is a critical hallmark of cancer [46], supported mainly by the infiltration of innate myeloid 

cells [50]. Unbiased profiling of The Cancer Genome Atlas (TCGA) datasets (https://

www.cancer.gov/tcga) followed by functional studies with mouse models have highlighted 

a strong connection between CSCs and myeloid cells by showing that cancer cell stemness 

inversely correlates with anti-tumor immunity signatures across cancer types [6, 51]. 

Specifically in GBM, high CLOCK levels in GSCs correlate with increased microglia in 

the TME via transcriptional regulation of chemokine olfactomedin-like 3 [36]. In addition to 

microglia, cancer cell clock components also contribute to the infiltration of other types of 

myeloid cells in mouse models. For example, in kidney renal clear cell carcinoma (KIRC) 

and breast cancer mouse models, the expression of clock genes (e.g., CLOCK, ARNTL 
and PER3) in cancer cells is fluctuated rhythmically and associated with the infiltration of 

macrophages, neutrophils, and dendritic cells [31, 52]. Together, these findings support the 

concept of cancer cell clock components that may influence tumor-promoting inflammation 

via effects on myeloid cell-mediated inflammation.

Immune escape

is another critical hallmark of cancer [46], a process involves in regulating the biology of 

lymphocytes and the expression of immune checkpoint molecules. Multi-omics analyses 

in KIRC and lung cancer have shown that clock genes (e.g., CLOCK, ARNTL, CRY1, 
CRY2, PER1, PER2, PER3, RORA, and NR1D1) not only regulate circadian rhythm 

and transcription factor activity of cancer cells, but also correlate with the infiltration of 

lymphocytes, including B cells, CD8+ T cells, and CD4+ T cells [31, 32]. Similarly, patient­

derived GSCs exhibit circadian oscillation independent of tumor genetics [37], and CLOCK 
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expression in GBM patient tumors correlates with a decreased level of activated CD8+ T 

cells [36]. Moreover, genome mutation analysis has revealed that clock genes are frequently 

mutated in cancer patients, which, in turn, can induce genome instability, associate with 

T cell (e.g., CD8+ and CD4+ T cell) exhaustion, and correlate with upregulation of 

immune inhibitory molecules, including programmed death-ligand 1 (PD-L1) and cytotoxic 

T-lymphocyte-associated protein 4 (CTLA-4) [53, 54]. These results suggest an association 

that clock components in cancer cells correlate with the infiltration of lymphocytes and 

the expression of immune checkpoint molecules, thus potentially contributing to immune 

escape.

Collectively, these findings highlight cancer cell clock components as affecting TME-related 

cancer hallmarks (including angiogenesis, inflammation, and immune escape), and suggest 

that blockade of circadian clock-associated cancer cell-TME crosstalk may inhibit tumor 

progression. Nonetheless, available data provides a roadmap for further investigations 

of molecular mechanisms underlying the uncharacterized cancer cell clock component­

associated TME characteristics, such as the presence and function of CAFs, Tregs, MDSCs, 

and ECM.

Impact of TME clock components on tumor progression and therapy 

resistance

In addition to cancer cells and CSCs, circadian clock can intrinsically regulate the behavior 

and function of the TME, such as those associated with immune cells [55–57], fibroblasts 

[58], and endothelial cells [59]. Given the importance of symbiotic cancer cell-TME 

interactions in tumor [36, 60–62], here we highlight the role of clock components in the 

TME of mouse models that affect cancer cell biological properties (Figure 2). For example, 

in a 4T1 breast cancer mouse model, clock genes (e.g., CLOCK, ARNTL, PER2, CRY1, 

and NR1D1) are rhythmically expressed in cells of the TME to induce the expression and 

secretion of Wnt family member 10A (WNT10A). Following the secretion, WNT10A can 

increase cancer cell stemness through upregulation of aldehyde dehydrogenase 3 family, 

member A1 (ALDH3A1) [63], an enzyme whose activity is a characteristic of CSCs and 

correlates with tumor malignancy [64]. As a result, time-of-day effects for the efficacy of 

administering ALDH inhibitor have been observed in this mouse model [63]. In MC38 colon 

and EO771 breast cancer mouse models, the expression of clock gene PER2 in the TME is 

crucial for metastatic colonization via inducing a premetastatic niche [65]. Furthermore, in 

a B16F10 melanoma mouse model, cisplatin treatment in the evening induces less toxicity 

than the same treatment administered in the morning. Notably, this difference is not apparent 

in PER1/2-KO mice [66]. As a result, tumor-bearing PER1/2-KO mice showed an extended 

survival and a more robust immune response (e.g., increased CD4+ and CD8+ T cells) in 

relation to tumor-bearing wild-type (WT) mice following cisplatin treatment [66]. Taken 

together, these findings from distinct mouse models highlight an essential role of TME clock 

components in regulating cancer cell stemness, metastasis, and therapy resistance, and in so 

doing support the potential of targeting TME clock components. As discussed earlier, TME 

is defined as the complex of diverse cell types. Therefore, it will be important to identify 
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the specific cell types of the TME that contribute to clock component-regulated cancer cell 

biological properties and therapy resistance.

TAMs are the most prominent subpopulation of cells in the TME that display a critical 

role in influencing tumor growth and metastasis [67]. TAMs can be classified as polarized 

toward pro-inflammatory and ‘alternatively activated’ phenotypes, which exhibit immune­

stimulatory (anti-tumor) and immunosuppressive (pro-tumor) effects, respectively [8, 68]. 

It should be noted that some TAMs may not be polarized to either state [69]. When 

polarized to the immune-stimulatory or immunosuppressive phenotype, BMAL1 expression 

in macrophages is upregulated. Depletion of BMAL1 in macrophages downregulates 

mitochondrial metabolism via upregulation of HIF1α and ROS accumulation, and 

downregulation of nuclear factor erythroid 2–related factor 2 (NRF2), thus regulating the 

production of pro-inflammatory cytokines [70, 71]. As a result, tumor growth and TAM 

alternative polarization are increased in myeloid-specific BMAL1 KO mice compared 

to BMAL1-WT mice [70]. Similarly, co-injection of cancer cells with BMAL1-KO 

macrophages promotes tumor growth, and reduces the infiltration of CD8+ T cells when 

compared to BMAL1-WT macrophages [70]. Thus, these emerging evidence highlight that 

macrophage BMAL1 is critical for suppressing tumor growth and promoting anti-tumor 

immune response (Figure 3).

Lymphocytes display a critical role in tumor immunity, and their anti-tumor activities can 

be regulated by cell intrinsic clock components (Figure 3). RORγt is a transcription factor 

that can control the interleukin-17–producing CD4+ T helper (Th17) cell differentiation in 

a circadian clock-dependent manner [72]. Activation of RORγ using its synthetic agonists 

enhances the differentiation and effector function of Th17 cells and reduces the level of 

Tregs by regulating the expression of cytokines/chemokines, co-stimulatory receptors, and 

immunosuppressive molecules [73]. Consequently, co-culture and co-injection of RORγ 
agonist-treated CD8+ Tc17 cells and EG7 lymphoma cells increases apoptosis in vitro and 

inhibits tumor growth in vivo [73]. Moreover, translational studies in breast cancer and 

CRC mouse models have shown that activation of RORγ inhibits tumor growth and extends 

animal subject survival through influence on anti-tumor immune response [73]. It should be 

noted that the effect of RORγ activation on Tregs may not due to its clock function since 

Tregs do not have intrinsic circadian oscillators [74]. In addition to RORγ, activation of 

RORα can maintain the balance of cholesterol metabolism in CD8+ T cells by attenuating 

the nuclear factor-κB (NF-κB) pathway, which, in turn, enhances CD8+ T cell activity and 

function. Eventually, these activated CD8+ T cells induce CRC cancer cell apoptosis [75]. In 

summary, these findings suggest that the specific targeting of RORs in T cells is a potential 

approach for immunotherapies.

Another potential TME clock mechanism involves the infiltration of leukocytes, a 

population of immune cells essential for tumor development [76]. A growing body 

of evidence suggests that circadian clock-regulated pro-migratory molecules can trigger 

leukocyte migration. Here, we highlight recent findings that reveal the role and molecular 

basis of circadian clock components in specific cell types of the TME (e.g., B cells, 

neutrophils, and endothelial cells) in regulating the expression of pro-migratory molecules 

and leukocyte migration (Figure 3). For instance, specific deletion of BMAL1 in B 
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cells, neutrophils, or endothelial cells in mice abolishes time-of-day differences in 

the expression of pro-migratory molecules [e.g., integrin alpha L (CD11A), P-selectin 

glycoprotein ligand-1 (PSGL-1), intercellular adhesion molecule 1 (ICAM-1), or vascular 

cell adhesion protein 1 (VCAM-1)], which, in turn, ablates the arrhythmic homing of 

B cells, neutrophils and leukocytes [59]. In contrast, CLOCK expression in endothelial 

cells can transcriptionally upregulate ICAM-1, VCAM-1, and C–C motif chemokine ligand 

2 (CCL2), thus increasing the adhesion of leukocytes to endothelium [77]. In addition 

to the CLOCK-BMAL1 complex, other clock components also regulate the infiltration 

and adhesion of macrophages and monocytes. For example, activation of REV-ERBα 
can suppress CCL2 and its downstream signals (e.g., ERK and p38), which, in turn, 

inhibits macrophage adhesion and migration [78]. Moreover, overexpression of CRY1 in 

endothelial cells can inhibit the expression of inflammatory cytokines (e.g., IL-1β, IL-6, 

and TNF-α), adhesion molecules (e.g., VCAM-1, ICAM-1, and E-selectin), and activation 

of NF-κB pathway, all of which impairs monocyte adhesion [79]. Finally, in vivo findings 

from syngeneic and xenogeneic leukemia cancer models show that the clock-regulated 

recruitment and engraftment of leukemic cells/leukocytes increases tumor burden [59].

Beyond cell types of the TME as discussed earlier, we may also need to consider the 

complement system, which has a close connection with circadian clocks [80], and exhibits 

a pivotal role in promoting tumor growth via triggering myeloid cell infiltration and 

suppressing CD8+ T cell-mediated immune response [81]. Based upon the results of studies 

that have been described above, we propose that TME clock components play a significant 

role in modulating cancer cell stemness, tumor growth, metastasis, and therapeutic efficacy. 

Multiple examples have highlighted a critical role of clock components in myeloid cells, 

lymphocytes, and endothelial cells that regulate tumor growth via modulation of cancer 

cell apoptosis, macrophage polarization, CD8+ T cell activity, and leucocyte infiltration of 

tumor. These studies suggest a therapeutic potential of targeting TME clock components and 

their-regulated factors for disrupting TME-cancer cell symbiotic interactions.

Therapeutic potential of clock-oriented immunotherapy

TME-targeted therapeutic strategies have emerged as a promising approach for cancer 

treatment due to the TME-cancer cell symbiotic interactions, and the critical roles of the 

TME in regulating tumor progression and modulating anti-tumor efficiency of standard-of­

care therapies [5, 6, 8, 82]. Among the TME, myeloid cells (e.g., TAMs and MDSCs) 

can suppress T cell (including CD4+ and CD8+ T cell) -mediated immune response and 

immunotherapy efficiency [82–85], and induce anti-angiogenic therapy resistance [86–89]. 

Similarly, CAFs can suppress immunotherapy efficiency through a mechanism of interacting 

with myeloid cells and T cells [90]. Based on these mechanistic studies, substantial attempts 

have been made to develop TME-targeted therapies to overcome immunotherapy resistance 

[91]. For example, TAM-targeted therapies (e.g., targeting TAM phagocytosis [92, 93] or 

reprogramming [94–97]), MDSC-targeted therapies (e.g., targeting MDSC infiltration [98–

101] or activation [102–104]), CAF-targeting therapies (e.g., blocking CAF function or 

activation [105]), or anti-angiogenic therapies [106] show robust synergistic effects with 

immune checkpoint inhibitors (ICIs) in tumor mouse models. More importantly, some of 
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these combination therapies are currently in clinical trials for treating cancer patients [67, 

105–107].

Current T cell-targeted immunotherapies include those that block inhibitory immune 

checkpoints, and the approaches that boost adaptive immunity by genetically engineering T 

cells with chimeric antigen receptors (CAR) and T cell receptors [5]. Given the importance 

of circadian clock-regulated cancer cell-TME crosstalk in T cell biology as discussed 

earlier, increased understanding of this relationship could lead to strategies increasing 

immunotherapy efficiency. Preclinical studies in mouse models have demonstrated that 

administration of RORγ agonist enhances the anti-tumor activity of Th17 cells modified 

for expression of a CAR, and this CAR T therapy provided long-term protection against 

tumors [108]. In addition, clock component-regulated cancer cell-TME crosstalk has been 

associated with enhanced tumor infiltration of immunosuppressive myeloid cells, which, in 

turn, impairs infiltration and activation of CD4+ and CD8+ T cells, as well as upregulates 

immune checkpoint molecules [31, 32, 36, 52–54]. These findings suggest that targeting 

clock component-regulated TME-cancer cell crosstalk might increase the anti-tumor 

efficiency of ICIs. Indeed, this concept is supported by the evidence from clinical studies, 

where the anti-tumor efficacy of nivolumab (anti-PD1 antibody) in advanced NSCLC 

patients is significantly higher in the morning treatment group than that in the afternoon 

treatment group [109]. Moreover, a clinical trial testing RORγ agonist in combination with 

anti-PD-1 antibody for metastatic NSCLC patients is underway (NCT03396497). These 

studies suggest a clinical impact of clock components in affecting ICI therapy response. 

Further studies focusing on understanding clock component-regulated interactions between 

cancer cells and immune system will help to design and develop novel and effective clock­

oriented immunotherapies.

Concluding Remarks

Although it is well established that circadian clock disruption is linked to an increased 

risk of cancer, details of the molecular mechanisms underlying this association are limited 

[29]. This review has highlighted some of the molecular circuitry that underlies clock 

component-regulated crosstalk between cancer cells and cells of the TME, including innate 

myeloid cells, lymphocytes, and endothelial cells. Currently, available results suggest 

a clock component-regulated cancer cell-TME symbiosis that is essential for sustained 

tumor growth, and that affects therapeutic response to distinct treatments, including 

immunotherapies.

The regulation of clock component-oriented cancer cell-TME crosstalk is complicated. 

As discussed earlier, BMAL1 depletion in GSCs inhibits tumor growth by reducing the 

infiltration of immunosuppressive microglia in GBM: a result supporting an oncogenic 

effect of BMAL1 expression [36]. However, BMAL1 expression in macrophages 

exhibits a tumor suppressive effect, as indicated by BMAL1 deficiency promoting an 

immunosuppressive phenotype that stimulates tumor growth in melanoma [70]. Such 

results highlight that clock component-regulated cancer cell-TME interactions are context 

dependent. Due to this complexity, cancer cells and cells of the TME within different cancer 

types can express distinct immune checkpoint molecules, which might provide various ICI 
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treatment options. Further studies using genetic mouse models and advanced technologies, 

such as cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA­
seq) [110, 111], will increase our understanding of context-dependent signaling axis 

(including immune checkpoint profile) underlying clock component-regulated cancer cell­

TME interactions. Such knowledge will enable a more informed use of ICI therapies that, in 

turn, will lead to improved outcomes for cancer patients receiving ICI therapy.

In summary, recent studies have provided information highlighting the influence of clock 

component-regulated cancer cell-TME interactions on tumor growth, metastasis, and therapy 

resistance. However, multiple open questions remain regarding molecular mechanisms 

underlying this symbiosis and approaches for disrupting these symbiotic interactions (see 

Outstanding Questions). We anticipate that future studies will increase understanding of 

these interactions, and in so doing will reveal novel approaches for cancer treatments.
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Glossary

Cancer hallmarks
a group of key biological capabilities that acquired during tumor development.

Cancer-associated fibroblasts (CAFs)
a component of the tumor microenvironment with diverse functions, including matrix 

remodeling, immunosuppression and extensive reciprocal interactions with cancer cells and 

other cells.

CAR T therapy
a kind of therapy where T cells are genetically engineered to produce an artificial receptor 

for immunotherapy.

Circadian rhythm
an evolutionarily conserved physiological process that regulates the sleep-wake during a 

24-hour cycle.

Cytometry by time of flight (CyTOF)
a valuable approach in the high-dimensional analysis of single cells, especially immune 

cells, in tumor tissues.

Extracellular matrix (ECM)
non-cellular component in mammalian organs and tissues that not only provides structural 

support but also exerts critical biological functions.

Glioma stem cells (GSCs)
a small population of cells in gliomas with self-renewal ability that can induce tumorigenesis 

and therapeutic resistance.

Xuan et al. Page 9

Trends Cell Biol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hypoxia-inducible factor 1-alpha
the master transcriptional regulator of cellular response under hypoxic conditions.

Inflammation
a process by which the immune system protects the body from harmful agents. Tumor­

promoting inflammation is supported mainly by innate immune cells and plays an important 

role in tumor growth and metastasis.

Immune checkpoint inhibitors (ICIs)
a class of agents that trigger immune response by targeting immune checkpoint molecules.

Immune evasion
a strategy used by tumors to evade host’s immune response, thus maximizing their 

probability for tumor growth and metastasis.

Lymphocytes
one of the main types of immune cells in the body, which include T cells, NK cells and B 

cells.

Macrophage polarization
macrophage activation into distinct phenotypes characterized by pro-inflammatory and anti­

inflammatory gene expression profiles.

Metastasis
the spreading of tumor from primary sites to other organs, or from one part to another part in 

the same organ.

Microglia
specialized macrophages in the brain that originate from embryonic yolk sac progenitors.

Myeloid cells
originates from hematopoietic stem cells in the bone marrow and includes macrophages, 

neutrophils, monocytes, dendritic cells, myeloid derived suppressor cells, and mast cells.

Myeloid derived suppressor cells (MDSCs)
a subset of myeloid cells in tumor tissues and in periphery of tumor-bearing hosts exhibiting 

immunosuppressive function.

Single-cell RNA sequencing (scRNA-seq)
a technology that can provide the expression profiles of an individual cell, thus offering a 

better understanding of the phenotype, state and function of an individual cell in the context 

of its microenvironment.

Stemness
a molecular process underlying the core stem cell properties of self-renewal.

Symbiosis
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a type of relationship between two species or cell types in which at least one component 

benefits.

Th17 cells
a subpopulation of CD4+ T cells, which are characterized by producing high levels of 

interleukin-17.

The Cancer Genome Atlas (TCGA)
a landmark cancer genomics program that characterizes more than 20,000 primary cancer 

and matched normal samples across 33 cancer types.

Tregs
a population of specialized T cells that suppress an anti-tumor immune response

Tumor-associated macrophage (TAMs)
macrophages presented in tumor tissues that display a pro-tumor and immunosuppressive 

function.
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Outstanding Questions

Which clock components and related cancer cell-TME interactions are the drivers 

that regulate tumorigenesis, metastasis and therapy resistance? What are the specific 

differences and similarities regarding cancer cell-TME symbiosis among different clock 

components under specific cancer types?

What signaling pathways are critical for regulation of clock component-regulated cancer 

cell-TME interactions?

Can scRNA-seq and CyTOF identify new clock component-regulated cancer cell-TME 

interactions and new immune checkpoint molecules during this interaction?

What’s the molecular mechanism underlying interactions between cancer cell clock 

components and adaptive immune response?

Whether and how clock component-regulated cancer cell-TME symbiosis affects the 

anti-tumor activity of immunotherapies and conventional therapies? Whether targeting 

this symbiosis has synergistic effects with immunotherapies or conventional therapies? If 

yes, what is the best combination strategy?
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Highlights

Circadian clocks contribute to tumor growth and metastasis by regulating the biology of 

cancer cells and tumor microenvironment (TME), as well as their symbiotic interactions.

Cancer cell clock components affect TME biology via regulation of angiogenesis, tumor­

promoting inflammation, and immune escape.

TME clock components affect tumor progression via regulating cancer cell biological 

properties directly and affecting pro-tumor TME indirectly.

Characterizing clock component-regulated cancer cell-TME symbiosis might reveal 

unique therapeutic strategies, and targeting this symbiosis might increase the efficiency 

of immunotherapy.
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Figure 1. Clock components in cancer cells affect TME biology.
Clock components, including circadian clock and clock genes/proteins (e.g., CLOCK, 

ARNTL/BMAL1, PER, CRY, RORs, and REV-ERBα) in cancer cells or cancer stem 

cells regulate the expression and secretion of soluble factors (e.g., HIF1α, ARNT, VEGF, 

OLFML3, and other unidentified factors). Consequently, these secreted factors modulate 

TME biology, including endothelial cell (EC) biology (e.g., promoting angiogenesis and 

anti-angiogenic therapy resistance), infiltration of myeloid cells [e.g., macrophages (MΦ), 

microglia, neutrophils, and dendritic cells (DC)], as well as infiltration and activation/

suppression of lymphocytes (e.g., CD8+ T cells, CD4+ T cells, and B cells). The dash 

arrows indicate that clock components are correlated with the infiltration of immune cells. 

Abbreviations: ARNT, aryl hydrocarbon receptor nuclear translocator; BMAL1, brain and 

muscle ARNT-like protein-1; CLOCK, circadian locomotor output cycles kaput; CRY, 

cryptochrome; HIF-1α, hypoxia-inducible factor 1-alpha; OLFML3, olfactomedin-like 3; 
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PER, period; ROR, retinoic acid receptor—related orphan receptor; and VEGF, vascular 

endothelial growth factor.
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Figure 2. Impact of TME clock components on tumor growth, metastasis and stemness.
CLOCK and BMAL1 in the TME can induce the secretion of WNT10A, which, in turn, 

upregulates ALDH3A1 in cancer stem cells (CSCs) to promote stemness, tumor growth, 

and metastasis. In addition, PER1 and PER2 in the TME can induce a pre-metastatic niche 

to promote metastasis, and induce chemotherapy resistance and immunosuppression thus 

promoting tumor growth. Abbreviations: ALDH3A1, aldehyde dehydrogenase 3 family, 

member A1; BMAL1, brain and muscle ARNT-like protein-1; CLOCK, circadian locomotor 

output cycles kaput; PER, period; TME, tumor microenvironment; and WNT10A, wnt 

family member 10 A.
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Figure 3. Clock components in specific TME that affect tumor growth.
BMAL1 in macrophages (MΦ) inhibits the production of ROS and HIF1α and affects tumor 

growth through regulating macrophage alternative polarization and CD8+ T cell-mediated 

immune response. BMAL1 in B cells and neutrophils can change their migration ability 

via modulating the expression of pro-migratory molecules (e.g., CD11A and PSGL-1). 

RORγ and RORα in T cells can modulate their differentiation (e.g., CD4+ Th17 cells, 

CD8+ Tc cells, and Tregs) and activation via regulation of indicated factors and pathways, 

which, affects tumor growth and anti-tumor immune response. Endothelial cell (EC) 

clocks (e.g., CLOCK, BMAL1, REV-ERBα, and CRY1) can influence adhesion and 
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migration of white blood cells (WBC, as called leukocytes), macrophages and monocytes 

(Mo) via regulating the expression of pro-migratory molecules (e.g., VCAM-1, ICAM-1, 

and E-selectin) and/or cytokines (e.g., CCL2 and TNFα), and activating ERK and P38 

pathways, thus affecting tumor growth. The dash lines indicate that further studies are 

needed to validate this conclusion. Abbreviations: BMAL1, brain and muscle ARNT-like 

protein-1; CCL2, CC chemokine ligand 2; CLOCK, circadian locomotor output cycles 

kaput; CRY, cryptochrome; GM-CSF, granulocyte-macrophage colony-stimulating factor; 

HIF-1α, hypoxia-inducible factor 1-alpha; ICAM-1, intercellular adhesion molecule-1; 

IL-17A, interleukin 17A; NF-κB, nuclear factor kappa B; PSGL-1, P-selectin glycoprotein 

ligand-1; ROR, retinoic acid receptor—related orphan receptor; ROS, reactive oxygen 

species; TME, tumor microenvironment; TNFα, tumor necrosis factor alpha; and VCAM1, 

vascular cell adhesion molecule 1.
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